JPS6149129A - Intake device of internal-combustion engine - Google Patents

Intake device of internal-combustion engine

Info

Publication number
JPS6149129A
JPS6149129A JP59172054A JP17205484A JPS6149129A JP S6149129 A JPS6149129 A JP S6149129A JP 59172054 A JP59172054 A JP 59172054A JP 17205484 A JP17205484 A JP 17205484A JP S6149129 A JPS6149129 A JP S6149129A
Authority
JP
Japan
Prior art keywords
intake
valve
port
suction
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59172054A
Other languages
Japanese (ja)
Inventor
Koji Morikawa
弘二 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP59172054A priority Critical patent/JPS6149129A/en
Publication of JPS6149129A publication Critical patent/JPS6149129A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/085Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M13/00Arrangements of two or more separate carburettors; Carburettors using more than one fuel
    • F02M13/02Separate carburettors
    • F02M13/021Particular constructional measures of the intake conduits between carburettors and cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B2031/006Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air intake valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

PURPOSE:To generate efficiently swirl by providing two intake ports in one cylinder, an independent intake path communicating to each intake port, a valve having the opening controlled according to load in said path and a bypass path connected from the upstream of the valve to the other intake port respectively. CONSTITUTION:Two intake ports 11, 12 are provided in one cylinder, respectively communicating to independent intake paths 51, 52. In each path are provided controlling valves 61, 62 driven by a diaphragm 64 operated by negative pressure in a negative pressure conduit 63. Bypass pths 53, 54 are proided which bypass the controlling vaves 61, 62 from the upstream of the controlling valve in the intake paths 51, 52 to the other intake port portions 12, 11. In high load on an engine, the negative pressure is small so that the diaphragm opens the controlling valves 61, 62 with a spring to supply a great amount of intake straightwards in a combustion chamber. In low load, the diaphragm closes the controlling valve according to the load to increase the intake flow in the bypass path and swirl air amount.

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明は、内燃機関の吸気装置に関するものであり、さ
らに具体的にいうと燃焼室内への混合気の吸入方式を改
良した内燃機関の吸気装置に関するものである。 【従来の技術1 内燃機関において、燃焼室内に吸入される混合気にスワ
ールを発生させて燃焼効率を高めるようにすることは一
般的となっている。かかるスワールの発生方法としては
、吸入ポートをシリンダに対し接線方向に接続して設け
たもの、燃焼室の壁面にスワール発生用のシュラウドを
付設したもの等がある。これらの方法は、多少の差はあ
るもののスワールの発生に対しては有効であるが、a合
気の吸入抵抗を増ず、という問題点を併せ有することか
ら、高負荷時において出力性能の低下を招いていた。 そこで、このようなスワールの発生と高負荷時の出ノ〕
の向上を満足させる方法として従来、例えば実公昭56
−50132号公報に記載されているような複式吸気装
置が提案されている。これは、気化器のプライマリ通路
と連通ずる低負荷用の吸気系と、セカンダリ通路と連通
ずる高負荷用の吸気系とを有し、低・中負荷時には低負
荷用の吸気系のみから吸気を行なうもので、この場合の
吸入ポートは、その出口を絞って吸気の流速を高めると
共に且つ吸入ポートをシリンダの接線方向に向けること
で強力なスワールを発生させるようにしたものであり、
一方、高負荷時には上記低負荷用の吸気系の他に、更に
セカンダリ通路と連通ずる高負荷用の吸気系からも吸気
を行って、吸気量を増大し出力の向上を図るようにして
いるものである。 しかし近時、自動車用エンジンは高出力が求められてお
り、上述の複式吸気装置では、機関の高速または高負荷
時において、高負荷用の吸気系では特に吸入抵抗の増大
はないものの、低負荷用の吸気系では、その吸入ポート
にスワール発生機構としての絞りや、吸入ポートを接線
方向に接続していることから吸入抵抗の増大があり、こ
れによって大1コな内燃機関の高出力化は期待し得ない
という問題点があった。 【発明の目的1 本発明は、上述のrIfJ題点を課題として提案された
ものであって、内燃機関の低速・低負荷時においては、
混合気に強いスワールを発生させて燃焼を改善し、一方
、高速・高負荷時においては、吸入抵抗を減少させ、か
つ混合気の吸入mが多くして、通常のエンジンよりも大
巾な高出力化がIJられるように改善された内燃1幾関
の吸気装置を提供することを目的とするものである。 【B明のイd成1 上述の目的を達成するため、本発明では、1つの燃焼室
に2個の吸気弁を設け、各吸気弁に接続される吸入ポー
トにそれぞれ吸入制御弁を設けると共に、相互の吸入ポ
ート間には、各吸入ポートの吸入制御弁上流位置から、
それぞれ他方側の吸入ポートの吸入制御弁下流で吸気弁
の直上流位置に連通ずるように架設されたバイパスポー
トを設け、かつ上記吸入制御弁を内燃機関の回転数また
は負荷状態に応じて低速・低負荷時には閉じ、高速・高
負荷時には間(ように開閉制御する手段を具備してなる
ことを特徴とするものである。 【尖 施 例j 以下、図面を参照して本発明の一実施例を具体的に説明
する。 第1図ないし第3図は、本発明に係る吸気装置を自動車
用内燃機関に適用した場合の例を示すもので、これらの
図にJ5いて、符号1は償関本体の燃焼室である。この
燃焼室1には、苗内の片側に2個の吸気弁口11.12
が間口され、これに対向して他方の片側に同じく2個の
排気弁口13.14が開口されている。上記吸気弁口1
1.12に接続される吸入ポート51.52は、2叉の
吸気分岐管5を介してエアクリーナ2の下流の気化器3
 (これはインジェクション方式のものでもよい〉に連
通されてあり、また、排気弁口13.14には排気管8
が連通されている。 上記2個の吸気弁口11.12に接続される各吸入ポー
ト51.52には、その途中に、吸気制御系6によって
開閉制御される吸入制御弁61.62がそれぞれ内装さ
れてあり、また、それぞれの吸入ポート51、52には
、相互のポート間に連通J゛るバイパスポート53;5
4が設けられている。このバイパスポート53は、一方
の吸入ポート51に内装された吸入ルリ御弁61の上流
位置と、他方の吸入ポート52の吸入制御弁62の下流
で吸気弁口12の直上流とを連通ずるように架設されて
おり1、同様に他方のバイパスポート54は、一方の吸
入ポート52に設けられた吸入制御弁62の上流位置と
、他方の吸入ボー1−51の吸入制御弁61の下流で吸
気弁口11の直上流とを連通ずるように架設されている
。また各バイパスポート53.54の吸気弁11.12
の直上流における61口は、燃焼宝1の内壁に対してそ
の接線方向に向くように指向されている。 なお燃焼室1内には、その頂部に点火プラグ15を有し
、また2個の吸気弁口11と12および排気弁 ′口1
3と14の間には、それぞれ乱流生成突起16.17が
設りられている。 さらに前記吸気制御系6は、内燃機関の吸気量が多い高
速・高負荷時にはそれぞれの吸入制御弁61、62が全
開状態となり、また低速・低負荷時には閉じるように開
閉制御されるもので、そのための(M成の一例として第
1図に示すように、吸気弁口12の直上流に開口する圧
力通路G3から、吸入系に止する負圧をダイアフラム式
アクチュエータ64のダイアフラム蛮65に導ぎ、ダイ
アフラムに連結されたリンク6Gを引き押しすることに
よって、吸入制御弁61. (32の支持l1lI!l
G7を回動し、両吸入制卯弁61.62を同時的に動作
させるように、その開閉を制御している。なお、吸入制
御弁61.82の開閉制御を内燃機関の回転数に対応し
て制御する場合には、点火信号等により回転数を検出し
て、この検出信号により圧力通路63の途中に設けたソ
レノイドパルプ等を作動させるように構成する。 次いで第4図J5よび第5図に基づいて上記構成の動作
を説明する。 (1)機関本体の吸気回が多い高速または高負荷時には
、第4図に示すように、ダイアフラム窟65の負圧は浅
くなることで、吸入制御弁61. G2は全問状態とな
り、この際の混合気の流量は多く流速も速いので、混合
気は、はとんどバイパスポート53゜54には流入せず
、しかして混合気は、2個の吸入ポート51.52から
燃焼室1に吸入されることで吸入量が多く、またこの際
は、第4図の矢印に示すようにスワールは殆んど発生せ
ず、吸入抵抗は、単一の吸入弁口からの吸入に比べて大
幅に小さくなり、高出力が発揮される。 6I)機関本体の吸気nが少ない低速または低負荷IK
デには、第5図に示ずように、ダイアフラム至64の負
圧は深(、吸入量りD弁61.62は閉状態となること
で、この際の混合気は、吸入ポート51.52を直進ぜ
ず、バイパスポート53.54に流入する。しかして混
合気は、それぞれの吸入ポート51.52から各バイパ
スポート53.54を通過して、それぞれ反対側の吸入
ポートの吸気弁口11.12の直上流に導かれ、吸気弁
口11.12から互いに燃焼室内壁の接線方向に吸入さ
れることで、強いスワールが発生される。この際、混合
気は、2つのバイパスポート53.54を通って両吸気
弁口11.12から互に反対方向に吸入されるから、二
乗のスワールが発生し、これが互いに燃焼室1内で衝突
して、より強い乱れが生ずることになる。なお燃焼室1
内に乱流生成突起16.17が設けである場合は、混合
気流が、これらの突起16.17に衝突し、乱流の生成
かさらに助長される。 〈11の  ざらに中速または中間負荷時では、吸入制
御弁61.62は半開状態となることから、この際の混
合気は、吸入制御弁61.62の開度に応じて、一部は
吸入ポート51.52を通って燃焼室1内に吸入され、
また他の一部はバイパスポート53.54を通って燃焼
室1内に吸入されることで、所定の混合気吸入■が確保
されつつ、適度のスワールが発生されるように制御され
る。 (発明の効果1 本発明は、上述したように、1つの燃焼室に対する吸入
ポートを2つにし、ざらに吸入制御弁とバイパスポート
の組合せにより、内燃機関の低速または低負荷時におい
ては、バイパスポート側から混合気を燃焼室内に吸入さ
せることで、燃焼室内に二重のスワールが発生され、か
つスワールの衝突により強い乱流が生じて燃焼が促進さ
れることから燃費を向上でき、また中速・中nB負荷時
においては、所定の混合気吸入量を確保しつつ適度のス
ワールを発生させるように燃焼制御でき、さらに高速・
高負荷時においては、2つの吸入ポートが全開して混合
気が2個の吸入ポートから直接的に燃焼室内に吸入され
ることで、吸入抵抗が少なく、犬山の混合気が燃焼室内
に導入されるから機関出力の大巾な向上を図ることがで
きるという効果が得られる。 なお、本発明の複式吸気装置は、通常の内燃機関は勿論
のこと、他の内燃機関、例えば過給機付の内燃機関にも
適用でき、この場合には負圧を検出するダイアフラム式
アクチュエータに代えて内燃機関の運転状態を検出して
作動するツレ/イド等によって、吸入制御弁を制御すれ
ばよい。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an intake system for an internal combustion engine, and more specifically, an intake system for an internal combustion engine that has an improved method for intake of air-fuel mixture into a combustion chamber. It is related to the device. [Prior Art 1] In internal combustion engines, it is common to generate swirl in the air-fuel mixture taken into a combustion chamber to increase combustion efficiency. Methods for generating such swirl include a method in which the suction port is connected tangentially to the cylinder, a method in which a shroud for generating swirl is attached to the wall surface of the combustion chamber, and the like. These methods are effective against the occurrence of swirl, although there are some differences, but they also have the problem of not increasing the suction resistance of aiki, so they reduce the output performance under high loads. was inviting. Therefore, the occurrence of such swirl and the problem with high loads]
Conventionally, as a method to satisfy the improvement of
A dual intake device as described in Japanese Patent No. 50132 has been proposed. This has a low-load intake system that communicates with the primary passage of the carburetor, and a high-load intake system that communicates with the secondary passage, and during low and medium loads, air is taken only from the low-load intake system. In this case, the suction port narrows its outlet to increase the flow velocity of the intake air, and also generates a strong swirl by orienting the suction port in the tangential direction of the cylinder.
On the other hand, when the load is high, air is taken in from the high-load intake system that communicates with the secondary passage in addition to the above-mentioned low-load intake system, thereby increasing the amount of intake air and improving output. It is. However, in recent years, automobile engines are required to have high output, and with the above-mentioned dual intake system, there is no particular increase in intake resistance when the engine is running at high speed or under high load. In the intake system of a car, there is an increase in intake resistance because the intake port has a throttle as a swirl generation mechanism and the intake port is connected tangentially, and this is one of the major factors that makes it difficult to increase the output of an internal combustion engine. The problem was that it was not what we expected. Purpose of the Invention 1 The present invention was proposed to solve the above-mentioned rIfJ problem, and when the internal combustion engine is at low speed and low load,
It improves combustion by generating a strong swirl in the air-fuel mixture, and at the same time, at high speeds and high loads, it reduces intake resistance and increases the amount of air-fuel mixture sucked into the engine, resulting in a much higher engine speed than normal engines. It is an object of the present invention to provide an intake system for an internal combustion engine which is improved so that the output can be improved. [B Ming's Idea 1] In order to achieve the above object, in the present invention, two intake valves are provided in one combustion chamber, and an intake control valve is provided in each intake port connected to each intake valve. , between the mutual suction ports, from the upstream position of the suction control valve of each suction port,
A bypass port is provided so as to communicate with the intake control valve downstream of the intake port on the other side and directly upstream of the intake valve, and the intake control valve is operated at low speed or low speed according to the rotational speed or load condition of the internal combustion engine. The present invention is characterized in that it is equipped with a means for controlling opening and closing so that it closes when the load is low and opens and closes when the load is high speed and high. 1 to 3 show examples in which the intake device according to the present invention is applied to an internal combustion engine for automobiles. This is the combustion chamber of the main body.This combustion chamber 1 has two intake valve ports 11 and 12 on one side inside the seedling.
Opposed to this, two exhaust valve ports 13 and 14 are opened on the other side. Above intake valve port 1
1.12 is connected to the carburetor 3 downstream of the air cleaner 2 via the two-pronged intake branch pipe 5.
(This may be an injection type), and the exhaust valve port 13.14 is connected to the exhaust pipe 8.
are being communicated. Each intake port 51.52 connected to the two intake valve ports 11.12 has an intake control valve 61.62 internally installed in the middle, which is controlled to open and close by the intake control system 6. , each suction port 51, 52 has a bypass port 53; 5 which communicates between the mutual ports.
4 is provided. This bypass port 53 communicates between the upstream position of the suction control valve 61 installed in one suction port 51 and the position immediately upstream of the intake valve port 12 downstream of the suction control valve 62 of the other suction port 52. Similarly, the other bypass port 54 is installed at an upstream position of the suction control valve 62 provided at one suction port 52 and at a downstream position of the suction control valve 61 provided at the other suction port 51. It is constructed so as to communicate with the valve port 11 immediately upstream. In addition, each bypass port 53.54 intake valve 11.12
The 61 ports immediately upstream of the combustion chamber 1 are oriented tangentially to the inner wall of the combustion chamber 1 . The combustion chamber 1 has a spark plug 15 at its top, and two intake valve ports 11 and 12 and an exhaust valve port 1.
Turbulence generating protrusions 16 and 17 are provided between 3 and 14, respectively. Furthermore, the intake control system 6 is controlled to open and close so that the intake control valves 61 and 62 are fully open at high speeds and high loads when the internal combustion engine has a large amount of intake air, and are closed at low speeds and low loads. (As shown in FIG. 1 as an example of the M configuration, negative pressure to be stopped in the intake system is guided from the pressure passage G3 that opens immediately upstream of the intake valve port 12 to the diaphragm bar 65 of the diaphragm actuator 64, By pulling and pushing the link 6G connected to the diaphragm, the suction control valve 61. (32 supports l1lI!l
G7 is rotated to control the opening and closing of both suction control valves 61 and 62 so as to operate them simultaneously. In addition, when controlling the opening and closing of the intake control valves 61 and 82 in accordance with the rotational speed of the internal combustion engine, the rotational speed is detected by an ignition signal, etc., and this detection signal is used to control the opening and closing of the intake control valves 61 and 82. It is configured to operate a solenoid pulp or the like. Next, the operation of the above configuration will be explained based on FIG. 4 J5 and FIG. 5. (1) At high speeds or under high load when the engine main body has many intake cycles, as shown in FIG. G2 is in full state, and at this time, the flow rate of the mixture is large and the flow velocity is high, so the mixture hardly flows into the bypass ports 53 and 54, and the mixture flows through the two intake ports. The suction amount is large as it is sucked into the combustion chamber 1 from the ports 51 and 52, and at this time, as shown by the arrow in Fig. 4, almost no swirl occurs, and the suction resistance is Compared to suction through the valve port, it is significantly smaller and produces higher output. 6I) Low speed or low load IK with little intake n of the engine body
In this case, as shown in FIG. The air-fuel mixture flows from each intake port 51.52, passes through each bypass port 53.54, and enters the intake valve port 11 of the opposite intake port. The air-fuel mixture is guided immediately upstream of the two bypass ports 53. 54 and are sucked in from both intake valve ports 11 and 12 in opposite directions, a squared swirl occurs, which collides with each other in the combustion chamber 1, resulting in stronger turbulence. Combustion chamber 1
If turbulence generating protrusions 16,17 are provided within the air mixture, the air mixture impinges on these protrusions 16,17, further promoting the generation of turbulence. <11 Zara At medium speed or intermediate load, the intake control valves 61 and 62 are in a half-open state, so the air-fuel mixture at this time partially opens depending on the opening degree of the intake control valves 61 and 62. is drawn into the combustion chamber 1 through the intake ports 51, 52,
In addition, the other part is sucked into the combustion chamber 1 through the bypass ports 53 and 54, and is controlled so that a predetermined air-fuel mixture suction (2) is ensured and an appropriate amount of swirl is generated. (Effect of the invention 1) As described above, the present invention provides two intake ports for one combustion chamber, and uses a combination of an intake control valve and a bypass port to provide a bypass port when the internal combustion engine is running at low speed or under low load. By inhaling the air-fuel mixture into the combustion chamber from the port side, a double swirl is generated in the combustion chamber, and the collision of the swirls generates strong turbulence that accelerates combustion, improving fuel efficiency. At high speed and medium nB loads, combustion can be controlled to generate an appropriate amount of swirl while ensuring a predetermined amount of air-fuel mixture intake.
At high loads, the two suction ports are fully opened and the air-fuel mixture is directly sucked into the combustion chamber from the two suction ports, reducing suction resistance and allowing Inuyama's air-fuel mixture to be introduced into the combustion chamber. Therefore, it is possible to achieve the effect that the engine output can be greatly improved. Note that the dual intake system of the present invention can be applied not only to normal internal combustion engines but also to other internal combustion engines, such as internal combustion engines equipped with a supercharger. Alternatively, the intake control valve may be controlled by a lever or the like that is activated by detecting the operating state of the internal combustion engine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用された吸気装置を通常の内燃機関
に適用した一例を示す構成図、第2図は第1図のff−
ffにお9ブる断面図、第3図は燃焼室の概略図、第4
図は81!関の高速・高負荷時の吸気状態を示す図、第
5図はaOQの低速・低負荷り、17の吸気状態を示す
図である。 1・・・燃焼室、11.12・・・吸気弁口、13.1
4・・・排気弁口、51.52・・・吸入ポート、53
.54・・・バイパスポ−ト、61. G2・・・吸入
fiIJtll弁。 同  弁理士  村 井   進 第2図 第4図 第5図
FIG. 1 is a configuration diagram showing an example of an intake system to which the present invention is applied to a normal internal combustion engine, and FIG.
Figure 3 is a schematic diagram of the combustion chamber, Figure 4 is a cross-sectional view of the
The figure is 81! FIG. 5 is a diagram showing the intake state of 17 at low speed and low load of aOQ. 1... Combustion chamber, 11.12... Intake valve port, 13.1
4...Exhaust valve port, 51.52...Suction port, 53
.. 54... bypass port, 61. G2...Intake fiIJtll valve. Patent Attorney Susumu Murai Figure 2 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1つの燃焼室に2個の吸気弁を備え、各吸気弁に接続さ
れる吸入ポートにそれぞれ吸入制御弁を設けると共に、
相互の吸入ポート間には、各吸入ポートの吸入制御弁上
流位置から、それぞれ他方側の吸入ポートの吸入制御弁
下流で吸気弁の直上流位置に連通するように架設された
バイパスポートを設け、かつ上記吸入制御弁を内燃機関
の回転数または負荷状態に応じて低速・低負荷時には閉
じ、高速・高負荷時には開くように開閉制御する手段を
具備してなることを特徴とする内燃機関の吸気装置。
One combustion chamber is provided with two intake valves, and each intake port connected to each intake valve is provided with an intake control valve,
A bypass port is installed between the mutual suction ports so as to communicate from a position upstream of the suction control valve of each suction port to a position directly upstream of the suction valve downstream of the suction control valve of the other suction port, respectively, and means for controlling the opening and closing of the intake control valve so that it closes at low speeds and low loads and opens at high speeds and high loads according to the rotational speed or load condition of the internal combustion engine. Device.
JP59172054A 1984-08-17 1984-08-17 Intake device of internal-combustion engine Pending JPS6149129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59172054A JPS6149129A (en) 1984-08-17 1984-08-17 Intake device of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59172054A JPS6149129A (en) 1984-08-17 1984-08-17 Intake device of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6149129A true JPS6149129A (en) 1986-03-11

Family

ID=15934676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59172054A Pending JPS6149129A (en) 1984-08-17 1984-08-17 Intake device of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6149129A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2812339A1 (en) * 2000-07-26 2002-02-01 Renault I.C. engine with improved combustion initiation comprises combustion chamber in which piston slides, two air/fuel inlet orifices closed by valves, supplied by conduits, and opened sequentially engender turbulence in chamber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2812339A1 (en) * 2000-07-26 2002-02-01 Renault I.C. engine with improved combustion initiation comprises combustion chamber in which piston slides, two air/fuel inlet orifices closed by valves, supplied by conduits, and opened sequentially engender turbulence in chamber

Similar Documents

Publication Publication Date Title
JPH048610B2 (en)
JPS6052291B2 (en) Internal combustion engine with multiple air intakes
JPS6035533B2 (en) engine intake system
JPS5848712A (en) Air inlet device of internal-combustion engine
US4700676A (en) Intake control device
JPS6149129A (en) Intake device of internal-combustion engine
JP3617691B2 (en) Engine intake control device
JPH02176115A (en) Intake control device for internal combustion engine
JPS58210322A (en) Suction system of internal-combustion engine
JPS63109233A (en) Intake device for engine with pressure wave supercharger
JPH0343388Y2 (en)
JPH07233761A (en) Exhaust reflux device for engine
JPS6128714A (en) Intake device of internal-combustion engine
JP2995200B2 (en) Engine air supply
JPS633376Y2 (en)
JPS60125723A (en) Intake apparatus for internal combustion engine
JPS6161918A (en) Air intake device of internal-combustion engine
JPS6131147Y2 (en)
JPS61190115A (en) Intake air device for internal-combustion engine
KR970000362Y1 (en) Variable intake valve driving apparatus of a car
JPS61167122A (en) Intake device of engine
JPH0141890Y2 (en)
JPH0640906Y2 (en) Engine intake system that uses intake inertia
JPH0622138Y2 (en) Variable venturi vaporizer
JPS61167123A (en) Intake device of engine