JPS6149035B2 - - Google Patents

Info

Publication number
JPS6149035B2
JPS6149035B2 JP585580A JP585580A JPS6149035B2 JP S6149035 B2 JPS6149035 B2 JP S6149035B2 JP 585580 A JP585580 A JP 585580A JP 585580 A JP585580 A JP 585580A JP S6149035 B2 JPS6149035 B2 JP S6149035B2
Authority
JP
Japan
Prior art keywords
coating
welding
welded
cans
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP585580A
Other languages
Japanese (ja)
Other versions
JPS56105878A (en
Inventor
Hiroshi Matsubayashi
Makoto Horiguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP585580A priority Critical patent/JPS56105878A/en
Publication of JPS56105878A publication Critical patent/JPS56105878A/en
Publication of JPS6149035B2 publication Critical patent/JPS6149035B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は耐食性の優れた溶接缶、及びその製造
方法に関し、更に詳しくは、エツジクリーニング
された電解クロム酸処理鋼板(TFS)のエツジ
クリーニング部及びカツトエツジ部に予め耐食性
及び溶接性の優れた金属又は合金をコーテイング
した後、重ね合せ抵抗溶接する耐食性の優れた
TFSの溶接缶の製造方法に関する。 TFSは溶接性が劣るので、この素材を用いて
溶接缶を作るには、例えば、特公昭51−14189に
記載されたような装置で溶接される部分のクロム
被膜を削り落し(エツジクリーニング)、素地鋼
を露出させて重ね合せ溶接する方法が従来行われ
ている。 しかしながら上記の従来方法においては、製品
缶の継き目部に、前記エツジクリーニング及びカ
ツトエツジに基づく鋼素地の露出があり、この露
出が缶内面の場合には、内容物中への鉄溶出、錆
の発生、孔食、あるいは内容等の変質特の原因と
なり、たとえ鋼の露出部を有機被膜で被覆したと
しても、鋼の露出部は、有機被膜との密着性、特
に加工部での密着性が悪く、有機被膜下での腐食
を抑える事は困難である。又、缶外面の鋼の露出
は、貯蔵時の赤錆や糸状錆の発生の原因となり、
これらの錆発生は、外観上、商品価値を著しく低
下させる。 従つて、現在に至るまで、溶接缶の使用は、腐
食性の弱い内容物に限定されている。 本発明者等は、上記従来方法の問題を解決する
為、種々研究した結果、エツジクリーニングされ
たTFSのエツジクリーニング部とカツトエツジ
部に予め、耐食性及び溶接性の優れた金属又は台
金をコーテイングした後、重ね合せ抵抗溶接する
ことにより、耐食性の優れた溶接缶を製造するこ
とが出来る事を見出し、本発明に到達した。 すなわち本発明は、電解クロム酸処理鋼板の缶
用素材板の対向する端縁部のクロム被膜を除去
し、該部分を重ね合わせて電気抵抗溶接する溶接
缶の製造方法において、素材板の前記クロム被膜
を除去した部分及びカツトエツジ部の露出した素
地鋼面上に、予じめ耐食性及び溶接性を有する金
属または合金の被膜を設けて溶接を行うことを特
徴とする方法である。 本発明において、TFS素材板の、前記露出素
地鋼面を被覆するに適した、耐食性及び溶接性の
優れた金属の例は、鉛、錫、亜鉛およびニツケル
であり、これらの金属の合金も使用できる。 上に例示したような金属あるいは合金を露出素
地鋼面上にコーテイングするには、電気めつき
法、無電解めつき法、溶融めつき法あるいは溶射
等、従来知られた金属被覆方法のいずれの方法を
も用いる事が出来る。 金属、合金のコーテイング厚さは、0.003μm
〜100μm、より好ましくは、0.005μm〜50μm
である。 エツジクリーニング部及びカツトエツジ部は、
通常、清浄な素地鋼が露出しているので、上記の
金属あるいは合金の被覆は、何等の前処理なし
に、該露出素地鋼面上に施すことができる。しか
しながら、通常の、脱脂及び酸洗い等の前処理を
行つた後に上記のコーテイングを施してもよい。 本発明に示す方法で製造された缶体は、目的に
応じて、無塗装のままでも、塗装を行なつても使
用することが出来るので、食缶、飲料缶、エアゾ
ール缶、一般缶の全てに使用される。 次に本発明の実施例を示す。 各実施例、比較例を通じ、溶接性は、各試験項
目毎に、試験缶10缶を下記要領により評価する。 溶接部強度:溶接部を引張り試験機で測定。 溶接の完全性:サイドシームと平行に溶接部を切
断し、その切断面を300倍の光学顕微鏡で観察
し、溶接の完全性を評価。 ○:サイドシーム全長に渡つて溶接が完全であ
るもの。 ×:サイドシームの1ケ所以上に溶接不良があ
るもの。 溶融金属の飛び散り:溶接部周辺の溶融金属の飛
び散りの有無を10倍の実体顕微鏡で観察し、評
価。 実缶貯蔵試験は、次の各試験項目毎に、試験缶
10缶を1年間貯蔵後、下記要領により評価する。 缶内圧力又は缶内真空度:貯蔵1年後の缶内圧力
又は缶内真空度、10缶の平均値。 発生水素量:発生水素量(ml)/缶、10缶の平均
値。 溶出鉄:溶出鉄(mg)/内容物(100g)、10缶の
平均値。 孔あき:貯蔵1年間以内に生じた穿孔缶数 内容物の変化:内容物の色その他の変化 缶内面状態:開缶後、缶内面の視覚による評価、
(錆の発生状態、塗膜の変化等) 缶外面状態:貯蔵1年後の缶外面の視覚による評
価。 実施例 1 厚さ0.23mm、テンパー4の電解クロム酸処理鋼
板の缶胴ブランク(105mm×206mm)に、エポキシ
−フエノール系塗料をキユア後の厚さが約5μと
なるように、溶接時の重な合せ部を除いてロール
コーテイングし、205℃で10分間焼付けた。この
缶胴ブランクの重ね合せ部のクロム被膜をミリン
グカツターで除去した後、下記条件で錫めつきコ
ーテイングを行ない、水洗乾燥後、ロールフオー
マーで高さが105mmになるように筒状に成形し、
通常の重ね合せシーム抵抗溶接機を用い、重ね合
せ巾0.4mm、送り速度45m/分及び電流条件
7.3KAでシーム溶接を行ない缶胴を製造した。 錫めつきコーテイング条件 浴組成(水溶液) 硫酸第一錫 80g/ フエノール・スルホン酸 80g/ ゼラチン 2g/ β−ナフトール 1g/ 浴 温 50℃ 電流密度 30A/dm3 めつき時間 4秒 この缶胴を用い、溶接部強度、溶接の完全性及
び溶融金属の飛び散りを評価した。結果を第一表
に示す。別の缶胴を用い、缶内面の溶接部周辺
に、エポキシ−フエノール系塗料を塗布し、200
℃で2.5分間焼付けた後、通常の方法でフランジ
加工し、天蓋を二重巻締し、缶体とした。 この缶体に、ツナ・ドレツシングあるいは、ミ
ートソースを充填し、缶蓋を二重巻締し、116
℃、90分間レトルトを行い、実缶貯蔵試験に供し
た。その結果を第一表に示す。 実施例 2 厚さ0.17mm、テンパーDR8の電解クロム酸処理
鋼板の缶胴ブランク(105mm×206mm)に、エポキ
シ−フエノール系塗料をキユア後の厚さが約5μ
となるように、溶接時の重ね合せ部を除いてロー
ルコーテイングし、205℃で10分間焼付けた。こ
の缶胴ブランクの重ね合せ部のクロム被膜をミリ
ングカツターで除去した後、下記条件でニツケル
めつきコーテイングを行ない、水洗乾燥後、ロー
ルフオーマーで高さが105mmになるように筒状に
成形し、通常の重ね合せシーム抵抗溶接機を用
い、重ね合せ巾0.4mm、送り速度45m/分及び電
流条件6.5KAでシーム溶接を行ない缶胴を製造し
た。 ニツケルめつきコーテイング条件 浴組成(水溶液) 硫酸ニツケル 220g/ 塩化ニツケル 40g/ ホウ酸 30g/ 浴 温 55℃ 電流密度15A/dm2 めつき時間 10秒 この缶胴を用い、溶接部強度、溶接の完全性及
び溶融金属の飛び散りを評価した。結果を第一表
に示す。別の缶胴を用い、缶内面の溶接部周辺
に、エポキシ−フエノール系塗料を塗布し、200
℃で2.5分間焼付けた後、通常の方法でフランジ
加工し、天蓋を二重巻締し、缶体とした。この缶
体に、コンソメ・スープあるいは野菜ジユースを
93℃で加熱充填し、缶蓋を二重巻締した。コンソ
メ・スープを充填した缶体については、116℃で
90分間レトルトを行ない、また野菜ジユースを充
填した缶体については、そのままで、共に、実缶
貯蔵試験に供した。その結果を第一表に示す。 実施例 3 厚さ0.24mm、テンパー4の電解クロム酸処理鋼
板の缶胴ブランク(125mm×206mm)に、エポキシ
−ユリア系塗料をキユア後の厚さが約3μとなる
ように、溶接時の重ね部を除いてロールコーテイ
ングし、205℃で10分間焼付けた。この缶胴ブラ
ンクの重ね合せ部のクロム被膜をミリングカツタ
ーで除去した後、下記条件でニツケル−りんめつ
きコーテイングを行ない、水洗乾燥後、ロールフ
オーマーで高さが125mmになるように筒状に成形
し、通常の重ね合せシーム抵抗溶接機を用い、重
ね合せ巾0.4mm、送り速度35m/分及び電流条件
6.2KAでシーム溶接を行ない缶胴を製造した。 ニツケル−りん合金めつきコーテイング条件 浴組成(水溶液) 塩化ニツケル 35g/ 酢酸ナトリウム 12g/ 次亜りん酸ナトリウム 10g/ 浴 温 95℃ めつき時間 60秒 この缶胴を用い、溶接部強度、溶接の完全性及
び溶融金属の飛び散りを評価した。結果を第一表
に示す。別の缶胴を用い、缶内面の溶接部周辺
に、エポキシ−ユリア系塗料を塗布し、200℃で
2分間焼付けた後、通常の方法でフランジ加工
し、天蓋、目金蓋を二重巻締し、缶体とした。 この缶体に、ガラスクリーナーあるいは、シエ
ービングクリームを、エアゾール噴射剤とともに
充填し、マウンテン・カツプをクリンチし、実缶
貯蔵試験に供した。その結果を第一表に示す。 実施例 4 厚さ0.23mm、テンパー4の電解クロム酸処理鋼
板の缶胴ブランク(105mm×206mm)に、エポキシ
−フエノール系塗料を、キユア後の厚さが約5μ
となるように、溶接時の重ね合せ部を除いてロー
ルコーテイングし、205℃で10分間焼付けた。 この缶胴ブランクの重ね合せ部のクロム被膜を
ミリングカツターで除去した後、フラツクスを塗
布し、溶融錫中に1秒間浸漬し、直ちに絞りロー
ルを通し、錫コーテイングを行なつた。 ロールフオーマーで高さが105mmになるように
筒状に成形し、通常の重ね合せシーム抵抗溶接機
を用い、重ね合せ巾0.4mm、送り速度45m/分及
び電流条件7.5KAでシーム溶接を行ない缶胴を製
造した。 この缶胴を用い、溶接部強度、溶接の完全性及
び溶融金属の飛び散りを評価した。結果を第一表
に示す。別の缶胴を用い、缶内面の溶接部周辺
に、エポキシ−フエノール系塗料を塗布し、200
℃で2.5分間焼付けた後、通常の方法でフランジ
加工し、天蓋を二重巻締し、缶体とした。 この缶体に、カツオ味付あるいはツナ水煮を充
填し、缶蓋を二重巻締し、116℃、90分間レトル
トを行い、実缶貯蔵試験に供した。その結果を第
一表に示す。 比較例 1 厚さ0.23mm、テンパー4の電解クロム酸処理鋼
板の缶胴ブランク(105mm×206mm)にエポキシ−
フエノール系塗料を、キユア後の厚さが約5μと
なるように、溶接時の重ね合せ部を除いてロール
コーテイングし、205℃で10分間焼付けた。この
缶胴ブランクの重ね合せ部のクロム被膜をミリン
グ・カツターで除去した後、ロールフオーマーで
高さが105mmになるように筒状に成形し、電流条
件を5.6KAに変更した点以外は実施例1と同じ溶
接条件でシーム溶接を行ない、缶胴を製造した。 この缶胴を用い、溶接部強度、溶接の完全性及
び溶融金属の飛び散りを評価した。結果を第一表
に示す。 別の缶銅を用い、実施例1と同じ条件で、溶接
部周辺の塗装、焼付け、フランジ加工及び巻締を
行ない缶体とし、実施例1と同じ条件で、内容物
を充填し、レトルトし、実缶貯蔵試験に供した。
その結果を第一表に示す。 比較例 2 厚さ0.23mm、テンパー4の電解クロム酸処理鋼
板の缶胴ブランク(105mm×206mm)にエポキシ−
フエノール系塗料を、キユア後の厚さが約5μと
なるように、溶接時の重ね合せ部を除いて、ロー
ルコーテイングし、205℃で10分間焼付けた。 この缶胴ブランクをロールフオーマーで高さが
105mmになるように成形し、電解条件を3.6KAに
変更した点以外は実施例1と同じ溶接条件でシー
ム溶接を行ない缶胴を製造した。 この缶胴を用い、溶接部強度、溶接の完全性及
び溶融金属の飛び散りを評価した。結果を第一表
に示す。 別の缶銅を用い、実施例1と同じ条件で缶体と
し、実施例1と同じ条件で内容物を充填し、レト
ルトし、実缶貯蔵試験に供した。その結果を第一
表に示す。 実施例1のクロム被膜を、除去した部分に、錫
を電気めつきコーテイングした缶体は、溶接状態
が優れており、ツナ・ドレツシング、ミートソー
スを充填後1ケ年貯蔵後も何ら異常は認められな
かつたのに対し、比較例1のクロム被膜を除去し
た部分に、金属コーテイングしない缶体は、充填
後、1ケ年以内に孔あきが発生し、缶内面の錆、
缶外面の錆が認められた。 比較例2のクロム被膜を除去しない缶体は、溶
接強度が十分でなく、溶接不良部が一部存在し、
溶融金属の飛び散りが多く、溶接状態が缶として
不満足であつた。又、ツナ・ドレツシング、ミー
トソースを充填後、1ケ年以内に孔あき缶が発生
し、溶接不良部での漏洩、缶内面の錆、缶外面の
錆が認められた。実施例1と比較例1、2から明
らかな様に、本発明の缶体は、比較試験におい
て、いずれも極めて優れた効果を表わしている。 又、実施例2、3、4から、クロム被膜を除去
した部分に電気ニルツルめつきコーテイング、無
電解ニツケル−りん合金コーテイングあるいは溶
融錫めつきコーテイングして得られた本発明の缶
体は、溶接状態が優れ、食品、飲料、エアゾール
製品等あらゆる内容物に対して極めて優れた効果
を表わしている事が明らかである。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a welded can with excellent corrosion resistance and a method for manufacturing the same, and more specifically, the present invention relates to a welded can with excellent corrosion resistance and a manufacturing method thereof. After coating a metal or alloy with excellent weldability, overlap resistance welding is performed.
Regarding the manufacturing method of TFS welded cans. TFS has poor weldability, so in order to make welded cans using this material, for example, the chrome coating on the part to be welded is scraped off (edge cleaning) using a device such as that described in Japanese Patent Publication No. 51-14189. The conventional method is to expose the base steel and perform lap welding. However, in the above conventional method, the steel substrate is exposed at the seam of the product can due to the edge cleaning and cut edges, and if this exposure is on the inner surface of the can, iron elution into the contents and rust. Even if the exposed parts of the steel are coated with an organic film, the exposed parts of the steel will have poor adhesion with the organic film, especially in processed areas. It is difficult to suppress corrosion under the organic coating. In addition, exposed steel on the outside of the can may cause red rust or filamentous rust during storage.
These rust occurrences significantly reduce the commercial value in terms of appearance. Therefore, to date, the use of welded cans has been limited to less corrosive contents. In order to solve the above-mentioned problems of the conventional method, the present inventors conducted various researches, and as a result, coated the edge cleaning part and the cut edge part of the edge-cleaned TFS in advance with a metal or base metal with excellent corrosion resistance and weldability. Later, they discovered that it was possible to manufacture a welded can with excellent corrosion resistance by overlapping resistance welding, and thus arrived at the present invention. That is, the present invention provides a method for manufacturing a welded can, in which the chromium coating on the opposing edges of a can blank made of electrolytic chromic acid treated steel plate is removed, and the chromium coatings are overlapped and electrical resistance welded. This method is characterized in that a metal or alloy coating having corrosion resistance and weldability is previously provided on the exposed base steel surface of the cut edge portion and the portion from which the coating has been removed, and then welding is performed. In the present invention, examples of metals with excellent corrosion resistance and weldability suitable for coating the exposed base steel surface of the TFS material plate are lead, tin, zinc, and nickel, and alloys of these metals may also be used. can. Coating metals or alloys such as those exemplified above onto bare steel surfaces can be achieved by any of the conventional metal coating methods such as electroplating, electroless plating, hot dipping or thermal spraying. method can also be used. Coating thickness for metals and alloys is 0.003μm
~100μm, more preferably 0.005μm ~ 50μm
It is. The edge cleaning department and cut edge department are
Since the clean base steel is usually exposed, the metal or alloy coating described above can be applied to the exposed base steel surface without any pretreatment. However, the above coating may be applied after conventional pre-treatments such as degreasing and pickling. The can body manufactured by the method shown in the present invention can be used unpainted or painted depending on the purpose, so it can be used for all food cans, beverage cans, aerosol cans, and general cans. used for. Next, examples of the present invention will be shown. In each of the Examples and Comparative Examples, weldability was evaluated for each test item using 10 test cans according to the following procedure. Welded part strength: Measured the welded part using a tensile tester. Weld integrity: The weld is cut parallel to the side seam and the cut surface is observed under a 300x optical microscope to evaluate the integrity of the weld. ○: Welding is complete over the entire length of the side seam. ×: There is a welding defect at one or more side seams. Molten metal splatter: Observe and evaluate the presence or absence of molten metal splatter around the weld using a 10x stereo microscope. In the actual can storage test, test cans are tested for each of the following test items.
After storing 10 cans for one year, evaluate them according to the following procedure. Can internal pressure or can vacuum degree: Can internal pressure or can vacuum degree after one year of storage, average value of 10 cans. Amount of hydrogen generated: Amount of hydrogen generated (ml)/can, average value for 10 cans. Dissolved iron: Dissolved iron (mg)/Contents (100g), average value for 10 cans. Perforations: Number of perforations that occurred within one year of storage Changes in contents: Color and other changes in contents Can internal condition: After opening the can, visually evaluate the inside of the can,
(Rust occurrence, changes in paint film, etc.) Can external condition: Visual evaluation of can external surface after 1 year of storage. Example 1 Epoxy-phenol paint was applied to a can body blank (105 mm x 206 mm) made of an electrolytic chromic acid treated steel plate with a thickness of 0.23 mm and a temper of 4, so that the thickness after curing was approximately 5μ, and the weight was applied during welding. It was roll coated except for the joints and baked at 205°C for 10 minutes. After removing the chrome coating on the overlapping parts of the can body blanks using a milling cutter, tin plating is applied under the following conditions, washed with water, dried, and formed into a cylindrical shape with a roll former to a height of 105 mm. death,
Using a regular overlap seam resistance welding machine, overlap width 0.4 mm, feed speed 45 m/min, and current conditions.
The can body was manufactured by seam welding with 7.3KA. Tin plating coating conditions Bath composition (aqueous solution) Stannous sulfate 80g/ Phenol sulfonic acid 80g/ Gelatin 2g/ β-naphthol 1g/ Bath temperature 50℃ Current density 30A/dm 3 plating time 4 seconds Using this can body , weld strength, weld integrity and molten metal splatter were evaluated. The results are shown in Table 1. Using another can body, apply epoxy-phenol paint around the weld on the inside of the can,
After baking at ℃ for 2.5 minutes, flanging was performed using the usual method, and the can can was double-sealed to form a can body. This can body is filled with tuna dressing or meat sauce, and the can lid is double-sealed.
It was retorted at ℃ for 90 minutes and subjected to a real can storage test. The results are shown in Table 1. Example 2 A can body blank (105 mm x 206 mm) made of electrolytic chromic acid treated steel plate with a thickness of 0.17 mm and tempered DR8 was coated with epoxy-phenol paint to a thickness of approximately 5 μm after curing.
The parts were roll coated except for the overlapping parts during welding, and baked at 205°C for 10 minutes. After removing the chrome coating on the overlapping parts of the can body blanks with a milling cutter, nickel plating is applied under the following conditions, washed with water, dried, and formed into a cylindrical shape with a roll former to a height of 105 mm. Then, a can body was manufactured by seam welding using a regular lap seam resistance welding machine with a lap width of 0.4 mm, a feed rate of 45 m/min, and a current condition of 6.5 KA. Nickel plating coating conditions Bath composition (aqueous solution) Nickel sulfate 220g / Nickel chloride 40g / Boric acid 30g / Bath temperature 55℃ Current density 15A/dm 2 Plating time 10 seconds Using this can body, weld strength and weld integrity The properties and molten metal scattering were evaluated. The results are shown in Table 1. Using another can body, apply epoxy-phenol paint around the weld on the inside of the can,
After baking at ℃ for 2.5 minutes, flanging was performed using the usual method, and the can can was double-sealed to form a can body. Add consommé soup or vegetable juice to this can.
The can was heated and filled at 93°C, and the can lid was double-sealed. For cans filled with consommé soup, at 116°C.
The cans that were retorted for 90 minutes and filled with vegetable juices were subjected to a real can storage test. The results are shown in Table 1. Example 3 Epoxy-urea paint was applied to a can body blank (125 mm x 206 mm) made of electrolytic chromic acid treated steel sheet with a thickness of 0.24 mm and a temper of 4, so that the thickness after curing was approximately 3 μm, and the layer was overlapped during welding. All but one part was roll coated and baked at 205°C for 10 minutes. After removing the chrome coating on the overlapping parts of the can body blanks using a milling cutter, nickel-phosphor coating was applied under the following conditions, washed with water, dried, and shaped into a cylinder with a height of 125 mm using a roll former. Using a normal overlapping seam resistance welding machine, overlap width 0.4 mm, feed speed 35 m/min, and current conditions.
The can body was manufactured by seam welding with 6.2KA. Nickel-phosphorus alloy plating coating conditions Bath composition (aqueous solution) Nickel chloride 35g/ Sodium acetate 12g/ Sodium hypophosphite 10g/ Bath temperature 95℃ Plating time 60 seconds Using this can body, welded part strength and welding perfection The properties and molten metal scattering were evaluated. The results are shown in Table 1. Using another can body, apply epoxy-urea paint around the welds on the inside of the can, bake it at 200℃ for 2 minutes, then process the flange using the usual method, and double-wrap the canopy and eyelid. It was tightened and made into a can body. This can body was filled with glass cleaner or shaving cream together with an aerosol propellant, clinched with mountain cups, and subjected to a real can storage test. The results are shown in Table 1. Example 4 Epoxy-phenol paint was applied to a can body blank (105 mm x 206 mm) of an electrolytic chromic acid treated steel plate with a thickness of 0.23 mm and a temper of 4 so that the thickness after curing was approximately 5 μm.
The parts were roll coated except for the overlapping parts during welding, and baked at 205°C for 10 minutes. After removing the chromium coating on the overlapping portions of the can body blanks using a milling cutter, flux was applied thereto, the blanks were immersed in molten tin for 1 second, and immediately passed through a squeeze roll for tin coating. Form it into a cylindrical shape with a roll former to a height of 105 mm, and use a regular overlap seam resistance welding machine to perform seam welding with an overlap width of 0.4 mm, a feed rate of 45 m/min, and a current condition of 7.5 KA. Manufactured can bodies. Using this can body, weld strength, weld integrity, and molten metal splatter were evaluated. The results are shown in Table 1. Using another can body, apply epoxy-phenol paint around the weld on the inside of the can,
After baking at ℃ for 2.5 minutes, flanges were processed in the usual manner, and the canopy was double-sealed to form a can body. This can body was filled with seasoned bonito or boiled tuna, double-sealed with a can lid, retorted at 116°C for 90 minutes, and subjected to a real can storage test. The results are shown in Table 1. Comparative Example 1 A can body blank (105 mm x 206 mm) made of electrolytic chromic acid treated steel plate with a thickness of 0.23 mm and a temper of 4 was coated with epoxy.
A phenol-based paint was roll-coated to a thickness of about 5 μm after curing, except for the overlapping portion during welding, and baked at 205° C. for 10 minutes. After removing the chrome coating on the overlapping parts of this can body blank using a milling cutter, it was formed into a cylindrical shape with a height of 105 mm using a roll former, and the current conditions were changed to 5.6 KA. Seam welding was performed under the same welding conditions as in Example 1 to produce a can body. Using this can body, weld strength, weld integrity, and molten metal splatter were evaluated. The results are shown in Table 1. Using another copper can, paint around the weld, bake, flange, and seam the can body under the same conditions as Example 1, fill it with contents, and retort it under the same conditions as Example 1. , and was subjected to a real can storage test.
The results are shown in Table 1. Comparative Example 2 A can body blank (105 mm x 206 mm) made of electrolytic chromic acid treated steel sheet with a thickness of 0.23 mm and a temper of 4 was coated with epoxy.
A phenol-based paint was roll-coated to a thickness of approximately 5 μm after curing, except for the overlapping portion during welding, and baked at 205° C. for 10 minutes. The height of this can body blank is adjusted using a roll former.
A can body was manufactured by seam welding under the same welding conditions as in Example 1, except that the can body was formed to have a diameter of 105 mm and the electrolytic conditions were changed to 3.6 KA. Using this can body, weld strength, weld integrity, and molten metal splatter were evaluated. The results are shown in Table 1. Using another copper can, a can body was prepared under the same conditions as in Example 1, filled with contents under the same conditions as in Example 1, retorted, and subjected to an actual can storage test. The results are shown in Table 1. The can body of Example 1, in which the part from which the chromium coating was removed, was coated with tin by electroplating, had an excellent welding condition, and no abnormality was observed even after being stored for one year after being filled with tuna dressing and meat sauce. On the other hand, in the case of Comparative Example 1, where the chrome coating was removed and the part of the can body was not coated with metal, perforation occurred within one year after filling, rust on the inside of the can,
Rust was observed on the outside of the can. The can body of Comparative Example 2 in which the chromium coating was not removed did not have sufficient welding strength, and some welding defects were present.
There was a lot of molten metal splattering, and the welding condition was unsatisfactory for the can. Additionally, after filling with tuna dressing and meat sauce, perforated cans occurred within one year, leakage from poor welding, rust on the inside of the can, and rust on the outside of the can were observed. As is clear from Example 1 and Comparative Examples 1 and 2, the can bodies of the present invention both exhibited extremely excellent effects in the comparative tests. In addition, from Examples 2, 3, and 4, the can body of the present invention obtained by applying electroless plating coating, electroless nickel-phosphorus alloy coating, or molten tin plating coating to the part from which the chromium coating was removed was welded. It is clear that it is in excellent condition and exhibits extremely excellent effects on all kinds of contents such as foods, beverages, and aerosol products. 【table】

Claims (1)

【特許請求の範囲】 1 電解クロム酸処理鋼板の缶用素材板の対向す
る端縁部のクロム被膜を除去し、該部分を重ね合
わせて電気抵抗溶接する溶接缶の製造方法におい
て、素材板の前記クロム被膜を除去した部分及び
カツトエツジ部の露出した素地鋼面上に、予じめ
耐食性及び溶接性を有する金属または合金の被膜
を設けて溶接を行うことを特徴とする方法。 2 耐食性及び溶接性を有する金属または合金
は、鉛、錫、亜鉛及びニツケルからなる群の金属
またはそれらの合金である特許請求の範囲第1項
記載の方法。
[Scope of Claims] 1. A method for manufacturing a welded can, in which the chromium coating on opposing edges of a can blank made of electrolytic chromic acid treated steel plate is removed, and the parts are overlapped and electrically resistance welded. A method characterized in that a metal or alloy coating having corrosion resistance and weldability is previously provided on the exposed base steel surface of the cut edge portion and the portion from which the chromium coating has been removed, and then welding is performed. 2. The method according to claim 1, wherein the metal or alloy having corrosion resistance and weldability is a metal of the group consisting of lead, tin, zinc, and nickel, or an alloy thereof.
JP585580A 1980-01-23 1980-01-23 Production of corrosion-resistant welded can Granted JPS56105878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP585580A JPS56105878A (en) 1980-01-23 1980-01-23 Production of corrosion-resistant welded can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP585580A JPS56105878A (en) 1980-01-23 1980-01-23 Production of corrosion-resistant welded can

Publications (2)

Publication Number Publication Date
JPS56105878A JPS56105878A (en) 1981-08-22
JPS6149035B2 true JPS6149035B2 (en) 1986-10-27

Family

ID=11622589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP585580A Granted JPS56105878A (en) 1980-01-23 1980-01-23 Production of corrosion-resistant welded can

Country Status (1)

Country Link
JP (1) JPS56105878A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150196A (en) * 1980-04-22 1981-11-20 Nippon Steel Corp Preparation of welded can from tin free steel
JPS5825880A (en) * 1981-08-07 1983-02-16 Toyo Seikan Kaisha Ltd Body of welded can and production thereof

Also Published As

Publication number Publication date
JPS56105878A (en) 1981-08-22

Similar Documents

Publication Publication Date Title
US4429021A (en) Chromium-plated steel strip having excellent weldability and resistance to corrosion
CH593757A5 (en) Welding coated metal sheets using laser beam - so coating need not be removed before welding, esp. in mfg. cans for foodstuffs
EP0063933B1 (en) Steel strip having differentiated multilayer coatings and being useful for manufacture of cans
JPS6149035B2 (en)
JPS6046199B2 (en) Manufacturing method of surface-treated steel plate for welded cans with high rust resistance
KR890004791B1 (en) Process for preparing surface-treated steel strips for electric resistance welding
JPS6033362A (en) Preparation of steel plate for can and container excellent in weldability
JPH06218462A (en) Manufacture of welded can
JPS6029477A (en) Production of steel sheet for can vessel having excellent weldability and painting performance
JPH0826477B2 (en) Manufacturing method of Sn-based multi-layered steel sheet with excellent paint adhesion
JPS5822391A (en) Surface treated steel plate for resistance welding can
JPS5941495A (en) Surface treated steel plate for welded can
JPS60183070A (en) Preparation of welded can body
NL8403562A (en) METHOD FOR MANUFACTURING STRAP STEEL WITH A PRE-TREATED SURFACE SUITABLE FOR ELECTRICAL RESISTANCE WELDING
JPS6353288A (en) Low-cost surface treated steel sheet having superior weldability
JPS61139675A (en) Surface treated steel plate for can making having excellent seam weldability and coated film adhesiveness
JPS634091A (en) Surface treated steel sheet for producing can
JPS59133398A (en) Production of surface treated steel sheet for welded can having excellent rust preventiveness and paintability
JPS6335719B2 (en)
JPH041074B2 (en)
JPS5941491A (en) Can-making surface treated steel plate excellent in painting corrosion resistance and weldability
JPH0726207B2 (en) High-performance Sn-based multilayer plated steel sheet with excellent corrosion resistance, weldability and paint adhesion
JPH0425350B2 (en)
JPS6144193A (en) Manufacture of plated steel sheet for can manufacture having superior coatability and seam weldability
JPS5831096A (en) Surface treated steel plate for can making