JPS6148797B2 - - Google Patents

Info

Publication number
JPS6148797B2
JPS6148797B2 JP54036070A JP3607079A JPS6148797B2 JP S6148797 B2 JPS6148797 B2 JP S6148797B2 JP 54036070 A JP54036070 A JP 54036070A JP 3607079 A JP3607079 A JP 3607079A JP S6148797 B2 JPS6148797 B2 JP S6148797B2
Authority
JP
Japan
Prior art keywords
solar cell
layer
thin film
type region
cell elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54036070A
Other languages
Japanese (ja)
Other versions
JPS55127077A (en
Inventor
Akio Suzuki
Katsumi Imaizumi
Yutaka Yamauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3607079A priority Critical patent/JPS55127077A/en
Publication of JPS55127077A publication Critical patent/JPS55127077A/en
Publication of JPS6148797B2 publication Critical patent/JPS6148797B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明は、単一基板をなす薄膜太陽電池パネル
において、容易に信頼性の高い直列接続を行い、
高出力電圧とすることができ、直列抵抗損失の減
少により、高いパネル効率を得ることができる薄
膜太陽電池装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides easy and reliable series connection in thin film solar cell panels that form a single substrate;
The present invention relates to a thin film solar cell device that can provide high output voltage and obtain high panel efficiency due to reduction in series resistance loss.

電力用太陽電池の低コスト化の一つの方法とし
て、シリコン単結晶を用いてプロセスコストを低
減させるため、3インチウエハーから4インチウ
エハーさらに5インチウエハーと大面積ウエハー
を用いる方法が採用されつある。この場合、
AMOでのシリコン結晶太陽電池素子の最適動作
電圧は0.40〜0.55Vと一定であり、最適動作電流
は単位面積当り30〜50mA/cm2であるので、4イ
ンチウエハー(面積81cm2)や5インチウエハー
(面積127cm2)では1枚当りそれぞれ2400〜4000m
A/枚、3800〜6300mA/枚と極めて大きな電流
となり、素子の直列抵抗を相当小さくしないとこ
の直列抵抗による電力損失は無視出来なくなる。
直列抵抗を小さくしようとすれば現実的には、電
極面積の受光面積に対する割合(電極面積占有
率)が増大することとなり、太陽電池素子の実効
的な光電変換効率の減少をまねく。この対策法の
一つとして、受光面側電極から複数個のリード線
を取り出し太陽電池素子間の相互接続を行うこと
が考えられるが、これは接続配線コストの増大に
つながる。また、民生用太陽電池においては、任
意の高い出力電圧を得るためには、単位太陽電池
素子の動作電圧が0.25〜0.5Vと一定のため複数個
の太陽電池素子を直列接続する必要がある。
One way to reduce the cost of power solar cells is to use large-area wafers, from 3-inch wafers to 4-inch wafers, and then 5-inch wafers, in order to reduce process costs by using silicon single crystals. . in this case,
The optimal operating voltage of silicon crystal solar cell elements in AMO is constant at 0.40 to 0.55V, and the optimal operating current is 30 to 50 mA/cm 2 per unit area, so 4-inch wafers (area 81 cm 2 ) and 5-inch Each wafer (area 127cm 2 ) is 2400 to 4000m.
A/sheet, 3800 to 6300 mA/sheet, which is an extremely large current, and unless the series resistance of the element is made considerably small, the power loss due to this series resistance cannot be ignored.
If the series resistance is to be reduced, the ratio of the electrode area to the light-receiving area (electrode area occupancy) will actually increase, leading to a decrease in the effective photoelectric conversion efficiency of the solar cell element. One possible solution to this problem is to take out a plurality of lead wires from the light-receiving surface side electrode and interconnect the solar cell elements, but this leads to an increase in connection wiring costs. Furthermore, in consumer solar cells, in order to obtain an arbitrary high output voltage, it is necessary to connect a plurality of solar cell elements in series because the operating voltage of a unit solar cell element is constant at 0.25 to 0.5V.

本発明は、上記従来装置における電極面積占有
率の増大の問題、相互配線コストの増大の問題及
び所定の出力電圧を得る直列接続の問題に鑑みて
なされたもので、薄膜太陽電池の特徴である薄膜
半導体層の厚さがシリコン結晶太陽電池の数百分
の一程度の1〜10μmであること、及び薄膜の横
方向への高い拡がり抵抗を利用したものである。
即ち単一基板上に直列接続されて形成される複数
個の、pn接合が逆構造をもつ薄膜太陽電池素子
において、互いに隣接する素子の真性半導体薄膜
層或いは高比抵抗半導体薄膜層を連続した共通層
となし、この共通半導体層の両側に形成された逆
構造の各一組のp型層とn型層を物理的に分離す
ることなく構成し、電気的に直列接続し、電極面
積占有率の小さい低プロセス低コスト高信頼性薄
膜太陽電池を提供するものである。ここでpn接
合が逆構造をもつ1組の太陽電池素子とは、素子
が設けられた基板に対してp−i−nの順で積層
された素子に対してはn−i−p構造が、またp
−n−nの順で積層された素子に対してはn−n
−p構造が夫々逆構造をもち、互いにPN接合が
対象のような関係に形成されている。
The present invention was made in view of the problems of increased electrode area occupancy, increased mutual wiring cost, and series connection to obtain a predetermined output voltage in the conventional devices, and is a feature of thin-film solar cells. This takes advantage of the fact that the thickness of the thin film semiconductor layer is 1 to 10 μm, which is about one hundredth of that of a silicon crystal solar cell, and the high lateral spreading resistance of the thin film.
In other words, in a plurality of thin film solar cell elements connected in series on a single substrate and having reverse p-n junction structures, the intrinsic semiconductor thin film layers or high resistivity semiconductor thin film layers of adjacent elements are connected in a continuous common manner. Each pair of p-type layer and n-type layer with an inverse structure formed on both sides of this common semiconductor layer is configured without physical separation, and is electrically connected in series, and the electrode area occupation rate is The objective is to provide a small, low-process, low-cost, high-reliability thin-film solar cell. Here, a set of solar cell elements in which the p-n junctions have an inverted structure means that the elements are laminated in the order of p-i-n on the substrate on which the elements are provided, and the elements have an n-i-p structure. , also p
-nn for elements stacked in the order of n-n
The -p structures each have an inverted structure, and the PN junctions are formed in a symmetrical relationship with each other.

まず第1図を用いて、互いに電気的接続された
pn接合が逆構造の薄膜太陽電池素子p+−i−n+
構造素子とn+−i−p+構造素子とについて両者
を完全に物理的、機械的に分割する必要がないこ
と、即ち半導層が連結状態にあつても動作に支障
がないことを電気的に詳しく説明する。第1図に
おいて、n1 +−i0−p1 +積構造からなる薄膜太陽電
池素子1とp2 +−i0−n2 +積層構造からなる薄膜太
陽電池素子とは中間真性半導体薄膜層或いは高比
抵抗半導体薄膜層i0を共通にして夫々pn接合関係
が逆構造に形成されている。隣接する両素子間で
第3層は隣接する素子のp1層とn2層が機械的に分
割することなく境界Bを介して連続的に形成さ
れ、他方第1層のn1層とp2層は距離lだけ隔てら
れている。
First, using Figure 1, connect the
Thin film solar cell element with reverse p-n junction structure p + −i−n +
It is electrically proven that there is no need to completely physically and mechanically separate the structural element and the n + −i−p + structural element, that is, there is no problem in operation even when the semiconductor layers are connected. will be explained in detail. In Fig. 1, a thin film solar cell element 1 having an n 1 + -i 0 -p 1 + stacked structure and a thin film solar cell element 1 having a p 2 + -i 0 -n 2 + stacked structure have an intermediate intrinsic semiconductor thin film layer. Alternatively, the high resistivity semiconductor thin film layer i 0 is used in common, and the p-n junctions are formed in reverse structures. Between the two adjacent elements, the third layer is formed by continuously forming the p1 layer and n2 layer of the adjacent element via the boundary B without mechanically dividing, while the n1 layer and p2 layer of the first layer The two layers are separated by a distance l.

上記構造の薄膜太陽電池において真性半導体薄
膜層或いは高比抵抗半導体薄膜層i0の電気伝導度
をσ、膜厚をt0とし、p1 +薄膜層の電気伝導度
をσp1、膜厚をtp1とし、n1 +薄膜層とp2 +薄膜層
との間隙をlcm奥行をwcm、n1 +−i0−p1 +構造素
子による光発生電圧をEvoltとすれば、間隙lの
両端にかかる最大電圧は2Evoltとなる。p1薄膜層
とn2薄膜層の境界Bでの漏れ電流j0(A)はp1薄膜層
とn2薄膜層の境界Bにおける横方向への漏れ電流
の作用している領域の幅を△lとした場合 J0<E(電圧)×w(長さ)×(伝導度) ×(厚さ)/(幅) =E・w・(σp1・tp1/△l+σo2・to2
△l) =E・(w/△l)(σp1p1+σo2o2) と計算できる。たとえばSiH4/H2ガスのグロー
放電によつて作製されるアモルフアスシリコンの
場合、E<1volt、σp1<10-1/Ωcm、σn2
1/Ωcm、tp1<300Å=3×10-6cm、tn2<300Å
=3×10-6m2であるから、σp1tp1+σn2tn2
10-1×3×10-6+1×3×10-6=3.3×10-6とな
り、w=1cmとすればJ0(μA)<1×1/△l×3.3
× 10-6×106=3.3/△l、即ち△l>10μm=10-3cm
とす ればJ0(μA)<1000μA(1mA)と計算され
る。電力用太陽電池の光発生電流は30〜50mA/
cm2であるのでJ0<1mAの値でも素子の特性を劣
化させる程大きな値ではない。またp1 +層とn2 +
は高導電層で電気的に接続されており、しか特に
アモルフアスシリコンの場合p1 +層とn2 +層の接合
はオーム性を示し、何ら整流性を示さない。更に
第1図に示されるようにp1 +層とn2 +層とは電極3
によつて接続されてほとんど等電位となつている
ため、上記した漏れ電流J0(A)の式におけるEの値
は1voltではなくてそれの10分の1以下である。
結局σp1、σn2≫σである限りσp1.tp1及びσ
n2.tn2の値は非常に小さくなり、境界Bでの漏れ
電流は無視でき、たとえp1 +層とn2 +層が連続する
半導体薄膜層として形成されても電極3で電気的
接続されても支障はない。また上記p1 +層とn2 +
とは図のように同一薄膜半導体層として隣接させ
て形成する必要はなく、第2図に示す如く一方の
素子のn2 +層が他方の素子のp1 +層の一部を被う形
状(逆の場合も同じ)としても、p1 +層とn2 +層の
境界部が間隙lの間に位置して設けられる限り何
ら差し支えがない。更にp1 +層とn2 +層とが微小間
隙(≪l)だけ空間が隔てられて構成されても差
し支えはない。
In the thin film solar cell having the above structure, the electrical conductivity of the intrinsic semiconductor thin film layer or the high resistivity semiconductor thin film layer i 0 is σ 0 and the film thickness is t 0 , and the electrical conductivity of the p 1 + thin film layer is σp 1 and the film thickness If tp 1 is the gap between the n 1 + thin film layer and the p 2 + thin film layer, the depth is w cm, and the photogenerated voltage by the n 1 + −i 0 −p 1 + structural element is Evolt, then the gap l is The maximum voltage across both ends is 2Evolt. The leakage current j 0 (A) at the boundary B between the p 1 thin film layer and the n 2 thin film layer is the width of the area where the lateral leakage current is acting at the boundary B between the p 1 thin film layer and the n 2 thin film layer. When △l, J 0 <E (voltage) x w (length) x (conductivity) x (thickness)/(width) =E・w・(σ p1・t p1 /△l+σ o2・t o2 /
Δl) =E・(w/Δl)(σ p1 t p1o2 t o2 ) can be calculated. For example, in the case of amorphous silicon produced by glow discharge of SiH 4 /H 2 gas, E<1 volt, σp 1 <10 -1 /Ωcm, σn 2 <
1/Ωcm, tp 1 <300Å=3×10 -6 cm, tn 2 <300Å
= 3×10 -6 m 2 , so σp 1 tp 1 +σn 2 tn 2 <
10 -1 × 3 × 10 -6 + 1 × 3 × 10 -6 = 3.3 × 10 -6 , and if w = 1 cm, J 0 (μA) < 1 × 1/△l × 3.3
× 10 -6 ×10 6 = 3.3/△l, that is, △l>10μm = 10 -3 cm
Then, it is calculated that J 0 (μA)<1000μA (1mA). The photogenerated current of power solar cells is 30~50mA/
cm 2 , even a value of J 0 <1 mA is not so large as to deteriorate the characteristics of the element. Furthermore, the p 1 + layer and the n 2 + layer are electrically connected through a highly conductive layer, but especially in the case of amorphous silicon, the junction between the p 1 + layer and the n 2 + layer exhibits ohmic properties and has no rectifying properties. does not indicate. Furthermore, as shown in FIG. 1, the p 1 + layer and the n 2 + layer are
Since they are connected by , and have almost equal potential, the value of E in the above equation for leakage current J 0 (A) is not 1 volt but less than one-tenth of it.
After all, as long as σp 1 , σn 2 ≫σ 0 , σp 1 .tp 1 and σ
The value of n 2 .tn 2 becomes very small, the leakage current at boundary B is negligible, and even if the p 1 + layer and n 2 + layer are formed as a continuous semiconductor thin film layer, there is no electrical connection at electrode 3. There is no problem even if it happens. Furthermore , the p 1 + layer and the n 2 + layer do not need to be formed adjacently as the same thin film semiconductor layer as shown in the figure, and as shown in FIG. Even if the shape covers a part of the p 1 + layer (and vice versa), there is no problem as long as the boundary between the p 1 + layer and the n 2 + layer is located between the gap l. Furthermore, there is no problem even if the p 1 + layer and the n 2 + layer are separated by a minute gap (≪l).

次に真性半導体薄膜層i0を介して上記p1 +層、
n2 +層と相対する側のn1 +層及びp2 +層について
は、n1 +−i0−p1 +構造素子1とp2 +−i0−n2 +構造
素子2との真性半導体薄膜層i0に生じる境界領域
4を通じて流れる電流iが一組の逆構造素子間の
最大漏れ電流となる。この二つの素子の境界領域
4の両側(破線で示す部分)の最下端間には二つ
の素子による光発生電圧の和である最大電圧
2Evoltが印加され、また境界領域4の頂部では上
記したように高導電層(p1 +、n2 +)で電気的に接
続されており、しかもアモルフアスシリコンで構
成した場合、p1 +、n2 +接合の電流は大部分オーム
性を示し、何ら整流性を示さない。したがつて
p1 +とn2 +との間はほとんど電位差がなく、零に近
い値であり、その結果境界領域4の頂部では電圧
差は実質的に零であり、境界領域4の両側に加わ
る電位差は最大電圧2Evoltを真性半導体層i0の厚
さt0によつて分配した値となり、例えば境界領域
4の頂部からの厚さがxの位置における電位差は
(2Ex/t)となる。
Next, the above p 1 + layer via the intrinsic semiconductor thin film layer i 0 ,
For the n 1 + layer and p 2 + layer opposite to the n 2 + layer, the relationship between n 1 + −i 0 −p 1 + structural element 1 and p 2 + −i 0 −n 2 + structural element 2 is The current i flowing through the boundary region 4 generated in the intrinsic semiconductor thin film layer i 0 becomes the maximum leakage current between a pair of reversely structured elements. The maximum voltage, which is the sum of the photogenerated voltages by the two elements, is applied between the bottom ends of the boundary region 4 on both sides (the part indicated by the broken line) of these two elements.
2Evolt is applied, and the top of the boundary region 4 is electrically connected by the highly conductive layer (p 1 + , n 2 + ) as described above, and when it is made of amorphous silicon, p 1 + , The current in the n 2 + junction is mostly ohmic and does not exhibit any rectifying properties. Therefore
There is almost no potential difference between p 1 + and n 2 + , a value close to zero, so that at the top of the boundary region 4 the voltage difference is practically zero, and the potential difference on both sides of the boundary region 4 is It is a value obtained by dividing the maximum voltage 2Evolt by the thickness t 0 of the intrinsic semiconductor layer i 0 , and for example, the potential difference at a position where the thickness from the top of the boundary region 4 is x is (2Ex/t 0 ).

したがつて、この点における二つの素子間の漏
れ電流△Jは となり、全漏れ電流は となる。
Therefore, the leakage current △J between the two elements at this point is So, the total leakage current is becomes.

この結果 l2E×(W/J)σ・t0 のとき、最大の漏れ電流がJとなることが判る。 As a result, it can be seen that when l2E×(W/J)σ 0 ·t 0 , the maximum leakage current is J.

具体的には、E<1volt、W=1cm、σ
10-4/Ωcm、t0=1μm=10-4cm、J<200μA=
2×10-4Aとすれば、l>2E(w/i)σ0t0=10-4cm =1μm、即ち素子間の間隙lを1μm以上に選
定すれば、漏れ電流は単位cm当り200μA以下と
なり、lを100μm以上に選定すれば漏電流は実
に2μA以下に出来ることが示される。lの値は
薄膜半導体層の成長技術によつて変り得るが、通
常の成長技術が適用される範囲では漏れ電流は非
常に小さく、太陽電池素子の動作に与える影響は
非常に小さい。また真性半導体層i0の電気伝導度
σのAM2100mW/cm2入力に対する値であり、
暗中では光伝導効果によりσは10-7〜10-8/Ω
cm程度まで激減するので漏れ電流は更に小さくな
る。従つて上記lを与えている境界領域4に対応
する受光領域を予め遮光することにより電気的分
離効果が一層高められる。
Specifically, E<1 volt, W=1 cm, σ 0 <
10 -4 /Ωcm, t 0 = 1 μm = 10 -4 cm, J < 200 μA =
2×10 -4 A, then l>2E(w/i)σ 0 t 0 =10 -4 cm = 1 μm, that is, if the gap l between elements is selected to be 1 μm or more, the leakage current is This indicates that the leakage current can actually be reduced to 2 μA or less if l is selected to be 100 μm or more. Although the value of l may vary depending on the growth technique of the thin film semiconductor layer, the leakage current is very small within the range where normal growth techniques are applied, and the influence on the operation of the solar cell element is very small. Also, it is the value of the electrical conductivity σ 0 of the intrinsic semiconductor layer i 0 for AM2100mW/cm 2 input,
In the dark, σ 0 is 10 -7 to 10 -8 /Ω due to the photoconductive effect.
Since the leakage current is drastically reduced to about cm, the leakage current becomes even smaller. Therefore, by shielding the light-receiving area corresponding to the boundary area 4 that provides the above-mentioned l from light in advance, the electrical isolation effect can be further enhanced.

次にn1 +層とi0層とp2 +層とでn1 +−i0−p2 +構造
の素子が構成されると考えられるが、上述のごと
く境界領域4の横方向の隔たりlの長きさがn1 +
−i0−p2 +の接合で光発生する電子及び正孔の拡
散長Ln、Lpの2倍よりも大きければ、即ちl>
2Ln、2Lpであれば上記n1 +層−i0層−境界領域4
−i0層−p2 +層で構成される太陽電池は事実上起
電力を生ぜず、n1 +層−i0層及びp2 +層−i0層はい
ずれも電気的に独立となる。具体的にはアモルフ
アスシリコンの場合Ln、Lp<0.5μmであるの
で、l>1μm即ちlが1μm以上あれば十分で
ある。第3図は上記第1図に示した1組の逆構造
をもつ薄膜半導体太陽電池素子が、互いに直列に
電気的接続された状態に同一基板20上に多数組
設けられた状態を示す。直列接続された複数の太
陽電池素子がいずれも真性半導体薄膜或いは高比
抵抗層を共通にして形成されている。上記実施例
は光の入射方向に対して単一のp+−i−n+−(p+
−n-−n+)構造をもつ素子について説明したが高
出力を得るために開発されているような多層積層
型太陽電池、例えば第4図の如く積層される太陽
電池素子間に透明電極5を介挿させた装置、第5
図の如く透明電極を介することなく積層させた装
置にも本発明は同様に適用できる。
Next, an element with an n 1 + −i 0 −p 2 + structure is considered to be composed of the n 1 + layer, the i 0 layer, and the p 2 + layer, but as mentioned above, the horizontal distance between the boundary regions 4 The length of l is n 1 +
If the diffusion length Ln of electrons and holes photogenerated at the junction of −i 0 −p 2 + is larger than twice Lp, that is, l>
For 2Ln and 2Lp, the above n 1 + layer − i 0 layer − boundary region 4
A solar cell composed of −i 0 layer − p 2 + layer practically does not generate electromotive force, and both n 1 + layer − i 0 layer and p 2 + layer − i 0 layer are electrically independent. . Specifically, in the case of amorphous silicon, since Ln and Lp<0.5 μm, it is sufficient that l>1 μm, that is, l is 1 μm or more. FIG. 3 shows a state in which a large number of sets of thin film semiconductor solar cell elements having the opposite structure shown in FIG. 1 are provided on the same substrate 20 and electrically connected to each other in series. A plurality of solar cell elements connected in series are all formed using an intrinsic semiconductor thin film or a high resistivity layer in common. In the above embodiment, a single p + −i−n + −(p +
−n −n + ) structure, but in the case of a multi-layered solar cell that has been developed to obtain high output, for example, a transparent electrode 5 is used between the solar cell elements stacked as shown in FIG. Device inserted with
The present invention can be similarly applied to a device in which layers are stacked without using a transparent electrode as shown in the figure.

第6図a〜eを用いて本発明による高出力電圧
薄膜太陽電池パネルの具体的製造方法を示す。
A specific method for manufacturing a high output voltage thin film solar cell panel according to the present invention is shown in FIGS. 6a to 6e.

第6図aにおいて、21はガラス基板(ホウケ
イ酸ガラス)でこの上に1TO(In2O3−SnO2)透
明導電膜22を基板温度200〜450℃でイオンプレ
テイング装置により間隔0.20mm以下で膜厚0.10〜
0.15μmマスク形成する。この時の1TO膜22の
シート抵抗は10Ω/口以下である。ガラス基板2
1は太陽電池パネルの受光面側の構成材料を兼ね
る。次に水素ガスベースにモノシラン(SiH4)を
10%添加した混合ガス(SiH4/H2)にホスフイン
(PH3/H2)ガスを少量添加したものを原料とし、
低圧グロー放電により、第6図bのようにマスク
23を用いてn1 +アモルフアスシリコン薄膜層
(100〜300Å厚)を基板上に島状に形成する。こ
の場合ガス圧は0.5〜5torr、基板温度は250〜300
℃で行う。次にSiH4/H2ガスにジボラン
(B2H6/H2)ガスを少量添加した原料を用いて、
第6図cに示す如く上記n1 +薄膜層の島領域に対
して位置決めされたp1 +アモルアアスシリコン薄
膜層(100〜200Å厚)が形成される。該p1 +層の
形成にあたつて位置決めするためのマスクが用い
られる該マスク23は上記n1 +層の形成に用いら
れたマスク23を平行移動させたものである。低
圧グロー放電であるのでマスクの側面からのまわ
りこみも多少あるが、膜厚がきわめてうすいため
問題にならない。次に真性半導体層或いは高比抵
抗層となるアンドープアモルフアスシリコン薄膜
層i0(5000〜10000Å厚)を上記p1 +層、n1 +層全
面にわたつて共通に形成する。(第6図d)更に
n2アモルフアス薄膜層(200〜300Å厚)、つづい
てp2 +アモルフアスシリコン薄膜層(100〜200Å
厚)が上記n1 +層及びp1 +層との間で位置決めされ
て形成される。次にイオンプレイテイング装置に
よりAg〜Al背面電極24(1〜3μm厚)をマ
スク形成する(第6図e)。ここに薄膜太陽電池
パネルは完成する。背面から見た太陽電池を第7
図に示す。極めて単純な構造になつており、基板
面積に対する有効素子面積は95%以上になつてい
る。
In FIG. 6a, reference numeral 21 denotes a glass substrate (borosilicate glass), on which a 1TO (In 2 O 3 -SnO 2 ) transparent conductive film 22 is deposited at intervals of 0.20 mm or less using an ion plating device at a substrate temperature of 200 to 450°C. Film thickness 0.10~
Form a 0.15μm mask. The sheet resistance of the 1TO film 22 at this time is 10Ω/mouth or less. Glass substrate 2
1 also serves as a constituent material on the light-receiving surface side of the solar cell panel. Next, monosilane (SiH 4 ) was added to the hydrogen gas base.
The raw material is a mixture of gas (SiH 4 /H 2 ) with 10% addition and a small amount of phosphine (PH 3 /H 2 ) gas added.
By low-pressure glow discharge, an n 1 + amorphous silicon thin film layer (100 to 300 Å thick) is formed in the form of islands on the substrate using a mask 23 as shown in FIG. 6b. In this case, the gas pressure is 0.5~5torr, and the substrate temperature is 250~300
Perform at °C. Next, using a raw material prepared by adding a small amount of diborane (B 2 H 6 /H 2 ) gas to SiH 4 /H 2 gas,
As shown in FIG. 6c, a p 1 + amorphous silicon thin film layer (100-200 Å thick) positioned relative to the island region of the n 1 + thin film layer is formed. The mask 23 used for positioning when forming the p 1 + layer is obtained by translating the mask 23 used for forming the n 1 + layer. Since it is a low-pressure glow discharge, there is some leakage from the sides of the mask, but this is not a problem because the film thickness is extremely thin. Next, an undoped amorphous silicon thin film layer i 0 (5000 to 10000 Å thick) which becomes an intrinsic semiconductor layer or a high resistivity layer is formed over the entire surface of the p 1 + layer and the n 1 + layer. (Figure 6d) Furthermore
n2 amorphous silicon thin layer (200-300 Å thick) followed by p2 + amorphous silicon thin layer (100-200 Å thick)
thickness) is positioned between the n 1 + layer and the p 1 + layer. Next, an Ag to Al back electrode 24 (1 to 3 μm thick) is formed as a mask using an ion plating device (FIG. 6e). At this point, the thin-film solar panel is completed. 7th solar cell seen from the back
As shown in the figure. It has an extremely simple structure, and the effective element area is more than 95% of the substrate area.

以上本発明によれば、真性薄膜半導体層或いは
高比抵抗層を介して太陽電池素子を形成し、直列
接続された素子を物理的、機械的に分割すること
なく真性薄膜半導体層或いは高比抵抗層を共通に
して設けることにより、従来装置のように各素子
を物理的に分離したあと電気的に直列接続する方
法にくらべ、極めて低コストでかつ任意の高出力
電圧をもつ薄膜太陽電池パネルが得られ、電極面
積占有率の増大の問題、電極抵抗による電力損失
の増大の問題、相列直列配線コストの増大等の諸
問題を一挙に解決し、高信頼性で高効率薄膜太陽
電池パネルを提供し、更に本発明によれば共通層
を介して両側に形成される単位太陽電池素子の一
方の導電性領域を、隣接する一方の一対の太陽電
池素子のp型領域とn型領域とを物理的に分離さ
せることなく連続させて一体的に形成するように
なしているため、半導体層の受光面積の無駄部分
がなくなり、大電力を得ることが出来る高効率薄
膜太陽電池パネルを提供するものである。
As described above, according to the present invention, a solar cell element is formed through an intrinsic thin film semiconductor layer or a high resistivity layer, and the intrinsic thin film semiconductor layer or a high resistivity layer is formed through an intrinsic thin film semiconductor layer or a high resistivity layer without physically or mechanically dividing the series connected elements. By providing a common layer, it is possible to create thin-film solar panels with an arbitrary high output voltage at an extremely low cost compared to the conventional method in which each element is physically separated and then electrically connected in series. This solves all of the problems such as increased electrode area occupancy, increased power loss due to electrode resistance, and increased phase-to-series wiring costs, resulting in highly reliable and highly efficient thin-film solar cell panels. Further, according to the present invention, one conductive region of a unit solar cell element formed on both sides with a common layer between the p-type region and the n-type region of a pair of adjacent solar cell elements. Since they are formed continuously and integrally without being physically separated, there is no wasted light-receiving area of the semiconductor layer, and a high-efficiency thin-film solar cell panel that can obtain large amounts of power is provided. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を説明するための原理図、第2
図は本発明による他の実施例を示す要部断面図、
第3図は本発明による一実施例を示す断面図、第
4図及び第5図は本発明による他の実施例を示す
断面図、第6図a〜eは本発明の一実施例の製造
方法を説明するための断面図、第7図は第6図e
の平面図である。 1:n1 +−i0−p1 +薄膜太陽電池素子、2:p2 +
−i0−n2 +薄膜太陽電池素子、3:電極、20:
基板。
Figure 1 is a principle diagram for explaining the present invention, Figure 2
The figure is a sectional view of a main part showing another embodiment according to the present invention.
FIG. 3 is a cross-sectional view showing one embodiment of the present invention, FIGS. 4 and 5 are cross-sectional views showing other embodiments of the present invention, and FIGS. A sectional view for explaining the method, Figure 7 is Figure 6e
FIG. 1: n 1 + −i 0 −p 1 + thin film solar cell element, 2: p 2 +
−i 0 −n 2 + thin film solar cell element, 3: electrode, 20:
substrate.

Claims (1)

【特許請求の範囲】 1 単一基板上に、非結晶質の薄膜半導体層を積
層してなる単位太陽電池素子を複数個直列接続し
た薄膜太陽電池装置において、 基板の側から一方はpinの順で、他方はnipの順
に積層し、 且つ該隣接太陽電池素子のi層を連続する共通
層に形成し、 該共通層を介して両側に形成される単位太陽電
池素子の一方の導電性領域を、隣接する一方の一
対の太陽電池素子のp型領域とn型領域とを物理
的に分離させることなく連続させて一体的に形成
すると共に、他方の一対の太陽電池素子のp型領
域とn型領域とを物理的に分離させて形成し、 上記共通層を介して両側に形成される単位太陽
電池素子の一方の導電性領域に対応した他方の導
電性領域を、隣接する一方の一対の太陽電池素子
のn型領域とp型領域とを物理的に分離させて形
成すると共に、他方の一対の太陽電池素子のn型
領域とp型領域とを物理的に分離させることなく
連続させて一体的に形成し、 前記基板の広がり方向に隣接する単位太陽電池
素子間を、該隣接する一対の太陽電池素子の物理
的に連続させて一体的に形成されたp型領域とn
型領域上に一体的に形成された電極によつて直列
接続してなることを特徴とする薄膜太陽電池装
置。 2 前記単位太陽電池素子は、薄膜半導体層の積
層方向に複数個の太陽電池素子が積層されてなる
ことを特徴とする特許請求の範囲第1項記載の薄
膜太陽電池装置。
[Claims] 1. In a thin film solar cell device in which a plurality of unit solar cell elements formed by laminating amorphous thin film semiconductor layers are connected in series on a single substrate, one side from the substrate side is in the order of pins. and the other is laminated in the order of nip, and the i-layers of the adjacent solar cell elements are formed into a continuous common layer, and the conductive regions of one of the unit solar cell elements formed on both sides are connected via the common layer. , the p-type region and n-type region of one pair of adjacent solar cell elements are continuous and integrally formed without physically separating them, and the p-type region and n-type region of the other pair of solar cell elements are formed integrally. The mold region is formed physically separated from the mold region, and the other conductive region corresponding to one conductive region of the unit solar cell element formed on both sides via the common layer is connected to the adjacent pair of conductive regions. The n-type region and the p-type region of the solar cell element are physically separated and formed, and the n-type region and the p-type region of the other pair of solar cell elements are made to be continuous without being physically separated. A p-type region and an n-type region formed integrally and physically continuous between unit solar cell elements adjacent in the spreading direction of the substrate and physically continuous with each other in the pair of adjacent solar cell elements.
A thin film solar cell device characterized in that the solar cells are connected in series by electrodes integrally formed on a mold region. 2. The thin film solar cell device according to claim 1, wherein the unit solar cell element is formed by stacking a plurality of solar cell elements in the stacking direction of the thin film semiconductor layers.
JP3607079A 1979-03-26 1979-03-26 Thin film solar battery device Granted JPS55127077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3607079A JPS55127077A (en) 1979-03-26 1979-03-26 Thin film solar battery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3607079A JPS55127077A (en) 1979-03-26 1979-03-26 Thin film solar battery device

Publications (2)

Publication Number Publication Date
JPS55127077A JPS55127077A (en) 1980-10-01
JPS6148797B2 true JPS6148797B2 (en) 1986-10-25

Family

ID=12459463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3607079A Granted JPS55127077A (en) 1979-03-26 1979-03-26 Thin film solar battery device

Country Status (1)

Country Link
JP (1) JPS55127077A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161081A (en) * 1983-03-03 1984-09-11 Fuji Electric Corp Res & Dev Ltd Thin-film solar cell

Also Published As

Publication number Publication date
JPS55127077A (en) 1980-10-01

Similar Documents

Publication Publication Date Title
US4784701A (en) Multi-layered thin film solar cell
CN106159020B (en) Use the two-sided photovoltaic module of heterojunction solar battery
US7498508B2 (en) High voltage solar cell and solar cell module
CN204538036U (en) Solar panel, solar cell, solar cell panel assembly and solar battery apparatus
JPH0290573A (en) Monolithic solar battery and bypass diode system
JPH07503105A (en) Integrated circuit stacked cell solar module
JPH0322709B2 (en)
CN111213235A (en) Solar panel with four-terminal stacked solar cell arrangement
JPH1065198A (en) Right-angled triangular solar cell module and manufacturing method thereof
JPS6148797B2 (en)
US20210288198A1 (en) Thin Film Photo-Voltaic Module
JPS60234381A (en) Solar battery
JPS6161551B2 (en)
JPS58196060A (en) Thin film semiconductor device
KR20190043295A (en) Stile type solar cell module using divided cell
JP2014154598A (en) Thin film solar cell module
JP2001036105A (en) Solar battery module
JPH0125234B2 (en)
JPS6316913B2 (en)
JPS6077471A (en) Photoelectric generator
JP2023145341A (en) Photovoltaic module and method for manufacturing the same
JPS616873A (en) Photovoltaic element
JPS59167072A (en) Series-connected type thin film solar battery
JPS6326555B2 (en)
JPS5854513B2 (en) Method of manufacturing photovoltaic device