JPS6148722B2 - - Google Patents

Info

Publication number
JPS6148722B2
JPS6148722B2 JP2298280A JP2298280A JPS6148722B2 JP S6148722 B2 JPS6148722 B2 JP S6148722B2 JP 2298280 A JP2298280 A JP 2298280A JP 2298280 A JP2298280 A JP 2298280A JP S6148722 B2 JPS6148722 B2 JP S6148722B2
Authority
JP
Japan
Prior art keywords
tool
point
center line
main shaft
cutting edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2298280A
Other languages
Japanese (ja)
Other versions
JPS56121106A (en
Inventor
Shinichi Ishizuka
Kenji Sugimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2298280A priority Critical patent/JPS56121106A/en
Priority to US06/201,847 priority patent/US4413539A/en
Priority to FR8023246A priority patent/FR2468427B1/en
Priority to DE19803041171 priority patent/DE3041171A1/en
Priority to CH8136/80A priority patent/CH649028A5/en
Priority to GB8035164A priority patent/GB2064397B/en
Publication of JPS56121106A publication Critical patent/JPS56121106A/en
Publication of JPS6148722B2 publication Critical patent/JPS6148722B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q39/00Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation
    • B23Q39/02Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station
    • B23Q39/021Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station with a plurality of toolheads per workholder, whereby the toolhead is a main spindle, a multispindle, a revolver or the like
    • B23Q39/025Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station with a plurality of toolheads per workholder, whereby the toolhead is a main spindle, a multispindle, a revolver or the like with different working directions of toolheads on same workholder
    • B23Q39/026Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station with a plurality of toolheads per workholder, whereby the toolhead is a main spindle, a multispindle, a revolver or the like with different working directions of toolheads on same workholder simultaneous working of toolheads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q39/00Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation
    • B23Q2039/008Machines of the lathe type
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41309Hydraulic or pneumatic drive
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45141Turret lathe
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49375Minimalizing machine time, number of tool change
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50008Multiple, multi tool head, parallel machining
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50015Multi cutting, twin tools contact at same time workpiece, balance cutting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50047Positioning, indexing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50249Tool, probe, pen changer

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turning (AREA)
  • Numerical Control (AREA)

Description

【発明の詳細な説明】 本発明は数値制御旋盤の加工方法に係るもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a processing method using a numerically controlled lathe.

数値制御旋盤の一般的な刃物台構成は、横送り
台上に単一のターレツトヘツドを有するもので、
この場合その加工プログラムの作成を簡単にする
ために、ターレツトヘツドに保持される工具の刃
先位置は、ターレツトの旋回中心からの距離が一
定で、且つ該旋回中心線に直交する1つの平面内
に在る様に配慮されることが多い。これは説明す
るまでもなく、ターレツトの割出動作によつて工
具交換を行つても、その刃先位置が変動しないた
め、加工プログラムを決められた座標系で、刃先
座標点を変えることなく作成することが出来るた
めである。
A common turret configuration for numerically controlled lathes is a single turret head on a crossfeed.
In this case, in order to simplify the creation of the machining program, the cutting edge position of the tool held in the turret head must be at a constant distance from the turret rotation center and within one plane perpendicular to the rotation center line. In many cases, consideration is given to This need not be explained, but the position of the cutting edge will not change even if the tool is changed by the indexing operation of the turret, so the machining program can be created in a fixed coordinate system without changing the coordinate point of the cutting edge. This is because it can be done.

これに対して加工時間の短縮、刃物台構造の単
純化などの要求から、例えば横送り台上に2個の
ターレツトヘツドを備え、これを交互に使用して
工具交換時間の短縮を計つたり、横送り台の送り
方向に沿つて複数の工具台を並べ、その送り動作
を利用して工具交換を行い、ターレツトの割出機
構等を除いて、コストの低減を計ろうとするなど
の数値制御旋盤も少くない。
On the other hand, in response to demands such as shortening machining time and simplifying the turret structure, for example, two turret heads are installed on the cross feed table and used alternately to shorten tool change time. Numerical control lathes that aim to reduce costs by arranging multiple tool stands along the feed direction of the cross feed table and using the feed movement to change tools, eliminating the turret indexing mechanism, etc. There are also quite a few.

しかしながら、この種の数値制御旋盤では、い
ずれも横送り台の移動によつて工具交換を行うた
め、決められた1つの座標系では刃先座標点が工
具交換の度に変動して、加工物と工具刃先の位置
関係が錯綜し、場合によつては工具の取付方向が
逆になつて、その切込方向が逆転することもある
ため、加工プログラムの作成は極めて面倒になる
欠点を有していた。
However, in all numerically controlled lathes of this type, tools are changed by moving the cross feed table, so in one fixed coordinate system, the cutting edge coordinate point changes every time the tool is changed, and the workpiece changes. The positional relationship of the cutting edge of the tool is complicated, and in some cases, the mounting direction of the tool may be reversed, and the cutting direction may be reversed, so creating a machining program has the disadvantage of being extremely troublesome. Ta.

本発明は、こうした欠点を除いて、主軸中心線
をはさんで対向する1対の工具台を有する数値制
御旋盤に於ける加工プログラムの作成を極めて容
易に行うことを可能とする加工方法を提供するこ
とを目的とするものである。
The present invention provides a machining method that eliminates these drawbacks and makes it possible to extremely easily create a machining program for a numerically controlled lathe having a pair of tool stands facing each other across the spindle centerline. The purpose is to

以下、本発明を詳細に説明すると、第1図は本
発明による加工方法が有効となる数値制御旋盤の
1例を示すもので、1はベツド、2はベツド1に
載置された主軸台、3は主軸台2に回転可能に軸
支され、被加工物を把持して回転する主軸、4は
ベツド1に支持された2本1対の平行ガイドバー
5に摺動可能に跨設された長手送り台、6は長手
送り台4に形成されたクロススライド4aに沿つ
て主軸中心線に直交して移動可能な横送り台、7
a,7bは横送り台6上に設けられ、主軸3の中
心線をはさんで対向する1対のターレツトヘツ
ド、8a,8bはターレツトヘツド7a,7bに
各々設けられる工具、例えばバイトで、9は主軸
3の中心線上に配置され、長手送り台4に固定さ
れた振れ止めである。
The present invention will be described in detail below. Fig. 1 shows an example of a numerically controlled lathe in which the machining method according to the present invention is effective. 1 is a bed, 2 is a headstock mounted on the bed 1, 3 is rotatably supported by the headstock 2 and rotates while gripping the workpiece; 4 is slidably installed over a pair of parallel guide bars 5 supported by the bed 1; A longitudinal feed 6 is a transverse feed 7 that is movable along a cross slide 4a formed on the longitudinal feed 4 perpendicular to the spindle center line.
Reference numerals a and 7b are a pair of turret heads which are provided on the transverse feed table 6 and are opposed to each other across the center line of the main spindle 3. Reference numerals 8a and 8b are tools, such as bits, provided on the turret heads 7a and 7b respectively, and 9 is a main shaft. This is a steady rest placed on the center line of 3 and fixed to the longitudinal feed base 4.

この数値制御旋盤では主軸3に把持された棒状
素材を振れ止め9より繰り出して回転を与え、1
対のターレツトヘツド7a,7bを交互に進出さ
せて工具、例えばバイト8a,8bによつて加工
を行うもので、一方の工具で加工中に、他方のタ
ーレツトヘツドは割出動作を行つて、次に使用す
る工具を選択待機し、横送り台6の移動によつて
工具交換を行い、工具交換時間の短縮を計ろうと
するものである。
In this numerically controlled lathe, a rod-shaped material held by a main shaft 3 is fed out from a steady rest 9 to give it rotation.
A pair of turret heads 7a and 7b are advanced alternately to perform machining using a tool such as a cutting tool 8a and 8b. While machining is being performed with one tool, the other turret head performs an indexing operation and is used next. This is intended to shorten tool exchange time by selecting and waiting for a tool to be used and then changing the tool by moving the cross feed table 6.

第2図、第3図及び第4図は、主軸3とバイト
8a,8bの位置関係を示す説明図で、バイト8
aの刃先位置と、バイト8bの刃先位置との距離
は所定のaなる値となる様にセツトされており、
従つてバイト8aの刃先が、主軸3の中心より任
意のbなる距離にあるとすれば、バイト8bの刃
先は、主軸3の中心より(a−b)なる距離にあ
るB点に位置する。
2, 3, and 4 are explanatory diagrams showing the positional relationship between the spindle 3 and the cutting tools 8a and 8b.
The distance between the cutting edge position of a and the cutting edge position of the cutting tool 8b is set to a predetermined value a,
Therefore, if the cutting edge of the cutting tool 8a is located at an arbitrary distance b from the center of the main shaft 3, the cutting edge of the cutting tool 8b is located at a point B, which is a distance (a-b) from the center of the main shaft 3.

ここで以後の説明を簡単にするために、長手方
向の送りを無視し、径方向の送りにだけ着目し
て、その送り方向、即ち横送り台6の移動による
バイト8a,8bの主軸3の中心に対する進退動
方向をX軸座標と呼び、その零点を主軸3の中心
に置き、バイト8aが主軸3に接近する方向、即
ちその進出方向(第3図、第4図における右進方
向)をX軸座標の負方向とするものとする。
Here, in order to simplify the following explanation, we will ignore the feed in the longitudinal direction and focus only on the feed in the radial direction. The forward and backward movement direction with respect to the center is called the X-axis coordinate, and its zero point is placed at the center of the main shaft 3, and the direction in which the cutting tool 8a approaches the main shaft 3, that is, its advancing direction (rightward direction in Figs. 3 and 4) is It is assumed that the direction is the negative direction of the X-axis coordinate.

これによれば、バイト8aの退動方向はX軸座
標の正方向、反対にバイト8bの進出方向は正方
向、退動方向は負方向ということになる。
According to this, the retracting direction of the cutting tool 8a is the positive direction of the X-axis coordinate, and conversely, the advancing direction of the cutting tool 8b is the positive direction, and the retracting direction is the negative direction.

この数値制御旋盤で旋削加工を行う時、第3図
にモデル化して示す様に、例えばバイト8aをA
点から主軸3の中心よりCなる距離を有するC点
に進出させ直径2cなる円筒を切削し、次にこれ
を再びA点に退動させて、その使用を終了するも
のとすれば、周知のように、その移動指令は絶対
値指令による半径指定方式によれば、直接、移動
する点のX座標値を、この場合であれば、X
とプログラムすればよい。ところが、つづい
てバイト8bにより直径2dなる円筒を切削した
いとすれば、これをB点から主軸3の中心よりd
なる距離を有するD点に移動させる必要がある
が、この移動指令を従来の方法でプログラムする
とすれば、バイト8aをA点から更に正方向に、
B点とD点の間の距離(a−b−d)だけ移動さ
せる指令を与える必要がある。即ちこの場合、仮
にバイト8aを使用するとした時の移動指令と同
様、移動する点のX座標値を、X−d、とプログ
ラムすれば、バイト8aがA点からD点に移動し
て了い、また、X、とプログラムすれば、バイ
ト8aがA点からD点に移動することになり、共
にバイト8bによる切削をすることは出来ない。
したがつて、ここでは、移動指令は、(a−b−
d)+b=(a−d)によつて求められる値を、X
(a−d)とプログラムしてバイト8aをA点か
らE点へ移動させ、その時の横送り台の移動によ
つてバイト8bをB点からD点へ送るようにせね
ばならない。これでは云うまでもなく、プログラ
ムが数値計算、座標方向の変換などを別に行いな
がらプログラミングすることになり甚だ面倒であ
る。
When turning with this numerically controlled lathe, for example, the cutting tool 8a is
Assuming that a cylinder with a diameter of 2c is cut by cutting a cylinder having a diameter of 2c by moving it forward from the point to a point C having a distance of C from the center of the spindle 3, and then retracting it to point A again to finish its use, the well-known method According to the radius specification method using an absolute value command, the movement command directly indicates the X coordinate value of the point to be moved, in this case, X c ,
Just program it as X b . However, if you subsequently want to cut a cylinder with a diameter of 2d using the cutting tool 8b, cut it from point B to d from the center of the main shaft 3.
It is necessary to move the cutting tool 8a further from point A in the positive direction if this movement command is programmed using the conventional method.
It is necessary to give a command to move the distance (a-b-d) between points B and D. That is, in this case, if the X coordinate value of the point to be moved is programmed as , X d , the cutting tool 8a will move from point A to point D, and cutting with the cutting tool 8b will not be possible in both cases.
Therefore, here, the movement command is (a-b-
d)+b=(a-d),
(a-d) to move the cutting tool 8a from point A to point E, and by moving the cross feed table at that time, the cutting tool 8b must be sent from point B to point D. Needless to say, this is extremely troublesome as the program must be programmed while separately performing numerical calculations, coordinate direction conversion, etc.

そこで第4図にモデル化して示す様に、バイト
8aをA点からC点へ進出させ、再びA点へ退動
させた後、バイト8bをB点からD点へ進出させ
ようとする時、特定の指令コード、例えばGコー
ドによつてA点の現在座標値を、X、から、X
−(a−b)、へ変換するものとする。これは、丁
度主軸3をX軸座標の正方向へaなる距離移動さ
せ、あたかもA点より正方向へ(a−b)なる距
離にその中心を持つ架空の主軸3′を置いたのと
同じ意味である。即ち、これ以後、X軸座標は主
軸3の中心を零点とする座標系から、架空の主軸
3′の中心を零点とする新座標系に再設定され、
その移動指令もこの新座標系に従うものとなる。
これによれば新座標系のバイト8aの位置A点
と、架空の主軸3′の関係は、旧座標系のバイト
8bの位置B点と、実際の主軸3の関係に等し
い。従つて、バイト8bをB点からD点に進出さ
せるには、新座標系でバイト8aをA点からE点
へ移動させればよい。そのための移動指令は、X
−d、を与えればよいが、この指令値を前記した
バイト8aを使用する時の指令値と比べると、例
えば直径2cの円筒を切削する時はその半径値c
を正の値として指令したのに対し、ここでは直径
2dの円筒を切削するために、その半径値を負の
値として指令しなければならない。これは、プロ
グラマに指令値の符号の逆転、即ち座標方向の変
換を別に行わせることになり、その負担を完全に
軽減出来ない。そこで、先の特定の指令コード、
例えばGコードによつて現在座標値の変換と同時
に以後指令される移動指令値の符号を全て逆転さ
せることにすれば、プログラムは、X、と、バ
イトの交換に関係なく、常に同じプログラムをす
ることが可能となるわけである。
Therefore, as shown in the model in Fig. 4, when the cutting tool 8a is advanced from point A to point C and then retracted to point A, when trying to advance the cutting tool 8b from point B to point D, Using a specific command code, for example, the G code, the current coordinate value of point A can be changed from X b to
-(a-b) . This is the same as moving the principal axis 3 a distance a distance in the positive direction of the X-axis coordinate and placing an imaginary principal axis 3' whose center is at a distance in the positive direction (a-b) from point A. It is the meaning. That is, from now on, the X-axis coordinate is reset from the coordinate system with the zero point at the center of the principal axis 3 to a new coordinate system with the zero point at the center of the imaginary principal axis 3',
The movement command also follows this new coordinate system.
According to this, the relationship between the position A of the cutting tool 8a in the new coordinate system and the imaginary main shaft 3' is the same as the relationship between the position B of the cutting tool 8b in the old coordinate system and the actual main shaft 3. Therefore, in order to advance the cutting tool 8b from point B to point D, it is sufficient to move the cutting tool 8a from point A to point E in the new coordinate system. The movement command for that is
-d , but if you compare this command value with the command value when using the above-mentioned cutting tool 8a, for example, when cutting a cylinder with a diameter of 2c, the radius value c
was commanded as a positive value, but here, in order to cut a cylinder with a diameter of 2d, the radius value must be commanded as a negative value. This requires the programmer to separately reverse the sign of the command value, that is, convert the coordinate direction, and the burden cannot be completely alleviated. Therefore, the specific command code mentioned above,
For example, if the G code is used to convert the current coordinate value and at the same time reverse the sign of all subsequent movement command values, the program will always execute the same program as X d , regardless of byte exchange. This makes it possible to do so.

このようにして作られたプログラムは、前述し
た単一のターレツトヘツドを有する様な一般的な
数値制御旋盤のプログラムと比較すると、特定の
指令コードが挿入されている点が異なるだけで、
他は全く同一となり、加工プログラムを容易に作
成することが出来る。
The program created in this way is different from the program for a general numerically controlled lathe with a single turret head mentioned above, except that a specific command code is inserted.
Everything else is exactly the same, making it easy to create a machining program.

勿論、この加工プログラムを用いて実際に加工
を行うためには、数値制御装置の内部処理によつ
て現在座標値の変換及び正負の符号の逆転を行う
ことが必要であるが、例えば前記bなる値をb=
a/2に特定すれば、−(a−b)=−bとなり、
現在座標値の変換は正負の符号の逆転だけでよく
この場合は通常、数値制御装置に見えられたGコ
ード指令による座標系設定機能、Gコードもしく
はMコード指令によるミラーイメージ機能を併用
することで容易に実施することが出来る。
Of course, in order to actually perform machining using this machining program, it is necessary to convert the current coordinate values and reverse the positive/negative sign by internal processing of the numerical control device. The value is b=
If we specify a/2, -(a-b)=-b,
Conversion of the current coordinate values only requires reversing the positive and negative signs. In this case, the coordinate system setting function using the G code command seen on the numerical control device and the mirror image function using the G code or M code command can be used together. It can be easily implemented.

以上の様に本発明によれば、単一のターレツト
ヘツドを有する一般的な数値制御旋盤と全く同様
に、1対の工具台を有する数値制御旋盤の加工プ
ログラムを作成することが可能となり、プログラ
ミング時にプログラマーが数値計算する必要がな
くなり、プログラミングに要する時間が短縮され
るのみならず、プログラムのミスも僅少に出来る
という多大な効果を有するものである。
As described above, according to the present invention, it is possible to create a machining program for a numerically controlled lathe having a pair of tool stands in exactly the same way as for a general numerically controlled lathe having a single turret head. This eliminates the need for the programmer to perform numerical calculations, which not only shortens the time required for programming, but also has the great effect of minimizing programming errors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による加工方法が有効となる
数値制御旋盤の1例を示す斜視図、第2図は、第
1図の主軸と工具の位置関係を示す説明図、第3
図、第4図は主軸と工具の位置関係をモデル化し
て示す説明図である。 3……主軸、6……横送り台、7a,7b……
ターレツトヘツド、8a,8b……バイト。
1 is a perspective view showing an example of a numerically controlled lathe in which the machining method according to the present invention is effective; FIG. 2 is an explanatory view showing the positional relationship between the spindle and the tool in FIG. 1;
FIG. 4 is an explanatory diagram showing a model of the positional relationship between the spindle and the tool. 3...Main shaft, 6...Transverse feed table, 7a, 7b...
Turret head, 8a, 8b... part-time job.

Claims (1)

【特許請求の範囲】[Claims] 1 工作物を把持して動力駆動され回転する主軸
と、該主軸の中心線に直交する方向に移動可能な
横送り台上に設けられ、該主軸中心線をはさんで
対向する1対の工具台を有し、その刃先間距離が
前記横送り台の移動方向に沿つて所定のaなる値
となる様に前記工具台の各々に保持された工具
が、該主軸中心線に向う方向を各々の工具の進出
方向、その逆方向を各々の工具の退動方向として
交互に使用する数値制御旋盤に於いて、一方の工
具の使用を、その刃先が前記主軸中心線より、そ
の退動方向に向つて任意のbなる距離にある点で
終了し、つづいて他方の工具の使用を開始する
時、加工プログラム上の決められた指令コードを
用いて、刃先位置の現在点が−(a−b)の座標
値となる座標系を設定すると共に、以後に指令さ
れる前記横送り台の移動指令値の正負の符号を全
て逆転させて、一方の工具から他方の工具への交
換使用に伴う刃先位置の変動と、その進出方向の
逆転とを補償して加工することを特徴とする数値
制御旋盤の加工方法。
1. A main shaft that grips a workpiece and rotates by power, and a pair of tools that are installed on a cross-feed table movable in a direction perpendicular to the center line of the main shaft and that face each other across the center line of the main shaft. A tool held on each of the tool stands such that the distance between the cutting edges becomes a predetermined value a along the direction of movement of the traversing table is moved in the direction toward the center line of the spindle. In a numerically controlled lathe that alternately uses the advancing direction of the tool and its opposite direction as the retracting direction of each tool, use one tool so that its cutting edge is in the retracting direction from the center line of the spindle. When finishing at a point at an arbitrary distance b towards the other end and then starting to use the other tool, the current point of the cutting edge position is -(a-b) using a predetermined command code on the machining program. ), as well as reversing the positive and negative signs of the movement command values for the traversing table that will be commanded thereafter, so that the cutting edge can be adjusted when changing from one tool to another. A processing method for a numerically controlled lathe, characterized in that processing is performed by compensating for positional fluctuations and reversal of the advance direction.
JP2298280A 1979-10-31 1980-02-26 Working method of numerical control lathe Granted JPS56121106A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2298280A JPS56121106A (en) 1980-02-26 1980-02-26 Working method of numerical control lathe
US06/201,847 US4413539A (en) 1979-10-31 1980-10-29 Numerically controlled lathe
FR8023246A FR2468427B1 (en) 1979-10-31 1980-10-30 DIGITAL CONTROL LATHE
DE19803041171 DE3041171A1 (en) 1979-10-31 1980-10-31 NUMERICALLY CONTROLLED LATHE
CH8136/80A CH649028A5 (en) 1979-10-31 1980-10-31 NUMERICALLY CONTROLLED LATHE.
GB8035164A GB2064397B (en) 1979-10-31 1980-10-31 Numerically controlled lathe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2298280A JPS56121106A (en) 1980-02-26 1980-02-26 Working method of numerical control lathe

Publications (2)

Publication Number Publication Date
JPS56121106A JPS56121106A (en) 1981-09-22
JPS6148722B2 true JPS6148722B2 (en) 1986-10-25

Family

ID=12097748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2298280A Granted JPS56121106A (en) 1979-10-31 1980-02-26 Working method of numerical control lathe

Country Status (1)

Country Link
JP (1) JPS56121106A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440663Y2 (en) * 1988-08-25 1992-09-24
JPH04136214U (en) * 1991-06-07 1992-12-18 倉三郎 水野 Affected area cooling device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151203A (en) * 1984-08-18 1986-03-13 Fanuc Ltd Numerical control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440663Y2 (en) * 1988-08-25 1992-09-24
JPH04136214U (en) * 1991-06-07 1992-12-18 倉三郎 水野 Affected area cooling device

Also Published As

Publication number Publication date
JPS56121106A (en) 1981-09-22

Similar Documents

Publication Publication Date Title
US8413557B2 (en) Method and apparatus for machining roll surface
EP0371450B1 (en) Headstock-reciprocating-type automatic lathe and machining method using the same
US3710466A (en) Machine tools and more particularly to data-controlled machine tools
US4739684A (en) Apparatus for finishing pistons and the like and method therefor
US3750245A (en) Turret lathe
JPS6148722B2 (en)
JPS5840257A (en) Grinding method for arched corner
US6024001A (en) Method of turning works and lathe for carrying out the method
JP2008260109A (en) Automatic lathe and computer program for controlling lathe
JPH0651241B2 (en) Y-axis processing method
GB2262061A (en) Double spindle type lathe
JP3440149B2 (en) Control method of NC lathe
JPH079201A (en) Lathe and processing method by lathe
JPH04129645A (en) Simultaneous processing method for numerical control lathe
JPH08118203A (en) Control method of nc lathe and device thereof
JP2001129701A (en) Numerically controlled automatic lathe and method of machining workpiece by numerically controlled automatic lathe
JPS6090652A (en) Nc machine tool
JPH0391009A (en) Tool setting method for numerically controlled lathe
US4050354A (en) Machine tool equipped with a magazine
KR100227183B1 (en) Multiple piston processing machine
JPH0659591B2 (en) Processing method of numerically controlled lathe
JP3070990B2 (en) Non-roundness processing method by turning and non-roundness NC processing machine
JPS63200915A (en) Thread cutting method by numerically controlled lathe
JP3313001B2 (en) Control method at the start and end of machining of NC lathe
JP7413729B2 (en) Machine tools and machine tool control methods