JPS6148528A - Laser beam scanning and processing device - Google Patents

Laser beam scanning and processing device

Info

Publication number
JPS6148528A
JPS6148528A JP16890584A JP16890584A JPS6148528A JP S6148528 A JPS6148528 A JP S6148528A JP 16890584 A JP16890584 A JP 16890584A JP 16890584 A JP16890584 A JP 16890584A JP S6148528 A JPS6148528 A JP S6148528A
Authority
JP
Japan
Prior art keywords
mirror
laser beam
scanning
vibrating
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16890584A
Other languages
Japanese (ja)
Other versions
JPH0323610B2 (en
Inventor
Masakazu Yamada
正和 山田
Takeji Egashira
江頭 武二
Masaru Iwasaki
勝 岩崎
Yoshitada Tanaka
田中 祥直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMADA KOGAKU KOGYO KK
Nippon Steel Corp
Original Assignee
YAMADA KOGAKU KOGYO KK
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMADA KOGAKU KOGYO KK, Nippon Steel Corp filed Critical YAMADA KOGAKU KOGYO KK
Priority to JP16890584A priority Critical patent/JPS6148528A/en
Publication of JPS6148528A publication Critical patent/JPS6148528A/en
Publication of JPH0323610B2 publication Critical patent/JPH0323610B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To decrease the number of laser scanners and to improve the efficiency, reliabiity, performance, etc., of a scanning system by subjecting the relation between the rotating angle of a rotary dividing mirror which divides a laser beam with time and the angle of oscillating mirrors for scanning to phase control, etc. CONSTITUTION:The laser beam 18 is changed over time-dividedly to transmission and reflection by the rotary dividing mirror 3 of an optical path selecting part 2. The transmitted beam 19a is scanned by the oscillating mirror 7a and is scanned at a microspot 9a to the surface of a steel sheet 10 by a lens 8a. The reflected beam 19b is scanned at a spot 9b by the oscillating mirror 7b and a lens 8b. The rotating speed of the mirror 3 is controlled by a rotation control device 12 on the basis of the moving speed of the sheet 10. The rotating angle of the mirror 3 and the oscillating angle of the morrors 7a, 7b are controlled by phase control parts 13a, 13b so as to have the specific phase relation in accordance with the signal from a rotating angle detector 11. The signals of the parts 13a, 13b are controlled with amplitude by amplitude control parts 14a, 14b and further the amplitudes of the mirrors 7a, 7b are controlled as well.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、高出力パルスレーザ−ビームにより被処理物
体、例えば電磁鋼板の磁気特性を向上させるようにした
レーザービーム走査処理装置に関する。
The present invention relates to a laser beam scanning processing apparatus that uses a high-power pulsed laser beam to improve the magnetic properties of an object to be processed, such as a magnetic steel sheet.

【従来の技術】[Conventional technology]

方向性電磁鋼板の表面にYAGレーザー等の高出力パル
スレーザ−ビームを照射することによって、電磁鋼板(
以下鋼板という)の磁気特性を改善できる技術は特公昭
57−2252号公報等によって公知である。 しかし
、このような従来の技術を工業的規模で実施する際には
種々の解決すべき問題があり、特に、レーザー走査機構
に振動ミラーを使用する場合には、走査の直線性と複数
の振動ミラーによる走査長さの制御及びレーザー装置の
台数の削減方法が問題であった。
By irradiating the surface of a grain-oriented electrical steel sheet with a high-power pulsed laser beam such as a YAG laser,
Techniques for improving the magnetic properties of steel sheets (hereinafter referred to as steel sheets) are well known, such as in Japanese Patent Publication No. 57-2252. However, there are various problems to be solved when implementing such conventional techniques on an industrial scale, especially when using an oscillating mirror in the laser scanning mechanism, such as scanning linearity and multiple vibrations. The problem was how to control the scanning length using mirrors and how to reduce the number of laser devices.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

例えば、幅の広い鋼板をレーザー照射するためには、振
動ミラーの走査幅の制限から多数の振動ミラーが必要で
あって、レーザー走査機の台数を削減することは困難で
あった。 また、振動ミラ−は一般に第5図(A)の曲
線Q1に示すような鋸歯状信号によって曲線れに示す如
く正弦波駆動する場合が多い。 第5図(A)において
、0は振動ミラー角度、■は駆動信号電圧、tは時間を
示す。 振動ミラーを第5図(A)のように駆動する場合は、振
動周波数を高くできないこと、及び曲線Ω2のように過
渡現象により非直線部分が必ず存在する問題があった。  また、振動周波数を高くするために、第5図CB)の
曲線Q3 に示すように正弦波信号で駆動した場合は、
直線性の得られる範囲が狭くなることや走査軌跡が平行
にならない等の問題があった。 さらに、第6図に示す
ように、隣接する振動ミラーによる鋼板lo上の走査軌
跡15a、15bの重なり具合を適正に調節することも
端部の非直線性のため問題があった。
For example, in order to irradiate a wide steel plate with a laser, a large number of vibrating mirrors are required due to the limited scanning width of the vibrating mirror, and it has been difficult to reduce the number of laser scanners. Further, the vibrating mirror is generally driven in a sine wave as shown in the curve by a sawtooth signal as shown in the curve Q1 in FIG. 5(A). In FIG. 5(A), 0 indicates the vibrating mirror angle, ■ indicates the drive signal voltage, and t indicates the time. When the vibrating mirror is driven as shown in FIG. 5(A), there is a problem that the vibration frequency cannot be increased and that a nonlinear portion always exists due to a transient phenomenon, such as the curve Ω2. Furthermore, in order to increase the vibration frequency, when driving with a sine wave signal as shown in curve Q3 in Figure 5 CB),
There have been problems such as the range in which linearity can be obtained becomes narrow and the scanning trajectories are not parallel. Furthermore, as shown in FIG. 6, there is also a problem in properly adjusting the overlapping degree of the scanning trajectories 15a and 15b on the steel plate lo by the adjacent vibrating mirrors due to the non-linearity of the ends.

【問題点を解決するための手段】[Means to solve the problem]

本発明は上記の問題点を解決したものであって、必要な
レーザー走査機の台数を削減し、走査の直線性を高め、
かつ隣接する走査の重なり具合も自由に調節でき、高出
力パルスレーザー走査システムの効率、信頼性、性能、
及びコスト等の点を著しく改善することを目的としてい
る。  しかして、本発明の目的はレーザー光源から出
射されるレーザービームを複数方向に時分割するための
回転分割ミラーを含む光路選択部と、上記回転分割ミラ
ーによって時分割されたレーザービームを走査する複数
の振動ミラーからなるレーザービーム走査部と、上記回
転分割ミラーの回転角度と上記振動ミラーの角度の関係
を制御する位相制御部と、この位相制御部の制御出力信
号に関連して上記振動ミラーの振幅を制御する振幅制御
部と、走査されたレーザービームを被処理物体上に集束
させる光学系と、上記被処理物体の移動速度に対応して
上記回転分割ミラーの回転数と上記振動ミラーの振動周
波数を制御する制御部とによって構成したレーザービー
ム走査処理装置により達成され、上記被処理物体上に任
意のピッチ及び走査幅でレーザービームを有効に照射で
きるものである。
The present invention solves the above problems by reducing the number of required laser scanners, increasing the linearity of scanning, and
In addition, the degree of overlap between adjacent scans can be freely adjusted, improving the efficiency, reliability, performance, and performance of high-power pulsed laser scanning systems.
The aim is to significantly improve the cost and other aspects. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an optical path selection section including a rotating splitting mirror for time-sharing a laser beam emitted from a laser light source in a plurality of directions, and a plurality of optical path selection units that scan the laser beam time-divided by the rotating splitting mirror. a laser beam scanning section consisting of a vibrating mirror; a phase control section that controls the relationship between the rotation angle of the rotary split mirror and the angle of the vibrating mirror; an amplitude control unit that controls the amplitude; an optical system that focuses the scanned laser beam onto the object to be processed; This is achieved by a laser beam scanning processing device configured with a control section that controls the frequency, and the object to be processed can be effectively irradiated with a laser beam at an arbitrary pitch and scanning width.

【実 施 例】【Example】

以下に、本発明の一実施例を第1図〜第4図を参照しな
がら説明する。 第1図は本発明の実施例に係るレーザービーム走査処理
装置を示し、1はYAGレーザー等の高出力パルスレー
ザ−光源、2は光路選択部であって、この光路選択部2
は光路切替部材、例えば回転分割ミラー3と、この回転
分割ミラー3を回転駆動する回転駆動部、例えばモータ
4からなる。 回転分割ミラー3は第2図に示すように回転板31と、
この回転板31の外縁部に円周方向に沿ってほぼ等間隔
に取付けた反射部材、例えば平面鏡32a〜32dによ
って構成されている。 また、5は回転分割ミラー3を
透過または反射したレーザービームの光路上に配置され
た第1の光路変更部で、この第1の光路変更部5はレー
ザービームの直進路上に設けた平面鏡5aと、回転分割
ミラー3によって反射された反射光路上に設けた平面鏡
5bとによって構成される。 6は第2の光路変更部で
平面鏡5aによる反射光路上に設けた平面鏡6aと、平
面鏡5bによる反射光路上に設けた平面鏡6bとによっ
て構成されている。 7はレーザービーム走査部で、第2の光路変更部6の平
面鏡6aによって反射したレーザービームの光路上に設
けた第1の振動ミラー7aと、平面鏡6bによって反射
したレーザービームの光路上に設けた第2の振動ミラー
7bからなる。 振動ミラー7aの走査光路上には第1
のf−θレンズ8aを・、また振動ミラー7bの走査光
路上には第2のfllレンズ8bをそれぞれ設け、これ
ら第1のf−θレンズ8aと第2のf−θレンズ8bは
集束部8を構成し、レーザービームは被処理物体である
鋼板10の表面をスポット9a、9bで走査する仕組に
なっている。 しかして、平面鏡5a、6a、振動ミラー7a及びf−
θレンズ8aは第1の光学系を、また、平面鏡5b、6
b、振動ミラー7b及びf−0レンズ8bは第2の光学
系をそれぞれ形成する。 さらに、11はモータ4の回
転角度を検出する回転角度検出器、12は鋼板10の移
動速度信号S□と回転角度検出器11の検出信号S2を
特徴とする特許制御装置である。 13a、13bは回
転角度検出器11の検出信号S2を入力とする第1.第
2の位相制御部、14a、14bは第1.第2の位相制
御部13a、13bの位相制御信号S48.S4bを入
力とする第1.第2の振幅制御部であって、第1の振幅
制御部14aはその振幅制御信号S5aによって第1の
振動ミラー7aの振幅を制御し、第2の振幅制御部14
aはその振幅制御信号S5aによって第2の振動ミラー
7bの振幅を制御する。 上記構成のレーザービーム走査処理装置において、レー
ザー光源1から出射されたレーザービーム18は光路選
択部2の回転分割ミラー3によって時分割的に透過、反
射の切替が行なわれる。 レーザービーム18が回転分割ミラー3の平面鏡32a
〜32dに当らなければ透過し、平面鏡32a〜32d
に当れば反射する。 レーザービーム18の直径が十分
小さければ透過と反射の切替が効率よく行なわれる。 
 レーザービーム18の直径が十分小さくない場合には
、レンズ16で集束させ、再び透過ビーム19aと反射
ビーム19bをそれぞれレンズ17a、17bによって
平行にすると効果がある。 この場合、レンズ17a。 17bを透過した後のビーム径をより大きくして以後の
光学系の結像性能を高めることも可能であり、また、レ
ンズの代りに放物面鏡を組合せることも可能である。 
回転分割ミラー3によって時分割されたレーザービーム
のうち、透過ビーム19aは平面鏡5a、6aを経て振
動ミラー7aによって走査され、f−&レンズ8aによ
って鋼板10の表面に微小なスポット9aで走査し、反
射ビーム19bは平面鏡5b、6bを経て振動ミラー7
bによって走査され、f−eレンズ8bによって鋼板1
0の表面にスポット9bで走査することになる。 一方、回転分割ミラー3の回転数は鋼板10の移動速度
信号S1を基準に回転制御装置12によって制御される
と共に、回転角度検出器11の検出信号S2を基準に、
回転分割ミラー3の回転角度と振動ミラー7a及び7b
の振れ角が特定の位相関係になるように位相制御部13
a及び13bによって制御される。 位相制御部13a
、13bの出力信号S48.S4bは回転分割ミラー3
の回転角度と特定の位相関係にある鋸歯状波となるが、
さらに第1.第2の振幅制御部14a、14bによって
振幅が制御され、その制御出力信号S 5a。 S5bによって第1.第2の振動ミラー7a、7bの振
幅も制御されることになる。 回転分割ミラー3を透過
するビーム19aの強度は第3図(A)の曲線Q4aの
ように変化し、反射するビーム19bの強度は第3図(
B)の曲線Ω4bのように変化する。 また、これらの
ビーム切替えタイミングと特定の位相関係にある第1の
振動ミラー7aは第3図(C)に示す鋸歯状波信号Qi
aで制御され曲線Q2aのように駆動される。 第2の
振動ミラー7bは第3図(D)の曲線Q□b、 Q2b
のように駆動制御される。 ここで、各々の鋸歯状波信
号(Qla、Q□b)で駆動された振動ミラー7a、7
bは過渡特性により曲線ρ2a、 D2bのように各周
期の初期の部分で直線性が悪くなるが、振動ミラーにレ
ーザービームが当るタイミングは回転分割ミラー3によ
って制御されるため、最終的なレーザービームの走査は
第3@ (E)のQ 、a、 Q 、bのように直線性
の良い部分が使用される。 すなわち、第3図(E)で
直線Q5a、は第1の振動ミラー7aの走査特性、Q、
bは第2の振動ミラー7bの駆動特性である。 このよ
うな走査によって、実際の鋼板上の走査は第4図の走査
軌跡40aのように直線性、平行性とともに良好なもの
となる。 さらに振幅制御ぶ14a、14bによって第3図(F)
の直線Q Gat Q 、bおよび第4図の走査軌跡4
0bのようになり、複数の振動ミラーによる走査を最適
に組合せることが可能となる。 なお、上述の実施例では振動ミラーが2個の場合につい
て述べたが、さらに多くの振動ミラーを使用した場合も
同様の効果が得られるものである。 【発明の効果1 以上説明したように、本発明によれば高出力のレーザー
ビームにより被処理物体、例えば電磁鋼板の磁気特性を
向上させる装置において、同じ数の振動ミラーを半分の
数のレーザーで駆動できるとともに、走査の直線性を高
め、また、隣接する振動ミラーによる走査の重なり具合
いを適正に調節することが可能となり、高出力レーザー
走査システムの効率、信頼性、性能及びコストの面でも
著しく改善することができる効果がある。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. FIG. 1 shows a laser beam scanning processing apparatus according to an embodiment of the present invention, in which 1 is a high-power pulse laser light source such as a YAG laser, and 2 is an optical path selection section.
consists of an optical path switching member, such as a rotating split mirror 3, and a rotation drive unit, such as a motor 4, that rotates the rotating split mirror 3. As shown in FIG. 2, the rotating split mirror 3 includes a rotating plate 31,
The rotating plate 31 is composed of reflective members, for example, plane mirrors 32a to 32d, which are attached to the outer edge of the rotating plate 31 at substantially equal intervals along the circumferential direction. Further, reference numeral 5 denotes a first optical path changing section disposed on the optical path of the laser beam transmitted or reflected by the rotating splitting mirror 3, and this first optical path changing section 5 is connected to a plane mirror 5a disposed on the straight path of the laser beam. , and a plane mirror 5b provided on the reflected optical path reflected by the rotating split mirror 3. Reference numeral 6 denotes a second optical path changing section, which is composed of a plane mirror 6a provided on the optical path reflected by the plane mirror 5a, and a plane mirror 6b provided on the optical path reflected by the plane mirror 5b. Reference numeral 7 denotes a laser beam scanning section, which includes a first vibrating mirror 7a provided on the optical path of the laser beam reflected by the plane mirror 6a of the second optical path changing section 6, and a first vibrating mirror 7a provided on the optical path of the laser beam reflected by the plane mirror 6b. It consists of a second vibrating mirror 7b. On the scanning optical path of the vibrating mirror 7a, there is a first
A second FLL lens 8b is provided on the scanning optical path of the vibrating mirror 7b, and these first f-theta lens 8a and second f-theta lens 8b serve as a focusing section. 8, and the laser beam scans the surface of the steel plate 10, which is the object to be processed, with spots 9a and 9b. Therefore, the plane mirrors 5a, 6a, the vibrating mirror 7a and f-
The θ lens 8a serves as the first optical system, and the plane mirrors 5b and 6
b, the vibrating mirror 7b and the f-0 lens 8b each form a second optical system. Furthermore, 11 is a rotation angle detector for detecting the rotation angle of the motor 4, and 12 is a patented control device characterized by a moving speed signal S□ of the steel plate 10 and a detection signal S2 of the rotation angle detector 11. 13a and 13b are the first. The second phase control section 14a, 14b is connected to the first phase control section 14a, 14b. Phase control signal S48. of the second phase control section 13a, 13b. The first .S4b is input. The first amplitude control section 14a, which is a second amplitude control section, controls the amplitude of the first vibrating mirror 7a using the amplitude control signal S5a.
a controls the amplitude of the second vibrating mirror 7b by the amplitude control signal S5a. In the laser beam scanning processing device having the above configuration, the laser beam 18 emitted from the laser light source 1 is transmitted and reflected in a time-division manner by the rotating splitting mirror 3 of the optical path selection section 2. The laser beam 18 is transmitted to the plane mirror 32a of the rotating split mirror 3.
If it does not hit ~32d, it will pass through, and the plane mirrors 32a~32d
If it hits, it will reflect. If the diameter of the laser beam 18 is sufficiently small, switching between transmission and reflection can be performed efficiently.
If the diameter of the laser beam 18 is not small enough, it is effective to focus it with the lens 16 and make the transmitted beam 19a and the reflected beam 19b parallel again with the lenses 17a and 17b, respectively. In this case, lens 17a. It is also possible to increase the beam diameter after passing through 17b to improve the imaging performance of the subsequent optical system, and it is also possible to combine a parabolic mirror instead of a lens.
Of the laser beams time-divided by the rotating splitting mirror 3, the transmitted beam 19a passes through the plane mirrors 5a and 6a, is scanned by the vibrating mirror 7a, and is scanned with a minute spot 9a on the surface of the steel plate 10 by the f-lens 8a. The reflected beam 19b passes through plane mirrors 5b and 6b and then reaches the vibrating mirror 7.
b, and the steel plate 1 is scanned by the fe lens 8b.
The surface of 0 will be scanned with spot 9b. On the other hand, the rotation speed of the rotating split mirror 3 is controlled by the rotation control device 12 based on the moving speed signal S1 of the steel plate 10, and based on the detection signal S2 of the rotation angle detector 11.
Rotation angle of rotating split mirror 3 and vibrating mirrors 7a and 7b
The phase control unit 13 controls the deflection angle to have a specific phase relationship.
a and 13b. Phase control section 13a
, 13b output signal S48. S4b is rotating split mirror 3
It becomes a sawtooth wave with a specific phase relationship with the rotation angle of
Furthermore, the first. The amplitude is controlled by the second amplitude control sections 14a, 14b, and the control output signal S5a. 1st by S5b. The amplitude of the second vibrating mirrors 7a, 7b will also be controlled. The intensity of the beam 19a transmitted through the rotating splitting mirror 3 changes as shown by the curve Q4a in FIG. 3(A), and the intensity of the reflected beam 19b changes as shown in FIG. 3(A).
It changes like the curve Ω4b in B). The first vibrating mirror 7a, which has a specific phase relationship with these beam switching timings, receives a sawtooth wave signal Qi shown in FIG. 3(C).
a and is driven as shown by the curve Q2a. The second vibrating mirror 7b corresponds to the curves Q□b and Q2b in FIG. 3(D).
The drive is controlled as follows. Here, the vibrating mirrors 7a, 7 driven by the respective sawtooth wave signals (Qla, Q□b)
b has poor linearity in the early part of each period as shown by curves ρ2a and D2b due to transient characteristics, but since the timing at which the laser beam hits the vibrating mirror is controlled by the rotating splitting mirror 3, the final laser beam For scanning, portions with good linearity such as Q, a, Q, and b in the third @(E) are used. That is, in FIG. 3(E), the straight line Q5a represents the scanning characteristic of the first vibrating mirror 7a, Q,
b is the drive characteristic of the second vibrating mirror 7b. By such scanning, the actual scanning on the steel plate has good linearity and parallelism as shown in the scanning locus 40a in FIG. 4. Furthermore, the amplitude control blocks 14a and 14b are used as shown in FIG. 3(F).
Straight line Q Gat Q , b and scanning locus 4 in Fig. 4
0b, and it becomes possible to optimally combine scanning by a plurality of vibrating mirrors. In the above-described embodiment, the case where two vibrating mirrors are used is described, but the same effect can be obtained even when more vibrating mirrors are used. Effects of the Invention 1 As explained above, according to the present invention, in an apparatus for improving the magnetic properties of an object to be processed, such as an electrical steel sheet, by using a high-power laser beam, the same number of vibrating mirrors can be replaced by half the number of laser beams. In addition to improving the linearity of scanning, it also makes it possible to appropriately adjust the overlap of scanning by adjacent vibrating mirrors, which significantly improves the efficiency, reliability, performance, and cost of high-power laser scanning systems. There are effects that can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成概略図、第2図は
回転分割ミラーの正面図、第3図(A)〜(F)は第1
図に示した装置の各部の特性図、第4図は同上装置の走
査処理特性図、第5図(A)、CB)は従来のレーザー
ビーム走査処理装置の特性図、第6図は従来のレーザー
ビーム走査処理装置の走査処理特性図である。 図中、1はレーザー光源、2は光路選択部、3は回転分
割ミラー、5は第1の光路変更部、5a。 5bは平面鏡、6は第2の光路変更部+ 6a、6bは
平面鏡、7はレーザービーム走査部、7a。 7bは振動ミラー、8は集束部、8a、8bはf−0レ
ンズ、10は被処理物体である電磁鋼板、11は回転角
度検出器、12は回転制御装置、13a、13bは位相
制御部、14a、14bは振幅制御部である。 特許出願人 山田光学工業株式会社 外1名 第4図 第5図 (A) 負 (B) θ
FIG. 1 is a schematic configuration diagram showing one embodiment of the present invention, FIG. 2 is a front view of a rotating split mirror, and FIGS. 3(A) to (F) are a first
Figure 4 is a characteristic diagram of each part of the device shown in the figure, Figure 4 is a scanning processing characteristic diagram of the same device, Figures 5 (A) and CB) are characteristic diagrams of a conventional laser beam scanning processing device, and Figure 6 is a characteristic diagram of a conventional laser beam scanning processing device. It is a scanning processing characteristic diagram of a laser beam scanning processing device. In the figure, 1 is a laser light source, 2 is an optical path selection section, 3 is a rotating splitting mirror, and 5 is a first optical path changing section, 5a. 5b is a plane mirror, 6 is a second optical path changing unit + 6a, 6b is a plane mirror, 7 is a laser beam scanning unit, 7a. 7b is a vibrating mirror, 8 is a focusing unit, 8a and 8b are f-0 lenses, 10 is an electromagnetic steel plate which is an object to be processed, 11 is a rotation angle detector, 12 is a rotation control device, 13a and 13b are phase control units, 14a and 14b are amplitude control sections. Patent applicant: 1 person other than Yamada Kogaku Kogyo Co., Ltd. Figure 4 Figure 5 (A) Negative (B) θ

Claims (1)

【特許請求の範囲】[Claims] レーザー光源から出射されるレーザービームを複数方向
に時分割するための回転分割ミラーを含む光路選択部と
、上記回転分割ミラーによって時分割されたレーザービ
ームを走査する複数の振動ミラーからなるレーザービー
ム走査部と、上記回転分割ミラーの回転角度と上記振動
ミラーの角度の関係を制御する位相制御部と、この位相
制御部の制御出力信号に関連して上記振動ミラーの振幅
を制御する振幅制御部と、走査されたレーザービームを
被処理物体上に集束させる光学系と、上記被処理物体の
移動速度に対応して上記回転分割ミラーの回転数と上記
振動ミラーの振動周波数を制御する制御部とによって構
成したことを特徴とするレーザービーム走査処理装置。
A laser beam scanning device consisting of an optical path selection unit including a rotating splitting mirror for time-sharing the laser beam emitted from the laser light source in multiple directions, and a plurality of vibrating mirrors for scanning the laser beam time-divided by the rotating splitting mirror. a phase control unit that controls the relationship between the rotation angle of the rotating split mirror and the angle of the vibrating mirror; and an amplitude control unit that controls the amplitude of the vibrating mirror in relation to a control output signal of the phase control unit. , an optical system that focuses the scanned laser beam onto the object to be processed, and a control unit that controls the rotational speed of the rotating split mirror and the vibration frequency of the vibrating mirror in accordance with the moving speed of the object to be processed. A laser beam scanning processing device characterized by comprising:
JP16890584A 1984-08-14 1984-08-14 Laser beam scanning and processing device Granted JPS6148528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16890584A JPS6148528A (en) 1984-08-14 1984-08-14 Laser beam scanning and processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16890584A JPS6148528A (en) 1984-08-14 1984-08-14 Laser beam scanning and processing device

Publications (2)

Publication Number Publication Date
JPS6148528A true JPS6148528A (en) 1986-03-10
JPH0323610B2 JPH0323610B2 (en) 1991-03-29

Family

ID=15876733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16890584A Granted JPS6148528A (en) 1984-08-14 1984-08-14 Laser beam scanning and processing device

Country Status (1)

Country Link
JP (1) JPS6148528A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222483A (en) * 1987-03-12 1988-09-16 Toshiba Corp Laser pulse generating device
CN102095688A (en) * 2011-03-08 2011-06-15 中国人民解放军总装备部工程兵科研一所 Equipment for measuring laser performance of material
WO2013099219A1 (en) 2011-12-27 2013-07-04 Jfeスチール株式会社 Device for improving core loss in grain-oriented electrical steel sheet
CN110106320A (en) * 2019-05-07 2019-08-09 南京苏星智能装备有限公司 A kind of laser scored equipment of intelligence bull orientation silicon steel and its control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222483A (en) * 1987-03-12 1988-09-16 Toshiba Corp Laser pulse generating device
CN102095688A (en) * 2011-03-08 2011-06-15 中国人民解放军总装备部工程兵科研一所 Equipment for measuring laser performance of material
WO2013099219A1 (en) 2011-12-27 2013-07-04 Jfeスチール株式会社 Device for improving core loss in grain-oriented electrical steel sheet
KR20140111275A (en) 2011-12-27 2014-09-18 제이에프이 스틸 가부시키가이샤 Device to improve iron loss properties of grain-oriented electrical steel sheet
US10745773B2 (en) 2011-12-27 2020-08-18 Jfe Steel Corporation Device to improve iron loss properties of grain-oriented electrical steel sheet
US11377706B2 (en) 2011-12-27 2022-07-05 Jfe Steel Corporation Device to improve iron loss properties of grain-oriented electrical steel sheet
CN110106320A (en) * 2019-05-07 2019-08-09 南京苏星智能装备有限公司 A kind of laser scored equipment of intelligence bull orientation silicon steel and its control method

Also Published As

Publication number Publication date
JPH0323610B2 (en) 1991-03-29

Similar Documents

Publication Publication Date Title
USRE44886E1 (en) Method and apparatus for improving laser hole resolution
US6763045B2 (en) Apparatus for and method of targeting
TW202129304A (en) Laser radar and scanning method thereof
CN115319295A (en) Laser processing device
CN110133842A (en) A kind of galvanometer scanning device and system
US3972583A (en) Scanning devices
JPS6148528A (en) Laser beam scanning and processing device
EP0112374B1 (en) Beam scanning apparatus
US6834062B2 (en) Method and apparatus for controlling laser energy
RU2754523C1 (en) Light guide device and laser processing device
CN112326804A (en) Pulse light driven phased array ultrasonic emission system
JPS60233616A (en) Optical scanning device
JPH058072A (en) Laser beam machining method
JPH01262520A (en) Laser beam scanner
JPS56155916A (en) Photoscanner
JPS5714820A (en) Optical scanner
JP2639321B2 (en) Laser beam scanning device
US4025166A (en) Acousto-optic light beam scanner
CN209911649U (en) Galvanometer scanning device and system
RU2782975C1 (en) Polygonal mirror, lightguide apparatus and optical scanning apparatus
EP4406688A1 (en) Laser processing method
RU2778820C1 (en) Light-guiding device
KR940008591B1 (en) Continuous processing apparatus of laser beam
JPH0354515A (en) Noise eliminating device for rotary polygon mirror
SU1723556A1 (en) Method for switching of optical signals