JPS6148522B2 - - Google Patents

Info

Publication number
JPS6148522B2
JPS6148522B2 JP56050557A JP5055781A JPS6148522B2 JP S6148522 B2 JPS6148522 B2 JP S6148522B2 JP 56050557 A JP56050557 A JP 56050557A JP 5055781 A JP5055781 A JP 5055781A JP S6148522 B2 JPS6148522 B2 JP S6148522B2
Authority
JP
Japan
Prior art keywords
reaction
pam
aqueous solution
concentration
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56050557A
Other languages
Japanese (ja)
Other versions
JPS57165404A (en
Inventor
Seiichi Sano
Kazuo Sakai
Yukio Takashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OJI KENZAI KOGYO KK
Original Assignee
OJI KENZAI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OJI KENZAI KOGYO KK filed Critical OJI KENZAI KOGYO KK
Priority to JP5055781A priority Critical patent/JPS57165404A/en
Publication of JPS57165404A publication Critical patent/JPS57165404A/en
Publication of JPS6148522B2 publication Critical patent/JPS6148522B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高分子凝集剤の製造方法に関し、特に
ポリアクリルアミドにホフマン反応を適用した安
価かつ効率的な高分子凝集剤の製造方法に関す
る。 一般に、アミド化合物にアルカリ性で次亜ハロ
ゲン酸塩を作用させた後70〜90℃に加熱するかあ
るいは5℃以下の低温で反応させると高収率でア
ミンが生成することはホフマン分解反応としてよ
く知られている。又、ポリアクリルアミド(以下
PAMと略称する)のアミノ化物であるポリビニ
ルアミンは、紙力増強剤、沈降促進剤、高分子凝
集剤あるいはコロイド滴定試薬としても重要であ
る。したがつて、PAMにホフマン反応を適用し
てポリビニルアミンを製造する試みはこれまで多
数ある。しかし、従来の方法はいずれもアミノ化
率の向上を目的としたものであつた。 一般に、ホフマン反応は、カルボン酸アミド例
えばPAMに次亜ハロゲン酸塩を作用させて該ア
ミンを製造するる反応であり、例えば次式(1)で表
わすことができる。 R―CONH2+NaOC+2NaOH →R―NH2+NaC+Na2CO3+H2O …(1) 又、この反応は、次の3つの段階を経て進むと
されている。 →の反応は温度依存性が大きいので→
の反応が終つた後70〜90℃に急熱し、,への
転移反応を進めるのがホフマン反応の常識となつ
ている。 式(1)の反応において、R―CONH2,NaOC
及びNaOHの反応モル比は、1:1:2であり、
反応液中のNaCOを効率よく反応させるために
は、2倍当量以上のNaOHが必要である。 従来は、前記したアミノ化率を高める目的でホ
フマン反応を行なつているので、反応効率をあげ
るために、アルカリ初期濃度を高くしており、1
モル/以下でホフマン反応を行なつている例は
皆無である。又、同じ目的で、平均分子量の高い
PAMを使用すると、反応液の濃度が高くなりそ
の見掛け上の粘度が上昇して反応操作が困難とな
ることから、PAMの平均分子量(ブルツクフイ
ールド粘度より算出)を80万以下におされて反応
を行なつている。 PAMのホフマン反応は、水酸化アルカリの存
在下に次亜塩素塩のような酸化剤によりPAMを
酸化するため、重合体分子の鎖が切れ、そのため
ホフマン反応後の重合体の重合度は、反応前に比
較して低下することが避けられない。しかしなが
ら、特に本発明におけるような凝集剤を目的物と
する場合には、この重合度の低下は致命的な欠陥
となる。すなわち、高分子凝集剤を用いて排水
(汚水)処理を行なう際の凝集機構は次のように
考えられている。 排水より汚泥スラツジを分離、脱水させるため
には、まず、汚泥粒子の電荷を中和(凝結作用)
させ、更に大きくて強固なフロツクを作る(凝集
作用)ことが必要であるが、この凝集作用は、分
子量が大きいほど効果が大きいといわれている。
(通常、沈降促進剤等は数十万〜数百万程度の分
子量、凝集剤は数百万)一方、PAMにホフマン
反応を適用すると、前記のように、重合体分子の
鎖の切断が起るので、凝集剤を得るためには出発
物質であるPAMの分子量を非常に高くしておく
必要がある。しかしながら、ホフマン反応におい
ては、前記(2)式の→のハロアミド化反応の際
に一時的に粘度が出発物質の粘度より更に大幅に
上昇する。そのために、例えば、PAM、次亜塩
素酸塩及び水酸化ナトリウムの混合が不均一にな
り、安定した均一の性能を有する凝集剤を製造す
ることができない。したがつて、PAMのホフマ
ン反応によるカチオン凝集剤の製造が、他の方法
に比し安価かつ反応が容易であるにもかかわら
ず、一般に普及しない原因はこの点にある。 本発明はこのような現状に鑑みてなされたもの
であり、その目的は、特定の条件下でポリアクリ
ルアミドにホフマン反応を適用し、安価かつ優れ
た凝集効果を有する高分子凝集剤の製造方法を提
供することである。 本発明につき概説すれば、本発明の高分子凝集
剤の製造方法は、水酸化アルカリの存在下に水溶
液状でポリアクリルアミドと次亜ハロゲン酸塩と
を反応させる高分子凝集剤の製造方法において、
平均分子量150万以上のポリアクリルアミドと次
亜ハロゲン酸塩とを0.3〜0.95モル/のアルカ
リ初期濃度において15〜30℃の温度で反応させる
ことを特徴とするものである。 本発明者等は、前記したホフマン反応の条件に
つき種々検討を重ねた結果、従来の常識では考え
られなかつた低アルカリ濃度領域でホフマン反応
を行なうことにより、前記問題点を解消し、かつ
顕著な凝集作用効果を有する高分子凝集剤を製造
しうることを見出して本発明に到達したものであ
る。 本発明においては、PAMをホフマン反応させ
るに際し、出発物質として平均分子量150万以上
望ましくは200万以上のPAMを使用し、反応開始
時のアルカリの濃度を0.3〜0.95モル/と超低
濃度にし、反応温度を15〜30℃、望ましくは20〜
25℃の条件で行なう。この条件で反応させること
により、生成アミノ基量(後記実施例1参照)は
15〜36%であるが、凝集剤としての性能は著しく
優れたものを得ることができる。これらの条件に
おいて、PAMの平均分子量が150万未満では凝集
剤の十分な凝集性が発揮されず、又、アルカリの
濃度が0.3モル/未満では反応が進まず、0.95
モル/を越えると次亜ハロゲン酸塩の使用量が
増加するため、加水分解してPAMの分子量が低
下し凝集性が悪くなり、更に又、反応温度が15℃
未満では反応速度が低下し、又冷却が必要とな
り、30℃を越えると反応自体は進むがPAMの分
子量低下による凝集性低下をもたらす。 本発明によれば、アルカリの濃度が非常に低く
ても十分にホフマン反応を行なうことができ、生
成されるアミノ基は40%以下であが、後記実施例
の結果から明らかなように、PAMの分子量を高
くすることができれば、凝集剤として使用する場
合、アミノ基量を多くする必要はない。 本発明においては、アルカリの濃度が低く、し
たがつて次亜ハロゲン酸塩の濃度が低いため、
PAMの主鎖の切断が少ない。又、PAMを濃度を
低くすることが可能なため、出発物質PAMの分
子量が200万以上と高くてもホフマン反応に供す
ることができ、又、PAMの濃度を低くすること
が可能である。したがつて、PAMの分子量は150
万以上と極めて大きくてもホフマン反応に供する
PAM溶液の見掛けの粘度を低下させることがで
き、製造上の操作が容易である。 本発明者等は、ホフマン分解反応時、アルカリ
の濃度を変動させて変性を行なつた場合の生成凝
集剤の粘度を測定し、下表に示す結果を得た。な
お、粘度はブルツクフイールド型粘度計を用い、
20℃で測定した。
The present invention relates to a method for producing a polymer flocculant, and more particularly to an inexpensive and efficient method for producing a polymer flocculant by applying the Hoffman reaction to polyacrylamide. In general, when an amide compound is treated with a hypohalite in an alkaline state and then heated to 70-90℃ or reacted at a low temperature of 5℃ or less, amines are produced in high yield, which is often referred to as a Hofmann decomposition reaction. Are known. Also, polyacrylamide (hereinafter referred to as
Polyvinylamine, which is an aminated product of PAM (abbreviated as PAM), is also important as a paper strength agent, sedimentation accelerator, polymer flocculant, or colloid titration reagent. Therefore, there have been many attempts to produce polyvinylamine by applying the Hoffman reaction to PAM. However, all of the conventional methods were aimed at improving the amination rate. In general, the Hofmann reaction is a reaction in which a hypohalite is reacted with a carboxylic acid amide, such as PAM, to produce the amine, and can be represented, for example, by the following formula (1). R-CONH 2 +NaOC+2NaOH →R-NH 2 +NaC+Na 2 CO 3 +H 2 O...(1) Moreover, this reaction is said to proceed through the following three steps. Since the reaction of → is highly temperature dependent, →
It is common knowledge in the Hoffmann reaction that after the reaction of , the reaction is rapidly heated to 70-90°C to proceed with the transition reaction to . In the reaction of formula (1), R-CONH 2 , NaOC
The reaction molar ratio of and NaOH is 1:1:2,
In order to efficiently react NaCO in the reaction solution, twice the equivalent or more of NaOH is required. Conventionally, the Hofmann reaction was carried out to increase the amination rate mentioned above, so the initial alkali concentration was increased to increase the reaction efficiency.
There are no examples in which the Hofmann reaction is carried out at mol/mole or less. Also, for the same purpose, high average molecular weight
When PAM is used, the concentration of the reaction solution increases and its apparent viscosity increases, making reaction operations difficult. conducting a reaction. In the Hofmann reaction of PAM, PAM is oxidized by an oxidizing agent such as hypochlorite in the presence of alkali hydroxide, so the chain of the polymer molecule is broken, so the degree of polymerization of the polymer after the Hofmann reaction is It is inevitable that it will decline compared to before. However, especially when the purpose is a flocculant as in the present invention, this decrease in the degree of polymerization is a fatal flaw. That is, the flocculation mechanism when treating wastewater (sewage) using a polymer flocculant is thought to be as follows. In order to separate and dehydrate sludge sludge from wastewater, first, the electric charge of sludge particles is neutralized (coagulation effect).
It is necessary to make the flocs larger and stronger (flocculating action), and it is said that the larger the molecular weight, the greater the effect of this aggregating action.
(Normally, sedimentation accelerators have a molecular weight of several hundred thousand to several million, and flocculants have a molecular weight of several million.) On the other hand, when the Hoffman reaction is applied to PAM, as mentioned above, chain scission of polymer molecules occurs. Therefore, in order to obtain a flocculant, the starting material PAM must have a very high molecular weight. However, in the Hofmann reaction, the viscosity temporarily increases significantly more than the viscosity of the starting material during the haloamidation reaction of → in formula (2). Therefore, for example, the mixing of PAM, hypochlorite and sodium hydroxide becomes non-uniform, making it impossible to produce a flocculant with stable and uniform performance. Therefore, this is the reason why the production of cationic flocculants by the Hoffman reaction of PAM is not widely used, even though it is cheaper and easier to react than other methods. The present invention was made in view of the current situation, and its purpose is to develop a method for producing a polymer flocculant that is inexpensive and has an excellent flocculation effect by applying the Hoffman reaction to polyacrylamide under specific conditions. It is to provide. To summarize the present invention, the method for producing a polymer flocculant of the present invention comprises reacting polyacrylamide and hypohalite in an aqueous solution in the presence of an alkali hydroxide.
It is characterized by reacting polyacrylamide with an average molecular weight of 1.5 million or more with a hypohalite at a temperature of 15 to 30°C at an initial alkaline concentration of 0.3 to 0.95 mol/. As a result of various studies on the conditions of the above-mentioned Hofmann reaction, the present inventors have solved the above-mentioned problems and achieved a remarkable The present invention was achieved by discovering that a polymer flocculant having an aggregating effect can be produced. In the present invention, when PAM is subjected to the Hoffman reaction, PAM with an average molecular weight of 1.5 million or more, preferably 2 million or more is used as a starting material, and the alkali concentration at the start of the reaction is set to an ultra-low concentration of 0.3 to 0.95 mol/, The reaction temperature is 15~30℃, preferably 20~
Perform at 25℃. By reacting under these conditions, the amount of amino groups produced (see Example 1 below) is
Although it is 15 to 36%, it is possible to obtain a product with significantly superior performance as a flocculant. Under these conditions, if the average molecular weight of PAM is less than 1.5 million, the flocculant will not exhibit sufficient coagulating properties, and if the alkali concentration is less than 0.3 mol/mol, the reaction will not proceed;
If the amount exceeds 1 mol/molar, the amount of hypohalite used will increase, which will result in hydrolysis, resulting in a decrease in the molecular weight of PAM and poor agglomeration.Furthermore, the reaction temperature will be 15℃
If it is less than 30°C, the reaction rate will decrease and cooling will be required, and if it exceeds 30°C, the reaction itself will proceed, but the molecular weight of PAM will decrease, resulting in a decrease in cohesiveness. According to the present invention, the Hofmann reaction can be carried out satisfactorily even if the alkali concentration is very low, and the amount of amino groups produced is 40% or less. If the molecular weight can be increased, there is no need to increase the amount of amino groups when used as a flocculant. In the present invention, since the concentration of alkali is low and therefore the concentration of hypohalite is low,
There is less cleavage of the PAM main chain. Furthermore, since it is possible to lower the concentration of PAM, even if the starting material PAM has a high molecular weight of 2 million or more, it can be subjected to the Hoffman reaction, and it is also possible to lower the concentration of PAM. Therefore, the molecular weight of PAM is 150
Even if it is extremely large (more than 10,000 yen), it can be subjected to the Hoffman reaction.
The apparent viscosity of the PAM solution can be reduced, and manufacturing operations are easy. The present inventors measured the viscosity of the flocculant produced when denaturation was carried out by varying the alkali concentration during the Hoffman decomposition reaction, and obtained the results shown in the table below. The viscosity was measured using a Bruckfield viscometer.
Measured at 20°C.

【表】 表から明らかなように、アルカリの濃度を高く
して変性を行なつた場合に粘度の低下が大であ
り、高分子PAMの場合と低分子PAMの場合で粘
度が異なる。前記したようにPAMの粘度が高い
と反応が不均一になるが、本発明によれば、高分
子PAMを用いても粘度を低下させうることがわ
かる。 一般に、ホフマン反応により製造された凝集剤
はそのままでは強アルカリ性を示すため、処理水
のPH操作性を考えて中和ておくことが必要である
が、本発明においては上記のようにアルカリ超低
濃度で反応を行なうので、中和に要する酸の量が
少なくてすみ、経済的である。 又、本発明においては、室温付近の温度で反応
させ、必要なホフマン反応を60分程度の短時間で
完結させることができ、因に、後記実施例2に準
じてPAMのホフマン分解反応を行なつた時の生
成アミノ基量は約60分で一定値に達する。すなわ
ち、第1図は、本発明によるホフマン反応におけ
る反応時間とアミノ基量との関係を示したグラフ
であり、このグラフから上記が裏付けられること
は明らかである。 凝集剤は汚泥粒子と均一に接触させるために希
釈して使用されるのが一般的であるが、本発明に
よつて製造された凝集剤は、この希釈操作が容易
であり、又、溶液中に主として塩化ナトリウムの
ような無機塩類を含むため、凍結に強く寒冷地で
の使用にも有利であり、しかもこの無機塩類は汚
泥凝集の際には水中に流れ出て汚泥の処理には
影響を与えない。 次に、本発明及びその効果を実施例により説明
するが、本発明はこれらによりなんら限定される
ものではない。なお、凝集実験は、製紙工場より
排出される汚泥水、すなわち、微細繊維主体の製
紙汚泥水に活性汚泥処理法により発生した余剰汚
泥水を混合したもの(固型分濃度2.6重量%、PH
6.5)に、水で純分0.2%(本方法により製造され
た凝集剤は無機物を含むため、濃度を表わす場合
にはすべてPAMに換言した濃度で示し、これを
純分として扱う)に希釈溶解した凝集剤を一定量
添加してジヤーテスターで150rpmで90秒間撹拌
後、カナデイアン式フリーネステスターに1.5mm
φの穴を400個/100cm2の密度にあけたプレートを
取り付けた容器に入れて、60秒間自然過後、
水率と水中に流出した固形分濃度を測定して行
なつた。ただし、凝集剤添加量は汚泥水固形分に
対する凝集剤純分の割合(%)で示し、又、水
率は次式により算出した。 水率(%)=
60秒間の水量(ml)/汚泥水採取量(ml)+凝集剤
添加容量(ml) 実施例 1 24.0重量%のNaOC水溶液8.7gと45.0重量%
のNaOH水溶液5.0gの混液を500mlのセパラブル
フラスコに取り、冷水で予め15℃に冷却した。こ
れに、20℃にした5.0重量%のPAM水溶液〔粘度
2900cps(1重量%水溶液の20℃における粘度、
以下同様);平均分子量600〜800万(ブルツクフ
イールド粘度により算出、以下同様)〕100.0gを
撹拌しながら加えた。発熱するので冷却を行ない
反応温度が25℃を越えないようにし、そのまま25
℃で反応を続け60分でホフマン分解反応を終了し
た。 原料すなわち、PAM:NaOC:NaOHのモル
配合比(以下、原料のモル配合比という)は1:
0.4:0.8であり、反応開始時のNaOHの濃度は
0.51モル/であつた。 これを冷却し、同時に20重量%のNa2SO3水溶
液を加えて未反応の遊離塩素を還元し、還元完了
後、8.75重量%のHC水溶液でPHを9.5〜10.0に
中和して最終生成物とした。 生成アミノ基量(ポリビニル硫酸カリウム使用
によるコロイド滴定法で測定したアミド基に対す
る生成されたアミノ基のモル比%、以下同様)は
15.6%であつた。最終生成物は、この後水で純分
0.2%に希釈して凝集実験を行なつた。得られた
結果を第2図に示す。(説明は他の実施例及び比
較例と共に後述する。以下同様。) 実施例 2 24.0重量%のNbOC水溶液7.0gと45.0重量%
のNaOH水溶液4.1gの混液を500mlのセパラブル
フラスコに取り、冷水で予め15℃に冷却した。こ
れに、20℃にした4.0重量%のPAM水溶液(粘度
1600cps;平均分子量250〜300万)100.0gを撹拌
しながら加えた。発熱するので冷却を行ない反応
温度が25℃を越えないようにし、そのまま25℃で
反応を続けた30分でホフマン分解反応を終了し
た。 原料のモル配合比は1:0.4:0.8であり、反応
開始時のNaOHの濃度は0.41モル/であつた。 その後、実施例1に準じて還元中和を行ない最
終生成物とした。 生成アミノ基量は15.2%であつた。又、凝集実
験の結果を第2図に示す。 実施例 3 24.0重量%のNaOC水溶液17.7gと45.0重量
%のNaOH水溶液10.1gの混液を500mlのセパラ
ブルフラスコに取り、以下実施例2に準じて実験
を行なつた。 原料のモル配合比は1:1:2であり、反応開
始時のNaOH濃度は0.93モル/であつた。 又、生成アミノ基量は35.6%であり、凝集実験
の結果を第2図に示す。 実施例 4 24.0重量%のNaOC水溶液8.7gと45.0重量%
のNaOH水溶液5.0gの混液をセパラブルフラス
コに取り、冷水で予め15℃に冷却した。これに15
℃に冷却した5.0重量%のPAM水溶液(粘度
1600cps;平均分子量250〜300万)100.0gを撹拌
しながら加えた。発熱するので冷却を行ない反応
温度が20℃を越えないようにし、そのまま20℃で
反応を続け60分でホフマン分解反応を終了した。 原料のモル配合比は1:0.4:0.8であり、反応
開始時のNaOHの濃度は0.51モル/であつた。 その後、実施例1に準じて還元中和を行ない最
終生成物とした。 生成アミノ基量は16.5%であり、又、凝集実験
の結果を第2図に示す。 比較例 1 24.0重量%のNaOC水溶液8.7gと45.0重量%
のNaOH水溶液5.0gの混液を500mlのセパラブル
フラスコに取り、冷水で予め15℃に冷却した。こ
れに20℃にした5.0重量%のPAM水溶液(粘度
14cps;平均分子量600〜90万)100.0gを撹拌し
ながら加えた。発熱するので冷却を行ない反応温
度が25℃を越えないようにし、そのまま25℃で反
応を続け60分でホフマン反応を終了した。 原料のモル配合比は1:0.4:0.8であり、反応
開始時のNaOHの濃度は0.51モル/であつた。 その後、実施例1に準じて還元中和を行ない最
終生成物とした。 生成アミノ基量は12.0%であり、又、凝集実験
の結果を第2図に示す。 比較例 2 24.0重量%のNaC水溶液17.4gと45.0重量%
のNaOH水溶液20.0gの混液を500mlのセパラブ
ルフラスコに取り、冷水で予め15℃に冷却した。
これに20℃にした5.0重量%のPAM水溶液(粘度
1600cps;平均分子量250〜350万)100.0gを撹拌
しながら加えた。発熱するので冷却を行ない反応
温度が25℃を越えないようにし、そのまま25℃で
反応を続け60分でホフマン反応を終了した。 原料のモル配合比は1:1:4であり、反応開
始時のNaOHの濃度は2.0モル/であつた。 その後実施例1に準じて還元中和を行ない最終
生成物とした。 生成アミノ基量は39.7%であり、又、凝集実験
の結果を第2図に示す。 比較例 3 24.0重量%のNaOC水溶液17.4gと45.0重量
%のNaOH水溶液10.0gの混液を500mlのセパラ
ブルフラスコに取り、冷水で予め15℃に冷却し
た。これに20℃にした5.0重量%のPAM水溶液
(粘度2900cps;分子量600〜800万)100.0gを撹
拌しながら加えた。発熱するので冷却を行ない反
応温度が25℃を越えないようにし、そのまま25℃
で反応を続け60分でホフマン分解反応を終了し
た。 原料のモル配合比は1:1:2であり、反応開
始時のNaOH濃度は1.11モル/であつた。 その後実施例1に準じて還元中和を行ない最終
生成物とした。 生成アミノ基量は34.7%であり、又、凝集実験
の結果を第2図に示す。 比較例 4 24.0重量%のNaOC水溶液43.4gと45.0重量
%のNaOH水溶液24.9gの混液を500mlのセパラ
ブルフラスコに取り、冷水で予め−5℃に冷却維
持した。これに0℃に冷却した10.0重量%の
PAM水溶液(粘度14cps;平均分子量60〜90万)
100.0gを撹拌しながら加えた。発熱するので冷
却を行ない反応温度が10℃を越えないようにし、
そのまま10℃で反応を続け120分でホフマン分解
反応を終了した。 原料のモル配合比は1:1:2であり、反応開
始時のNaOHの濃度は1.85モル/であつた。 その後実施例1に準じて還元中和を行ない最終
生成物とした。 生成アミノ基量は35.6%であり、又、凝集実験
の結果を第2図に示す。 次に、上記実施例及び比較例における凝集実験
の結果につき説明する。すなわち、第2図は、本
発明の実施例及び比較例における凝集剤添加量と
水率ならびに水中の固形分濃度との関係を示
したグラフであり、曲線A,B,C及びDはそれ
ぞれ実施例1,2,3及び4の場合、曲線E,
F,G及びHはそれぞれ比較例1,2,3及び4
の場合を示す。 第2図のグラフから明らかなように、本実施例
により製造した凝集剤によれば、処理汚泥水の
水率が高く、又、水中に流出した固形分濃度も
効率よく減少し、比較例により製造した凝集剤に
比して極めて優れた凝集効果を発揮することがで
きる。 以上説明したように、本発明にしたがつて特定
の条件下でポリアクリルアミドにホフマン反応を
適用することにより、安価で優れた凝集効果を有
しその他前記した数々の利点を有する高分子凝集
剤を提供することができる。
[Table] As is clear from the table, the viscosity decreases significantly when denaturation is carried out with a high alkali concentration, and the viscosity is different between high-molecular PAM and low-molecular PAM. As described above, when the viscosity of PAM is high, the reaction becomes non-uniform, but according to the present invention, it is found that the viscosity can be lowered even by using polymeric PAM. In general, flocculants produced by the Hofmann reaction are strongly alkaline as they are, so it is necessary to neutralize them in consideration of the PH operability of the treated water. Since the reaction is carried out at high concentrations, the amount of acid required for neutralization is small, making it economical. In addition, in the present invention, the reaction can be carried out at a temperature near room temperature, and the necessary Hoffmann reaction can be completed in a short time of about 60 minutes. The amount of amino groups produced during aging reaches a constant value in about 60 minutes. That is, FIG. 1 is a graph showing the relationship between the reaction time and the amount of amino groups in the Hoffman reaction according to the present invention, and it is clear from this graph that the above is supported. A flocculant is generally used after being diluted in order to uniformly contact the sludge particles, but the flocculant produced according to the present invention can be easily diluted, and can be used easily in solution. Because it mainly contains inorganic salts such as sodium chloride, it is resistant to freezing and is advantageous for use in cold regions.Moreover, when sludge coagulates, these inorganic salts flow out into the water and affect sludge treatment. do not have. Next, the present invention and its effects will be explained by examples, but the present invention is not limited by these in any way. The flocculation experiment was conducted using sludge water discharged from a paper mill, that is, paper manufacturing sludge water mainly composed of fine fibers, mixed with excess sludge water generated by the activated sludge treatment method (solid content concentration 2.6% by weight, PH
6.5), dilute and dissolve with water to a pure content of 0.2% (because the flocculant produced by this method contains inorganic substances, when expressing the concentration, it is expressed in terms of PAM, and this is treated as the pure content). After adding a certain amount of flocculant and stirring for 90 seconds at 150 rpm using a jar tester, 1.5 mm was added using a Canadian freeness tester.
Place it in a container fitted with a plate with 400 φ holes per 100 cm 2 and leave it for 60 seconds.
This was done by measuring the water content and the concentration of solids flowing out into the water. However, the amount of flocculant added is expressed as the ratio (%) of the pure flocculant to the solid content of sludge water, and the water ratio was calculated using the following formula. Water rate (%) =
Amount of water for 60 seconds (ml) / Amount of sludge water collected (ml) + Coagulant addition volume (ml) Example 1 8.7 g of 24.0% by weight NaOC aqueous solution and 45.0% by weight
A mixture of 5.0 g of NaOH aqueous solution was placed in a 500 ml separable flask and pre-cooled to 15° C. with cold water. To this, a 5.0% by weight PAM aqueous solution [viscosity
2900cps (viscosity of 1% by weight aqueous solution at 20℃,
100.0 g of average molecular weight 6 to 8 million (calculated based on Bruckfield viscosity, same hereinafter) was added with stirring. Since heat is generated, cool the reaction temperature so that it does not exceed 25°C, and leave it at 25°C.
The reaction was continued at ℃ and the Hofmann decomposition reaction was completed in 60 minutes. The molar blending ratio of raw materials, namely PAM:NaOC:NaOH (hereinafter referred to as the molar blending ratio of raw materials) is 1:
0.4:0.8, and the concentration of NaOH at the start of the reaction is
It was 0.51 mol/. This is cooled, and at the same time, 20% by weight Na 2 SO 3 aqueous solution is added to reduce unreacted free chlorine. After the reduction is completed, the pH is neutralized to 9.5 to 10.0 with 8.75% by weight HC aqueous solution to produce the final product. It became a thing. The amount of amino groups produced (molar ratio % of amino groups produced to amide groups measured by colloid titration using polyvinyl potassium sulfate, hereinafter the same) is
It was 15.6%. The final product is then purified with water.
Aggregation experiments were conducted after diluting to 0.2%. The results obtained are shown in FIG. (Explanation will be given later together with other examples and comparative examples. The same applies hereinafter.) Example 2 7.0 g of 24.0% by weight NbOC aqueous solution and 45.0% by weight
A mixed solution of 4.1 g of NaOH aqueous solution was placed in a 500 ml separable flask and precooled to 15° C. with cold water. To this, a 4.0% by weight PAM aqueous solution (viscosity
100.0 g (1600 cps; average molecular weight 2.5 to 3 million) was added with stirring. Since heat was generated, cooling was performed to prevent the reaction temperature from exceeding 25°C, and the reaction was continued at 25°C for 30 minutes to complete the Hofmann decomposition reaction. The molar blending ratio of the raw materials was 1:0.4:0.8, and the concentration of NaOH at the start of the reaction was 0.41 mol/mol. Thereafter, reductive neutralization was performed according to Example 1 to obtain a final product. The amount of amino groups produced was 15.2%. Moreover, the results of the aggregation experiment are shown in FIG. Example 3 A mixed solution of 17.7 g of a 24.0% by weight NaOC aqueous solution and 10.1 g of a 45.0% by weight NaOH aqueous solution was placed in a 500 ml separable flask, and an experiment was conducted in accordance with Example 2. The molar mixing ratio of the raw materials was 1:1:2, and the NaOH concentration at the start of the reaction was 0.93 mol/mol. The amount of amino groups produced was 35.6%, and the results of the aggregation experiment are shown in Figure 2. Example 4 8.7 g of 24.0 wt% NaOC aqueous solution and 45.0 wt%
A mixed solution of 5.0 g of NaOH aqueous solution was placed in a separable flask and pre-cooled to 15° C. with cold water. 15 for this
A 5.0 wt% aqueous PAM solution (viscosity
100.0 g (1600 cps; average molecular weight 2.5 to 3 million) was added with stirring. Since heat was generated, cooling was performed to prevent the reaction temperature from exceeding 20°C, and the reaction was continued at 20°C to complete the Hofmann decomposition reaction in 60 minutes. The molar mixing ratio of the raw materials was 1:0.4:0.8, and the concentration of NaOH at the start of the reaction was 0.51 mol/mol. Thereafter, reductive neutralization was performed according to Example 1 to obtain a final product. The amount of amino groups produced was 16.5%, and the results of the aggregation experiment are shown in FIG. Comparative Example 1 8.7g of 24.0% by weight NaOC aqueous solution and 45.0% by weight
A mixture of 5.0 g of NaOH aqueous solution was placed in a 500 ml separable flask and pre-cooled to 15° C. with cold water. Add to this a 5.0% by weight PAM aqueous solution (viscosity
100.0 g (14 cps; average molecular weight 600-900,000) was added with stirring. Since heat was generated, cooling was performed to prevent the reaction temperature from exceeding 25°C, and the reaction was continued at 25°C to complete the Hofmann reaction in 60 minutes. The molar mixing ratio of the raw materials was 1:0.4:0.8, and the concentration of NaOH at the start of the reaction was 0.51 mol/mol. Thereafter, reductive neutralization was performed according to Example 1 to obtain a final product. The amount of amino groups produced was 12.0%, and the results of the aggregation experiment are shown in FIG. Comparative Example 2 17.4g of 24.0% by weight NaC aqueous solution and 45.0% by weight
A mixed solution of 20.0 g of NaOH aqueous solution was placed in a 500 ml separable flask and precooled to 15° C. with cold water.
Add to this a 5.0% by weight PAM aqueous solution (viscosity
100.0 g (1600 cps; average molecular weight 2.5-3.5 million) was added with stirring. Since heat was generated, cooling was performed to prevent the reaction temperature from exceeding 25°C, and the reaction was continued at 25°C to complete the Hofmann reaction in 60 minutes. The molar mixing ratio of the raw materials was 1:1:4, and the concentration of NaOH at the start of the reaction was 2.0 mol/mol. Thereafter, reductive neutralization was performed according to Example 1 to obtain a final product. The amount of amino groups produced was 39.7%, and the results of the aggregation experiment are shown in FIG. Comparative Example 3 A mixed solution of 17.4 g of a 24.0 wt% NaOC aqueous solution and 10.0 g of a 45.0 wt% NaOH aqueous solution was placed in a 500 ml separable flask and precooled to 15°C with cold water. To this was added 100.0 g of a 5.0% by weight aqueous PAM solution (viscosity 2900 cps; molecular weight 6 million to 8 million) heated to 20° C. with stirring. Since heat is generated, cool the reaction temperature so that it does not exceed 25℃, and leave it at 25℃.
The reaction continued for 60 minutes, and the Hofmann decomposition reaction was completed. The molar mixing ratio of the raw materials was 1:1:2, and the NaOH concentration at the start of the reaction was 1.11 mol/mol. Thereafter, reductive neutralization was performed according to Example 1 to obtain a final product. The amount of amino groups produced was 34.7%, and the results of the aggregation experiment are shown in FIG. Comparative Example 4 A mixed solution of 43.4 g of a 24.0 wt% NaOC aqueous solution and 24.9 g of a 45.0 wt% NaOH aqueous solution was placed in a 500 ml separable flask and maintained at -5°C in advance with cold water. To this was added 10.0% by weight cooled to 0°C.
PAM aqueous solution (viscosity 14cps; average molecular weight 600,000-900,000)
100.0g was added with stirring. Since heat is generated, cool the reaction temperature so that it does not exceed 10℃.
The reaction was continued at 10°C, and the Hofmann decomposition reaction was completed in 120 minutes. The molar mixing ratio of the raw materials was 1:1:2, and the concentration of NaOH at the start of the reaction was 1.85 mol/mol. Thereafter, reductive neutralization was performed according to Example 1 to obtain a final product. The amount of amino groups produced was 35.6%, and the results of the aggregation experiment are shown in Figure 2. Next, the results of aggregation experiments in the above examples and comparative examples will be explained. That is, FIG. 2 is a graph showing the relationship between the amount of coagulant added, the water percentage, and the solid content concentration in water in Examples and Comparative Examples of the present invention, and curves A, B, C, and D are graphs for the examples and comparative examples of the present invention, respectively. For examples 1, 2, 3 and 4, curve E,
F, G and H are Comparative Examples 1, 2, 3 and 4 respectively
The case is shown below. As is clear from the graph in FIG. 2, the flocculant produced in this example had a high water content in the treated sludge water, and the concentration of solids that flowed into the water was effectively reduced. It can exhibit an extremely superior flocculating effect compared to the manufactured flocculant. As explained above, by applying the Hofmann reaction to polyacrylamide under specific conditions according to the present invention, a polymer flocculant that is inexpensive, has an excellent flocculating effect, and has the numerous other advantages described above can be produced. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるホフマン反応における反
応時間とアミノ基量との関係を示したグラフ、第
2図は本発明の実施例及び比較例における凝集剤
添加量と水率ならびに水中の固形分濃度との
関係を示したグラフである。
Figure 1 is a graph showing the relationship between the reaction time and the amount of amino groups in the Hoffman reaction according to the present invention, and Figure 2 is a graph showing the amount of flocculant added, water percentage, and solid content concentration in water in Examples and Comparative Examples of the present invention. This is a graph showing the relationship between

Claims (1)

【特許請求の範囲】[Claims] 1 水酸化アルカリの存在下に水溶液状でポリア
クリルアミドと次亜ハロゲン酸塩とを反応させる
高分子凝集剤の製造方法において、平均分子量
150万以上のポリアクリルアミドと次亜ハロゲン
酸塩とを0.3〜0.95モル/のアルカリ初期濃度
において15〜30℃の温度で反応させることを特徴
とする高分子凝集剤の製造方法。
1. In a method for producing a polymer flocculant in which polyacrylamide and hypohalite are reacted in an aqueous solution in the presence of an alkali hydroxide, the average molecular weight
1. A method for producing a polymer flocculant, which comprises reacting polyacrylamide of 1.5 million or more with a hypohalite at an initial alkali concentration of 0.3 to 0.95 mol/at a temperature of 15 to 30°C.
JP5055781A 1981-04-06 1981-04-06 Preparation of high polymeric flocculant Granted JPS57165404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5055781A JPS57165404A (en) 1981-04-06 1981-04-06 Preparation of high polymeric flocculant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5055781A JPS57165404A (en) 1981-04-06 1981-04-06 Preparation of high polymeric flocculant

Publications (2)

Publication Number Publication Date
JPS57165404A JPS57165404A (en) 1982-10-12
JPS6148522B2 true JPS6148522B2 (en) 1986-10-24

Family

ID=12862309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5055781A Granted JPS57165404A (en) 1981-04-06 1981-04-06 Preparation of high polymeric flocculant

Country Status (1)

Country Link
JP (1) JPS57165404A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108206A (en) * 1981-12-21 1983-06-28 Konan Kagaku Kogyo Kk Preparation of stable aqueous solution of polyacrylamide modified with cation
US5239014A (en) * 1988-12-28 1993-08-24 Mitsui Toatsu Chemicals, Inc. Cationic acrylamide polymers and the applications of these polymers
US5292821A (en) * 1988-12-28 1994-03-08 Mitsui Toatsu Chemicals, Inc. Catonic acrylamide polymers and the applications of these polymers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52152493A (en) * 1976-06-15 1977-12-17 Masakazu Sente Method for amination of alpha*betaaunsaturated amide polymer
JPS5624405A (en) * 1979-08-03 1981-03-09 Kyoritsu Yuki Kogyo Kenkyusho:Kk Method of pulverizing hofmann reaction product of acrylamide polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52152493A (en) * 1976-06-15 1977-12-17 Masakazu Sente Method for amination of alpha*betaaunsaturated amide polymer
JPS5624405A (en) * 1979-08-03 1981-03-09 Kyoritsu Yuki Kogyo Kenkyusho:Kk Method of pulverizing hofmann reaction product of acrylamide polymer

Also Published As

Publication number Publication date
JPS57165404A (en) 1982-10-12

Similar Documents

Publication Publication Date Title
EP0145686A2 (en) A flocculating agent and a process for its production
KR100303624B1 (en) Quaternized tertiary aminomethylacrylamide polymer microemulsion treatment method, agglomeration of the polymer and suspension solid prepared by the above method
JPS6148522B2 (en)
JP4860201B2 (en) Method and apparatus for treating wastewater containing boron
JP3700892B2 (en) Method for producing flocculant
JPH10500A (en) Sludge treatment method
JPH11216478A (en) Flocculation treatment of water and inorganic flocculant
JP2668711B2 (en) Paper and pulp wastewater coagulation treatment method
JPH1157740A (en) Flocculating treatment of water
JP2005177667A (en) Organic sludge dehydration method
JP2021050131A (en) Basic aqueous aluminum silicate solution
CN105524196B (en) A kind of preparation method of high-performance cationic polyacrylamide flocculant agent
JP2007061749A (en) Method for treating cement-containing waste liquid
JPS60129200A (en) Dehydrating method of sludge
JPS6149322B2 (en)
US4829121A (en) Process for sulfoethylation of high molecular weight acrylamide containing polysoap latex polymers
JP2005125214A (en) Dewatering method of organic sludge
JP2002355682A (en) Treatment method for used paper wastewater
JP2000154013A (en) Production of activated silica
JPH0429440B2 (en)
JP5170563B2 (en) Humic substance removing agent and method for removing humic substance contained in water
JPH05269500A (en) Dehydration of sludge
JPH0380523B2 (en)
SU1204576A1 (en) Method of purifying waste water
JP2005052798A (en) Method of treating fluorine-containing sludge