JPS614847A - Controller for system equipped with prime mover and hydraulic pump - Google Patents

Controller for system equipped with prime mover and hydraulic pump

Info

Publication number
JPS614847A
JPS614847A JP12384284A JP12384284A JPS614847A JP S614847 A JPS614847 A JP S614847A JP 12384284 A JP12384284 A JP 12384284A JP 12384284 A JP12384284 A JP 12384284A JP S614847 A JPS614847 A JP S614847A
Authority
JP
Japan
Prior art keywords
hydraulic pump
prime mover
signal
speed signal
revolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12384284A
Other languages
Japanese (ja)
Other versions
JPH041183B2 (en
Inventor
Eiki Izumi
和泉 鋭機
Yasuo Tanaka
康雄 田中
Katsuaki Ishizuka
石塚 克明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP12384284A priority Critical patent/JPS614847A/en
Publication of JPS614847A publication Critical patent/JPS614847A/en
Publication of JPH041183B2 publication Critical patent/JPH041183B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • F02D41/083Introducing corrections for particular operating conditions for idling taking into account engine load variation, e.g. air-conditionning

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To improve fuel consumption and operation performance by using a prime mover in a low-revolution and low output range when the load applied into a hydraulic pump is small, and by increasing the number of revolutions as the load increases, and then by using the prime mover in a high revolutions and high output range. CONSTITUTION:If the load of a hydraulic pump 3 is small, when the instructed revolution-speed signal Nso for a relatively low revolution speed is instructed by a fuel throttle lever 5, the output revolution-speed signal N of a prima mover 1 and the instructed revolution-speed signal Nso are early equal. Therefore, Nso is set as an aimed revolution-speed signal No, and the fuel injection amount of a fuel injection pump 2 and the discharge amount of the hydraulic pump 3 are controlled. When the load of the hydraulic pump 3 increases in this state and the output revolution-speed signal N reduces, the revolution-speed deviation DELTAN increases, and when DELTAN exceeds a set value (a),an increased revolution-speed signal Nn is generated from an increased revolution-speed generator 12. Then, the signal Nn is added 13 into the signal Nso, and the aimed revolution-speed signal No is corrected.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は原動機の目標回転数信号と出力回転数信号との
回転数偏差信号に基づいて原動機の燃料噴射量と油圧ポ
ンプの吐出量とを制御する原動機と油圧ポンプとを含む
系の制御装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention controls the fuel injection amount of a prime mover and the discharge amount of a hydraulic pump based on a rotation speed deviation signal between a target rotation speed signal of the prime mover and an output rotation speed signal. The present invention relates to a control device for a system including a prime mover and a hydraulic pump.

〔発明の背景〕[Background of the invention]

第6図は特開昭57−65822号公報に詳細に開示さ
れるような従来の原動機と油圧ポンプを含む系の制御装
置を示すブロック図である。
FIG. 6 is a block diagram showing a conventional control device for a system including a prime mover and a hydraulic pump as disclosed in detail in Japanese Patent Application Laid-Open No. 57-65822.

図において、1はディーゼルエンジン等の原動機を示し
、2は電気的に原動機へ燃料噴射量を制御する、所謂電
子式燃料噴射ポンプである。3は原動Ja1によって駆
動される可変容量形の油圧ポンプ、4は油圧ポンプ3の
斜板(もしくは斜軸)の傾転角を電気信号によって制御
する、所謂電子式ポンプレギュレータである。原動機l
の指令回転数信号N5o(この場合は目標回転数信号N
In the figure, 1 indicates a prime mover such as a diesel engine, and 2 is a so-called electronic fuel injection pump that electrically controls the amount of fuel injected into the prime mover. 3 is a variable displacement hydraulic pump driven by the prime mover Ja1, and 4 is a so-called electronic pump regulator that controls the tilt angle of the swash plate (or oblique shaft) of the hydraulic pump 3 by an electric signal. prime mover l
command rotation speed signal N5o (in this case, target rotation speed signal N
.

となる)は燃料スロットルレバー5により運転者によっ
て設定され、−力源動機1の出方回転数信号Nは回転検
出器6により検出出力されて、加算器7は目標回転数信
号Noと出力回転数Nとの回転数偏差信号ΔNを演算出
力する。燃料噴射ポンプ2のラック(図示せず)の変位
がラック位置検出器(図示せず)によって検出されラッ
ク位置信号りが出力される。加算器8はラック目標位置
信号として与えられた回転数偏差信号ΔNとラック位置
信号りとの偏差信号Loに基いてラック位置を制御し、
燃料噴射ポンプ2の燃料噴射量が決定される。
) is set by the driver using the fuel throttle lever 5, the output rotation speed signal N of the power source motor 1 is detected and output by the rotation detector 6, and the adder 7 outputs the target rotation speed signal No and the output rotation speed. A rotational speed deviation signal ΔN with respect to the number N is calculated and output. Displacement of a rack (not shown) of the fuel injection pump 2 is detected by a rack position detector (not shown), and a rack position signal is output. The adder 8 controls the rack position based on the deviation signal Lo between the rotation speed deviation signal ΔN given as the rack target position signal and the rack position signal,
The fuel injection amount of the fuel injection pump 2 is determined.

また、9はポンプ制御関数発生器で、油圧ポンプ3の吐
出管10に設けられた圧力検出illがらの圧力信号P
と加算器7よりの回転数偏差信号ΔNを入力し、油圧ポ
ンプ3のレギュレータ4に吐出量を制御するためのポン
プ傾転量信号Xqを出力する。
Further, 9 is a pump control function generator, which generates a pressure signal P from a pressure detection illumination provided in the discharge pipe 10 of the hydraulic pump 3.
and the rotational speed deviation signal ΔN from the adder 7, and output a pump tilting amount signal Xq for controlling the discharge amount to the regulator 4 of the hydraulic pump 3.

回転数偏差信号ΔNは油圧ポンプ3の負荷が大きくなっ
て、出力回転数Nが低下して行くと大きくなり、逆に油
圧ポンプ3の負荷が軽くなって、出力回転数Nが上昇す
ると小さくなる。そこでΔNが大きくなるに伴って電子
式燃料噴射ポンプ2はラック位置を燃料噴射量が増大す
る方向に移動して原動機lの出力を増加させ、出力回転
数Nの低下を抑制し、またΔNが小さくなると燃料噴射
量を減少させて原動機1の出方回転数Nが過回転になる
のを防止している。
The rotational speed deviation signal ΔN increases as the load on the hydraulic pump 3 increases and the output rotational speed N decreases, and conversely decreases as the load on the hydraulic pump 3 decreases and the output rotational speed N increases. . Therefore, as ΔN increases, the electronic fuel injection pump 2 moves the rack position in the direction of increasing the fuel injection amount to increase the output of the prime mover 1, suppressing the decrease in the output rotation speed N, and increasing ΔN. When it becomes smaller, the fuel injection amount is reduced to prevent the output rotational speed N of the prime mover 1 from becoming excessive.

油圧ポンプ3の入力トルクは斜板傾転量と吐出圧力との
積に比例する。したがって、油圧ポンプ3の負荷が増大
(吐出圧力Pが上昇)し、原動機1の出力回転数信号N
が低下し1回転数側差信号ΔNが増大すると、ポンプ制
御関数発生器9はΔNの増加に伴ってポンプ傾転量信号
Xqと吐出圧力信号Pとの積を小さくし、油圧ポンプ3
の入力トルクが原動機1のスロットレバー5により設定
された原動機1の出方トルク線に沿って減少するように
傾転量信号Xqを出力し、油圧ポンプ3の吐出量を減少
する。
The input torque of the hydraulic pump 3 is proportional to the product of the swash plate tilting amount and the discharge pressure. Therefore, the load on the hydraulic pump 3 increases (the discharge pressure P increases), and the output rotation speed signal N of the prime mover 1 increases.
decreases and the one-rotation speed side difference signal ΔN increases, the pump control function generator 9 decreases the product of the pump tilting amount signal Xq and the discharge pressure signal P as ΔN increases, and the hydraulic pump 3
The displacement amount signal Xq is outputted so that the input torque of the engine 1 decreases along the output torque line of the engine 1 set by the slot lever 5 of the engine 1, and the discharge amount of the hydraulic pump 3 is decreased.

上記のように構成された従来の原動機と油圧ポンプを含
む系の制御l装麗では、原動機1の出力は燃料スロット
ルレバー5によって指令された目標回転数信号No(=
Nso)によって規制を受けるという欠点がある。すな
わち、スロットルレバー5によって原動機lの最大目標
回転数を指令すると、油圧ポンプ3の負荷が小さいとき
にも原動機1が最高回転数で駆動されて燃料消費率が悪
化し、また最大目標回転数に比して比較的低い目標回転
数をスロットルレバー5で指令すると、油圧ポンプ3の
負荷が大きくなったときに原動機の出力を高い目標回転
数時の最大出方まで上げることが出来ず、大きな負荷を
駆動出来ない。したがって、運転者は油圧ポンプ3の負
荷に応じて燃料スロットルレバー5を常に操作しないと
、上記問題に対処出来ず、この操作は非常にわずられし
いのみならず熟練を要することになり、また人間の操作
感覚では負荷の変動に完全に追従することは困難であっ
た。
In the control system of a conventional system including a prime mover and a hydraulic pump configured as described above, the output of the prime mover 1 is determined by the target rotational speed signal No. (=
The disadvantage is that it is regulated by the Nso. That is, when the maximum target rotation speed of the prime mover 1 is commanded by the throttle lever 5, the prime mover 1 is driven at the maximum rotation speed even when the load on the hydraulic pump 3 is small, resulting in a worsening of the fuel consumption rate. If a relatively low target rotation speed is commanded with the throttle lever 5, when the load on the hydraulic pump 3 becomes large, the output of the prime mover cannot be increased to the maximum output at the high target rotation speed, and the load becomes large. cannot be driven. Therefore, the driver must constantly operate the fuel throttle lever 5 according to the load on the hydraulic pump 3 in order to deal with the above problem, and this operation is not only very troublesome but also requires skill. It has been difficult for humans to completely follow changes in load using their sense of operation.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来の制御装置の欠点に鑑み成されたもの
で、油圧ポンプに加わる負荷が小さいときには原動機を
比較的回転が低く出力の比較的小さい領域で使用し、負
荷が大きくなると自動的に回転数を上昇させて、yX動
機を回転数が高く出力の大きい領域で使用し、#!!料
消費率と操作性の向上を図ることを目的とする。
The present invention has been made in view of the above-mentioned drawbacks of the conventional control device, and when the load applied to the hydraulic pump is small, the prime mover is used in a region with relatively low rotation and relatively low output, and when the load becomes large, the motor is automatically activated. Increase the rotation speed, use the yX motive in a region where the rotation speed is high and the output is large, and #! ! The purpose is to improve the cost consumption rate and operability.

〔発明の概要〕[Summary of the invention]

この目的を達成するため本発明は、目標回転数信号と出
力回転数信号との差である回転数偏差信号の増減に対応
して設定された増加回転信号を燃料スロットルレバーの
指令回転数信号に加算して目標回転数信号とし、この目
標回転数信号に基いて燃料噴射量と油圧ポンプの吐出量
を制御することにより、油圧ポンプの負荷が軽いときに
は、スロットルレバーで指令された比較的低い目標回転
数信号に基いて原動機の出力回転数を制御し、油圧ポン
プの負荷が増加したときには、回転数偏差信号の増大に
応じて上昇した高い目標回転数償号に基いて原動機の出
力回転数を制御するものである。
To achieve this object, the present invention uses an increased rotation signal set in response to an increase or decrease in a rotation speed deviation signal, which is the difference between a target rotation speed signal and an output rotation speed signal, as a command rotation speed signal of a fuel throttle lever. By adding up the target rotation speed signal and controlling the fuel injection amount and hydraulic pump discharge amount based on this target rotation speed signal, when the load on the hydraulic pump is light, the relatively low target commanded by the throttle lever can be achieved. The output rotation speed of the prime mover is controlled based on the rotation speed signal, and when the load on the hydraulic pump increases, the output rotation speed of the prime mover is controlled based on the high target rotation speed compensation that increases in response to the increase in the rotation speed deviation signal. It is something to control.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を第1図ないし第3図を参照して
説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第1図は本発明の一実施例に係る原動機と油圧ポンプを
含む系の制御ブロック図を示すもので、第6図と同一部
分には同符号を付している。
FIG. 1 shows a control block diagram of a system including a prime mover and a hydraulic pump according to an embodiment of the present invention, and the same parts as in FIG. 6 are given the same reference numerals.

12は増加回転数関数発生器で加算器7より回転数偏差
信号ΔNを入力し、増加回転数信号Nnを発生する。1
3は燃料スロットルレバー5と加算器7との間に設けら
れた加算器で、燃料スロットルレバー5の指令回転数信
号N s oに増加回転数信号Nnを加算して目標回転
数信号NOとし、このNoを加算器7に出力する。
Reference numeral 12 denotes an increased rotational speed function generator which inputs the rotational speed deviation signal ΔN from the adder 7 and generates an increased rotational speed signal Nn. 1
3 is an adder provided between the fuel throttle lever 5 and the adder 7, which adds an increased rotational speed signal Nn to the command rotational speed signal Nso of the fuel throttle lever 5 to obtain a target rotational speed signal NO; This No. is output to the adder 7.

増加回転数関数発生器12のΔN−Nnの関数関係の例
を第2図および第3図に示す。
Examples of the functional relationship of ΔN-Nn of the increased rotational speed function generator 12 are shown in FIGS. 2 and 3.

第2図は縦軸に増加回転数信号Nn、横軸に回転数偏差
信号ΔNを取っており、ΔNが設定値aを越えるとNn
がOからN n m a xまでステップ状に増加する
ものである。
In Figure 2, the vertical axis shows the increased rotational speed signal Nn, and the horizontal axis shows the rotational speed deviation signal ΔN.If ΔN exceeds the set value a, Nn
increases in a stepwise manner from O to Nnmax.

第3図は縦軸、横軸は第2図と同じであり、ΔNがa点
を越えるとΔNの大きさに比例してNnが増加し、b点
でN n = N n m a xとなるものである。
In Figure 3, the vertical axis and horizontal axis are the same as in Figure 2. When ΔN exceeds point a, Nn increases in proportion to the size of ΔN, and at point b, N n = N n m a x. It is what it is.

作用について説明する。燃料スロットルレバー5によっ
て比較的低い回転数の指令回転数信号N  −soを指
令すると、油圧ポンプ3の負荷が小さいときには、原動
機1の出力回転数信号Nと指令回転数信号N s oと
は接近した仏であるので、NsOが目標回転数信号NO
となって燃料噴射ポンプ2の燃料噴射量および油圧ポン
プ3の吐出量が制御される。
The effect will be explained. When the fuel throttle lever 5 commands a relatively low rotational speed command signal N-so, when the load on the hydraulic pump 3 is small, the output rotational speed signal N of the prime mover 1 and the command rotational speed signal Nso become close to each other. Therefore, NsO is the target rotation speed signal NO.
As a result, the fuel injection amount of the fuel injection pump 2 and the discharge amount of the hydraulic pump 3 are controlled.

この状態から油圧ポンプ3の負荷が大きくなり、原動機
1の出力回転数信号Nが低下すると、回転数偏差信号Δ
Nが大きくなり、ΔNが設定値aを越えると増加回転数
発生器12より増加回転数信号Nnが発生し、加算器1
3で指令回転数信号NsoにNnが加算されて目標回転
数信号NOとなる。したがって、燃料噴射ポンプ2の燃
料噴射量および油圧ポンプの吐出量はスロットルレバー
5によって指令された指令回転数信号NsoにNnを加
算した高い目標回転数信号NOにより制御されることに
なる。
From this state, when the load on the hydraulic pump 3 increases and the output rotational speed signal N of the prime mover 1 decreases, the rotational speed deviation signal Δ
When N increases and ΔN exceeds the set value a, an increased rotational speed signal Nn is generated from the increased rotational speed generator 12, and the adder 1
In step 3, Nn is added to the command rotation speed signal Nso to become the target rotation speed signal NO. Therefore, the fuel injection amount of the fuel injection pump 2 and the discharge amount of the hydraulic pump are controlled by a high target rotation speed signal NO obtained by adding Nn to the command rotation speed signal Nso commanded by the throttle lever 5.

以上の実施例によれば次の効果を奏する。According to the above embodiment, the following effects are achieved.

(1)油圧ポンプ3の負荷が小さいときには、原動機l
を回転数が低く出力の小さい領域で使用し、燃料消費率
を向上し、且つ原動機の発生音を低くして運転できる。
(1) When the load on the hydraulic pump 3 is small, the prime mover l
The engine can be used at low rotational speeds and low output to improve fuel consumption and reduce the noise generated by the prime mover.

(2)油圧ポンプ3の負荷が大きくなると自動的に原動
機1の目標回転数が上昇し、原動機lを回転数が高く出
力の大きい領域で運転することができる。
(2) When the load on the hydraulic pump 3 increases, the target rotational speed of the prime mover 1 automatically increases, and the prime mover 1 can be operated in a region with a high rotational speed and a large output.

(3)油圧ボンゾ3の負荷の変化に応じて原動機1の目
標回転数を自動的に追従させ得るので、運転者の操作の
わずられしさを省き操作性が向上する。
(3) Since the target rotation speed of the prime mover 1 can be automatically made to follow a change in the load on the hydraulic bonzo 3, the driver's operation becomes less cumbersome and the operability is improved.

第4図および第5図は第1図の増加回転数発生器12の
ΔN−Nn関数にヒステリシスを持たせた例を示すもの
である。各図において第2図および第3図と同一部分に
は同符号を付しである。
4 and 5 show an example in which the ΔN-Nn function of the increased rotational speed generator 12 shown in FIG. 1 is provided with hysteresis. In each figure, the same parts as in FIGS. 2 and 3 are given the same reference numerals.

第4図は油圧ポンプ3の負荷が次第に増大して回転数偏
差信号ΔNが設定値&1を越えるとNn= N n m
 a xを出力し、この状態から負荷が減少してΔNが
小さくなって行くときにはΔNが設定値ax’(但しa
 2 < a x )に至るとNn=0となる(この経
路を矢印で示す)ようなヒステリシスの関数を示す。
Figure 4 shows that when the load on the hydraulic pump 3 gradually increases and the rotation speed deviation signal ΔN exceeds the set value &1, Nn = N n m
When the load decreases from this state and ΔN becomes smaller, ΔN becomes the set value a
2 < a x ), Nn=0 (this path is indicated by an arrow).

第2図および第3図の例ではΔNに対してNn、が一義
的に決まる値であるのでΔNの僅かの変化でNnの値が
頻繁に増減をくり返すため、運転者に不快感を与えるが
、上記のようにヒステリシスを持った関数で制御すれば
a 2 < N n < a 1の範囲では目標回転数
Noに変化を生じないので運転者の不快感をなくすこと
が出来る。
In the examples shown in Figures 2 and 3, Nn is a uniquely determined value for ΔN, so a slight change in ΔN will cause the value of Nn to increase or decrease frequently, causing discomfort to the driver. However, if the control is performed using a function with hysteresis as described above, there will be no change in the target rotational speed No within the range of a 2 <N n < a 1 , thereby eliminating the driver's discomfort.

第5図は関数にヒステリシスを持たせた他の例を示すも
ので、ΔNが増加して行きalを越えるとΔNに比例し
てNnが増加し、ΔNがbコでNn = N n rn
 a xとなり、それ以上のΔNでは一定値となる。こ
の状態からΔNが減少して行くと、ΔNがbz (bz
<bz)まではNn=NnmaXを保持し+ bz<Δ
N < a zではΔNに比例したNnの値で減少し、
ΔN < a zではNn=0となる。また、ΔNに比
例してNnが増加して行き、ΔNがblに至る途中のC
z点でN n = N n cから逆にΔNが減少した
場合には、C2くΔN<’C1間ではN n = N 
n eを保持し、a=(ΔN<C2間では予め設定され
た設定線(a2bz)のNnの値を出力する。
Figure 5 shows another example where the function has hysteresis. When ΔN increases and exceeds al, Nn increases in proportion to ΔN, and when ΔN is b, Nn = N n rn
ax, and becomes a constant value for ΔN beyond that. As ΔN decreases from this state, ΔN becomes bz (bz
<bz), hold Nn=NnmaX until + bz<Δ
When N < a z, it decreases with the value of Nn proportional to ΔN,
When ΔN < az, Nn=0. Also, Nn increases in proportion to ΔN, and C
Conversely, if ΔN decreases from N n = N n c at point z, then N n = N between C2 and ΔN <'C1.
n e is held, and when a=(ΔN<C2), the value of Nn of a preset setting line (a2bz) is output.

上記のようなヒステリシスを関数に持たせれば、負荷の
大きさに応じて原動機1の目標回転数を連続的に設定す
ることが出来ると共に、第4図の例と同様に油圧ポンプ
3の負荷の変動に伴う原動機1の頻繁な回転数の増減を
抑制し、運転者の不快感を回避することが出来る。
If the function has hysteresis as described above, it is possible to continuously set the target rotation speed of the prime mover 1 according to the magnitude of the load, and also to adjust the load of the hydraulic pump 3 as in the example shown in FIG. Frequent increases and decreases in the rotational speed of the prime mover 1 due to fluctuations can be suppressed, and driver discomfort can be avoided.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明によれば、原動機と油圧ポンプとを
含む系の制御装置において、油圧ポンプの負荷が小さい
ときには原動機を低出力領域で制御し、油圧ポユノプの
負荷の大きいときには原動機を出力の大きい領域で制御
する原動機の回転数制御を自動的に行うことが出来るの
で、燃料消費率を向上させ得ると共に運転時の操作性を
良好にすることが出来る。
According to the present invention described above, in a control device for a system including a prime mover and a hydraulic pump, when the load on the hydraulic pump is small, the prime mover is controlled in a low output range, and when the load on the hydraulic pump is large, the prime mover is controlled in a high output range. Since the rotational speed of the prime mover can be automatically controlled in the range, the fuel consumption rate can be improved and the operability during operation can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る原動機と油圧ポンプを含む系の制
御ブロック図、第2図は第1図の増加回転数関数発生器
に設定した関数をステップ状にした例を示す図、第3図
は増加回転数関数発生器に設定した関数を比例関係にし
た例を示す図、第4図は増加回転数関数発生器に設定し
た関数をステップ状で且つヒステリシスを持たせた例を
示す図、第S図は増加回転数発生器に設定した関数を比
例関係で且つヒステリシスを持たせた例を示す図、第6
図は従来の原動機と油圧ポンプを含む系の制御ブロック
図である。 ■・・・・・・原動機、2・・・・・・燃料噴射ポンプ
、3・・・・・・油圧ポンプ、4・・・・・・レギュレ
ータ、5・・・・・・燃料スロットルレバー、6・・・
・・・回転検出器、7.8゜13・・・・・・加算器、
11・・・・・・ポンプ制御関数発生器、12・・・・
・・増加回転数関数発生器、N・・・・・出力回転数信
号、No・・・・・目標回転数信号、Nn・・・・・・
増加回転数信号、Nso・・・・・・指令回転数信号、
ΔN・・・・・回転数偏差イ目号。 兜2区 兜3図 回転数[矛イ言号 氾4図 鬼5図
Fig. 1 is a control block diagram of a system including a prime mover and a hydraulic pump according to the present invention, Fig. 2 is a diagram showing an example in which the function set in the increased rotation speed function generator of Fig. 1 is made into a step shape, and Fig. 3 The figure shows an example in which the function set in the increasing rotation speed function generator is set in a proportional relationship. Figure 4 is a diagram showing an example in which the function set in the increasing rotation speed function generator is set in a step shape and with hysteresis. , Figure S is a diagram showing an example in which the function set for the increased rotational speed generator is in a proportional relationship and has hysteresis.
The figure is a control block diagram of a conventional system including a prime mover and a hydraulic pump. ■... Prime mover, 2... Fuel injection pump, 3... Hydraulic pump, 4... Regulator, 5... Fuel throttle lever, 6...
...Rotation detector, 7.8°13...Adder,
11... Pump control function generator, 12...
...Increase rotation speed function generator, N...Output rotation speed signal, No.....Target rotation speed signal, Nn...
Increased rotation speed signal, Nso... command rotation speed signal,
ΔN・・・Rotation speed deviation number. Kabuto 2 Ward Kabuto 3 Diagram Rotation Number

Claims (3)

【特許請求の範囲】[Claims] (1)原動機と原動機によつて駆動される油圧ポンプと
を含み、且つ原動機の目標回転数信号と出力回転数信号
との差である回転数偏作信号をもとめ、この回転数偏作
信号に基いて原動機の燃料噴射量を制御すると共に油圧
ポンプの吐出量を制御する系において、回転数偏差信号
の増減に対応して設定された増加回転数信号を燃料スロ
ットルレバーの指令回転数信号に加算して目標回転数信
号とすることを特徴とする原動機と油圧ポンプを含む系
の制御装置。
(1) Obtain a rotational speed bias signal that includes a prime mover and a hydraulic pump driven by the prime mover and is the difference between the target rotational speed signal and the output rotational speed signal of the prime mover, and use this rotational speed bias signal as In the system that controls the fuel injection amount of the prime mover and the discharge amount of the hydraulic pump based on the engine speed, an increased rotation speed signal set in response to an increase or decrease in the rotation speed deviation signal is added to the command rotation speed signal of the fuel throttle lever. A control device for a system including a prime mover and a hydraulic pump, characterized in that the target rotation speed signal is set as a target rotation speed signal.
(2)増加回転数信号は、回転数偏差の第1の設定値か
ら増加し回転数偏差の第2の設定値まで減少し、且つ第
1の設定値を第2の設定値より大きいヒステリシスを持
つ関数関係にあることを特徴とする特許請求の範囲第(
1)項記載の原動機と油圧ポンプを含む系の制御装置。
(2) The increasing rotational speed signal increases from the first setting value of the rotational speed deviation and decreases to the second setting value of the rotational speed deviation, and the first setting value has a greater hysteresis than the second setting value. Claim No. 1 characterized in that the functional relationship is
A control device for a system including the prime mover and hydraulic pump described in item 1).
(3)増加回転数信号は、回転数偏差に比例して増減す
ることを特徴とする特許請求の範囲第(2)項記載の原
動機と油圧ポンプを含む系の制御装置。
(3) A control device for a system including a prime mover and a hydraulic pump according to claim (2), wherein the increased rotational speed signal increases or decreases in proportion to the rotational speed deviation.
JP12384284A 1984-06-18 1984-06-18 Controller for system equipped with prime mover and hydraulic pump Granted JPS614847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12384284A JPS614847A (en) 1984-06-18 1984-06-18 Controller for system equipped with prime mover and hydraulic pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12384284A JPS614847A (en) 1984-06-18 1984-06-18 Controller for system equipped with prime mover and hydraulic pump

Publications (2)

Publication Number Publication Date
JPS614847A true JPS614847A (en) 1986-01-10
JPH041183B2 JPH041183B2 (en) 1992-01-10

Family

ID=14870736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12384284A Granted JPS614847A (en) 1984-06-18 1984-06-18 Controller for system equipped with prime mover and hydraulic pump

Country Status (1)

Country Link
JP (1) JPS614847A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073960A (en) * 1998-09-03 2000-03-07 Hitachi Constr Mach Co Ltd Torque control device for hydraulic pump for hydraulic construction machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3971348B2 (en) * 2003-06-25 2007-09-05 日立建機株式会社 Engine control device for construction machinery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073960A (en) * 1998-09-03 2000-03-07 Hitachi Constr Mach Co Ltd Torque control device for hydraulic pump for hydraulic construction machine

Also Published As

Publication number Publication date
JPH041183B2 (en) 1992-01-10

Similar Documents

Publication Publication Date Title
US4773369A (en) Method of controlling an output of an internal combustion engine and/or a variable displacement hydraulic pump driven by the engine
US5951258A (en) Torque limiting control system for a hydraulic work machine
JP2002188177A (en) Controller for construction equipment
JPH0545785B2 (en)
KR20100072473A (en) Hydraulic pump control apparatus for contruction machinery
JP2567193B2 (en) Hydraulic pump discharge flow control device
JPS63154874A (en) Contorlle for variable displacement hydraulic pump
JP2678355B2 (en) Control equipment for construction machinery
JP2000154803A (en) Engine lag-down prevention device for hydraulic construction machine
JPS614847A (en) Controller for system equipped with prime mover and hydraulic pump
US4727836A (en) Fuel injection apparatus for internal combustion engine
JPS6318011B2 (en)
JPH07127605A (en) Driving control device for oil hydraulic construction machine
JPH039293B2 (en)
JPS6228318B2 (en)
JPH1089110A (en) Control mechanism and control method of working machine
JP2566750B2 (en) Hydraulic pump drive engine control method
JPS60195339A (en) Hydraulic pump driving system controller
JP2566751B2 (en) Output control method of engine driven variable displacement hydraulic pump
JP2579194B2 (en) Control device for variable discharge pump
JP2003184604A (en) Hydraulic driving device for working machine and its method
JPS59120732A (en) Electronically controlled governor for diesel engine
JP2001193702A (en) Hydraulic driving device for construction equipment
JPH0681802A (en) Load sensing oil pressure circuit
JP2816674B2 (en) Hydraulic pump controller