JPS6228318B2 - - Google Patents

Info

Publication number
JPS6228318B2
JPS6228318B2 JP55062309A JP6230980A JPS6228318B2 JP S6228318 B2 JPS6228318 B2 JP S6228318B2 JP 55062309 A JP55062309 A JP 55062309A JP 6230980 A JP6230980 A JP 6230980A JP S6228318 B2 JPS6228318 B2 JP S6228318B2
Authority
JP
Japan
Prior art keywords
rotation speed
pump
combustion engine
internal combustion
speed deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55062309A
Other languages
Japanese (ja)
Other versions
JPS56159580A (en
Inventor
Yukio Aoyanagi
Eiki Izumi
Hiroshi Watanabe
Kazuo Pponma
Yoshio Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP6230980A priority Critical patent/JPS56159580A/en
Priority to GB8116765A priority patent/GB2072890B/en
Priority to DE803049938A priority patent/DE3049938A1/en
Priority to US06/276,367 priority patent/US4395199A/en
Priority to PCT/JP1980/000247 priority patent/WO1981001031A1/en
Priority to EP80901973A priority patent/EP0037838B1/en
Priority to SE8103708A priority patent/SE447594B/en
Publication of JPS56159580A publication Critical patent/JPS56159580A/en
Publication of JPS6228318B2 publication Critical patent/JPS6228318B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 この発明は内燃機関と可変容量形の液圧ポンプ
とを含む系の制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of controlling a system including an internal combustion engine and a variable displacement hydraulic pump.

従来、内燃機関と液圧ポンプとを含む系の制御
方法としては、たとえば特開昭50−4601号公報に
示されるように、内燃機関の出力回転数の低下を
検出して、液圧的手段を用いて液圧ポンプの傾転
角に制限を加える全馬力制御方法があるが、この
場合には油温の変動の影響を受けやすく、また内
燃機関の目標回転数の変化への対応が困難であ
り、応答性が悪く、系全体の動的安定性を良好に
保つことがむずかしく、さらに液圧ポンプの最大
傾転角を外部から制御するときにはレギユレータ
の構造が複雑になる。
Conventionally, as a control method for a system including an internal combustion engine and a hydraulic pump, for example, as shown in Japanese Patent Laid-Open No. 50-4601, a decrease in the output rotation speed of the internal combustion engine is detected and a hydraulic pump is used. There is a total horsepower control method that limits the tilting angle of the hydraulic pump using Therefore, the response is poor, it is difficult to maintain good dynamic stability of the entire system, and the structure of the regulator becomes complicated when the maximum tilting angle of the hydraulic pump is controlled from the outside.

この発明は上述の問題点を解決するためになさ
れたもので、応答性、動的安定性が良好で、かつ
内燃機関が停止することなく全馬力制御をするこ
とができる内燃機関と液圧ポンプとを含む系の制
御方法を提供することを目的とする。
This invention was made to solve the above-mentioned problems, and includes an internal combustion engine and a hydraulic pump that have good responsiveness and dynamic stability, and that can control full horsepower without stopping the internal combustion engine. The purpose of the present invention is to provide a method for controlling a system including the following.

この目的を達成するため、この発明においては
目標回転数と出力回転数との差すなわち回転数偏
差を求め、この回転数偏差が設定値より大きいと
き、この回転数偏差と増減が逆に対応するポンプ
制御係数を求め、このポンプ制御係数と操作レバ
ー操作量とを乗算して傾転角目標値を求めて、こ
の傾転角目標値により液圧ポンプの傾転角を制御
するとともに、上記設定値を上記目標回転数によ
り変化させる。
In order to achieve this objective, in this invention, the difference between the target rotation speed and the output rotation speed, that is, the rotation speed deviation, is determined, and when this rotation speed deviation is larger than a set value, the rotation speed deviation and increase/decrease correspond inversely to each other. Determine the pump control coefficient, multiply this pump control coefficient by the operating amount of the operating lever to determine the tilt angle target value, control the tilt angle of the hydraulic pump using this tilt angle target value, and adjust the above settings. The value is changed depending on the target rotation speed.

第1図はこの発明に係る制御方法を実施するた
めの装置を示す図である。図において1は内燃機
関、2,3は内燃機関1によつて駆動される可変
容量形の液圧ポンプ、4,5はポンプ2,3の斜
板もしくは斜軸2a,3aの傾転角を制御するレ
ギユレータ、6は内燃機関1の燃料噴射ポンプ
で、燃料噴射ポンプ6はこれに設けたラツクを操
作することにより所望量の燃料を内燃機関1に供
給する。7は内燃機関1のスタータスイツチ、8
は内燃機関1のアクセルレバー、9,10はそれ
ぞれポンプ2,3の傾転角の最大値を外部から制
御するための操作レバー、11は内燃機関1の出
力回転数を検出する検出器、13は目標回転数N
r、操作レバー9,10の操作量L1,L2、出力回
転数Nから傾転角目標値Xi1,Xi2およびラツク
変位目標値Mを求めて、レギユレータ4,5およ
び燃料噴射ポンプ6を制御する制御装置である。
FIG. 1 is a diagram showing an apparatus for implementing the control method according to the present invention. In the figure, 1 is an internal combustion engine, 2 and 3 are variable displacement hydraulic pumps driven by the internal combustion engine 1, and 4 and 5 are the tilt angles of the swash plates or slant shafts 2a and 3a of the pumps 2 and 3. The regulator 6 to be controlled is a fuel injection pump for the internal combustion engine 1, and the fuel injection pump 6 supplies a desired amount of fuel to the internal combustion engine 1 by operating a rack provided thereon. 7 is a starter switch for internal combustion engine 1, 8
1 is an accelerator lever of the internal combustion engine 1; 9 and 10 are operating levers for externally controlling the maximum tilt angles of the pumps 2 and 3; 11 is a detector for detecting the output rotation speed of the internal combustion engine 1; 13 is the target rotation speed N
r , the operating amounts L 1 , L 2 of the operating levers 9, 10, and the output rotational speed N, the tilt angle target values X i1 , X i2 and the easy displacement target value M are determined, and the regulators 4, 5 and the fuel injection pump 6 are determined. This is a control device that controls the

第2図は燃料噴射ポンプ6を示す図である。図
において6aは燃料噴射ポンプ本体、14は燃料
噴射ポンプ本体6aの燃料噴射量を制御するラツ
ク、12はラツク14の変位を検出する検出器、
20は波形整形器、15はラツク14を駆動する
可動線輪、16はヨーク、17は永久磁石、18
はラツク14の戻しばね、19は電流増幅器、4
0は加算器で、加算器40でラツク変位目標値M
とラツク変位Yとの差ΔYを求め、この差ΔYで
電流増幅器19を介して可動線輪15を制御す
る。このため、ラツク14の変位はラツク変位目
標値Mに応じた値となる。
FIG. 2 is a diagram showing the fuel injection pump 6. As shown in FIG. In the figure, 6a is a fuel injection pump main body, 14 is a rack that controls the fuel injection amount of the fuel injection pump main body 6a, 12 is a detector that detects the displacement of the rack 14,
20 is a waveform shaper, 15 is a movable wire that drives the rack 14, 16 is a yoke, 17 is a permanent magnet, 18
is the return spring of the rack 14, 19 is the current amplifier, 4
0 is an adder, and the adder 40 calculates the easy displacement target value M.
The difference ΔY between the rack displacement Y and the rack displacement Y is determined, and the movable wire ring 15 is controlled via the current amplifier 19 using this difference ΔY. Therefore, the displacement of the rack 14 has a value corresponding to the rack displacement target value M.

第3図はレギユレータ4を示す図である。図に
おいて21は油圧シリンダ21a,21bからな
る油圧シリンダ装置で、油圧シリンダ装置21に
より斜板もしくは斜軸2aが駆動される。26は
パイロツト油圧源、27はタンク、22〜25は
油圧シリンダ21a,21bを制御する2位置2
方電磁弁、34は電磁弁22〜25を制御する増
幅器、28はポンプ2の傾転角を検出する検出
器、29は波形整形器、41は加算器で、加算器
41で傾転角目標値Xi1と傾転角Xp1との差ΔX1
を求め、この差ΔX1で増幅器34を介して電磁
弁22〜25を制御する。すなわち、電磁弁2
2,23のソレノイドを励磁すると、油圧源26
からの圧油が油圧シリンダ21aに作用するとと
もに、油圧シリンダ21bはタンク27に連通し
ているから、ポンプ2の傾転角は増加する。逆
に、電磁弁24,25のソレノイドを励磁する
と、ポンプ2の傾転角は減少する。そして、電磁
弁23,25のソレノイドを励磁すると、電磁弁
22〜25はすべて2回路を閉じるから、ポンプ
2の傾転角はその状態を維持する。このようにし
て、傾転角は傾転角目標値Xi1に応じた値とな
る。なお、レギユレータ5についても同様に構成
されているので、その詳細な説明は省略する。
FIG. 3 is a diagram showing the regulator 4. In the figure, reference numeral 21 denotes a hydraulic cylinder device consisting of hydraulic cylinders 21a and 21b, and the hydraulic cylinder device 21 drives a swash plate or a slant shaft 2a. 26 is a pilot hydraulic power source, 27 is a tank, and 22 to 25 are two positions 2 that control the hydraulic cylinders 21a and 21b.
34 is an amplifier that controls the solenoid valves 22 to 25, 28 is a detector that detects the tilting angle of the pump 2, 29 is a waveform shaper, 41 is an adder, and the adder 41 determines the tilting angle target. Difference between value X i1 and tilt angle X p1 ΔX 1
is determined, and the solenoid valves 22 to 25 are controlled via the amplifier 34 using this difference ΔX 1 . That is, solenoid valve 2
When the solenoids 2 and 23 are energized, the hydraulic power source 26
Since the pressure oil from the pump 2 acts on the hydraulic cylinder 21a and the hydraulic cylinder 21b communicates with the tank 27, the tilting angle of the pump 2 increases. Conversely, when the solenoids of the electromagnetic valves 24 and 25 are energized, the tilt angle of the pump 2 decreases. Then, when the solenoids of the electromagnetic valves 23 and 25 are energized, all of the electromagnetic valves 22 to 25 close two circuits, so that the tilt angle of the pump 2 maintains that state. In this way, the tilt angle becomes a value corresponding to the tilt angle target value X i1 . Note that since the regulator 5 is similarly configured, detailed explanation thereof will be omitted.

第4図は制御装置13を示す図である。図にお
いて42は加算器、30はラツク変位目標値発生
回路、37は修正値発生回路、43は加算器、3
3はポンプ制御係数発生回路、44,45は乗算
器である。
FIG. 4 is a diagram showing the control device 13. In the figure, 42 is an adder, 30 is a rack displacement target value generation circuit, 37 is a correction value generation circuit, 43 is an adder, 3
3 is a pump control coefficient generation circuit, and 44 and 45 are multipliers.

この制御装置13においては、加算器42で目
標回転数Nrと出力回転数Nとの差すなわち回転
数偏差ΔNを求め、ラツク変位目標値発生回路3
0で第5図に示すグラフの関数に基いて回転数偏
差ΔNからラツク変位目標値Mを求める。また、
修正値発生回路37で第6図に示すグラフの関数
に基いて目標回転数Nrから修正値Δnを求め、
加算器43で回転数偏差ΔNと修正値Δnとの和
すなわち修正回転数偏差ΔNaを求め、ポンプ制
御係数発生回路33で第7図に示すグラフの関数
に基いて修正回転数偏差ΔNaからポンプ制御係
数Kpを求め、乗算器44,45でポンプ制御係
数Kpと操作量L1,L2との積すなわち傾転角目標
値Xi1,Xi2を求める。
In this control device 13, the adder 42 calculates the difference between the target rotation speed Nr and the output rotation speed N, that is, the rotation speed deviation ΔN, and the rack displacement target value generation circuit 3
0, the easy displacement target value M is determined from the rotational speed deviation ΔN based on the function of the graph shown in FIG. Also,
The correction value generation circuit 37 calculates the correction value Δn from the target rotational speed Nr based on the function of the graph shown in FIG.
The adder 43 calculates the sum of the rotational speed deviation ΔN and the corrected value Δn, that is, the corrected rotational speed deviation ΔN a , and the pump control coefficient generating circuit 33 calculates the corrected rotational speed deviation ΔN a from the corrected rotational speed deviation ΔN a based on the function of the graph shown in FIG. The pump control coefficient K p is determined, and the multipliers 44 and 45 determine the product of the pump control coefficient K p and the manipulated variables L 1 and L 2 , that is, the tilting angle target values X i1 and X i2 .

すなわち、この発明の制御方法においては、回
転数偏差ΔNが増加したとき、ラツク変位目標値
Mをそれに応じて増加することにより、燃料噴射
ポンプ6の燃料噴射量を増加し、内燃機関1の燃
焼系の出力馬力を増加する。このとき、内燃機関
1のフライホイルの出力回転数が増加するから、
回転数偏差ΔNが小さくなり、出力回転数Nは目
標回転数Nrに近づけられる。しかし、ポンプ
2,3の吐出圧P1,P2が高くなり、ポンプ2,3
のトルク(吐出圧P1,P2と傾転角との積)の合計
値すなわちトルク反力TPが大きすぎて、燃焼系
の出しうる最大トルクにうち勝つと、出力回転数
Nが低下し、ついには内燃機関1が停止する。こ
れを防止するため、回転数偏差ΔNが大きくなつ
たときに、それに応じポンプ2,3の傾転角を減
少させ、トルク反力TPを減少させることが考え
られる。すなわち、関数発生器37がない場合に
は、ΔNa=ΔNとなり、回転数偏差ΔNが増加
するとポンプ制御系数Kpが減少し、傾転角目標
値Xi1,Xi2が減少するため、ポンプ2,3の傾
転角が減少して、トルク反力TPが減少するか
ら、出力回転数Nの減少を防止することができ、
内燃機関1の停止を防止することができる。
That is, in the control method of the present invention, when the rotational speed deviation ΔN increases, the easy displacement target value M is increased accordingly, thereby increasing the fuel injection amount of the fuel injection pump 6 and reducing the combustion of the internal combustion engine 1. Increase the output horsepower of the system. At this time, the output rotation speed of the flywheel of the internal combustion engine 1 increases, so
The rotational speed deviation ΔN becomes smaller, and the output rotational speed N is brought closer to the target rotational speed N r . However, the discharge pressures P 1 and P 2 of pumps 2 and 3 become high, and
If the total value of the torque (product of the discharge pressures P 1 and P 2 and the tilting angle), that is, the torque reaction force T P , is too large and overcomes the maximum torque that the combustion system can produce, the output rotation speed N will decrease. Then, the internal combustion engine 1 finally stops. In order to prevent this, it is conceivable to reduce the tilting angles of the pumps 2 and 3 accordingly when the rotational speed deviation ΔN increases, thereby reducing the torque reaction force T P . That is, in the absence of the function generator 37, ΔN a =ΔN, and as the rotational speed deviation ΔN increases, the pump control system K p decreases, and the tilt angle target values X i1 and X i2 decrease, so that the pump Since the tilt angles 2 and 3 decrease and the torque reaction force T P decreases, it is possible to prevent a decrease in the output rotation speed N.
Stopping of the internal combustion engine 1 can be prevented.

このような制御を行なつた場合のポンプ2の特
性を第8図に示す。この図はポンプ2の吐出圧P1
と傾転角Xp1との関係を示すものである。図から
わかるように、ポンプ3の吐出圧P2が低い場合
(P2=P2Lの場合)には、吐出圧P1が高圧になる
まで傾転角Xp1は減少しないが、吐出圧P2が高い
場合(P2=P2Hの場合)には、吐出圧P1が比較的
低い段階で傾転角Xp1が減少する。そして、両者
の場合とも、内燃機関1の出力馬力(出力回転数
と出力トルクとの積)はほぼ一定に保たれる。
FIG. 8 shows the characteristics of the pump 2 when such control is performed. This figure shows the discharge pressure P 1 of pump 2
This shows the relationship between and the tilt angle X p1 . As can be seen from the figure, when the discharge pressure P 2 of the pump 3 is low (P 2 = P 2L ), the tilting angle X p1 does not decrease until the discharge pressure P 1 becomes high; 2 is high (P 2 =P 2H ), the tilting angle X p1 decreases when the discharge pressure P 1 is relatively low. In both cases, the output horsepower (product of output rotation speed and output torque) of the internal combustion engine 1 is kept approximately constant.

また、内燃機関1の出力特性を第9図に示す。
この図は出力回転数Nと出力トルクTeとの関係
を示すものである。図からわかるように、目標回
転数Nrが高い場合(Nr=NrHの場合)には、ト
ルク反力TPがTeH以上になつたとしても、出力
回転数Nが低下した時、出力トルクTeがTeH
上になりうるから、ポンプ制御係数Kpの特性の
傾きを極端に大きくしなくとも、すなわち傾転角
を急に小さくしなくとも、内燃機関1が停止する
ことはない。しかし、中間速度の場合(Nr=Nr
の場合)、アイドリングの場合(Nr=NrIの場
合)には、トルク反力TPがTeP,TeIに達する
と、出力トルクTeがTeP,TeI以上にはなり得
ないから、内燃機関1が停止してしまう。これを
防止するため、ポンプ制御係数Kpの特性の傾き
を大きく設定して、回転数偏差ΔN(=ΔNa
が所定値に達したら、急に傾転角を小さくしてト
ルク反力TPを小さくすることが考えられるが、
この場合には制御系のゲイン定数を大きくするこ
とと等価であり、系の発振を招く危険性がある。
Further, the output characteristics of the internal combustion engine 1 are shown in FIG.
This figure shows the relationship between the output rotational speed N and the output torque T e . As can be seen from the figure, when the target rotation speed N r is high (N r = N rH ), even if the torque reaction force T P exceeds T eH , when the output rotation speed N decreases, Since the output torque T e can exceed T eH , the internal combustion engine 1 will not stop even if the slope of the characteristic of the pump control coefficient K p does not become extremely large, that is, the tilt angle does not suddenly decrease. do not have. However, for intermediate speeds (N r = N r
p ), in the case of idling ( Nr = NrI ), when the torque reaction force T P reaches T eP , T eI , the output torque T e cannot exceed T eP , T eI . Since there is no internal combustion engine 1, the internal combustion engine 1 will stop. In order to prevent this, the slope of the characteristic of the pump control coefficient K p is set to a large value so that the rotation speed deviation ΔN (=ΔN a )
When reaches a predetermined value, it is conceivable to suddenly reduce the tilting angle to reduce the torque reaction force TP .
In this case, this is equivalent to increasing the gain constant of the control system, and there is a risk that the system will oscillate.

そこで、この発明の制御方法においては、修正
値発生回路37により、目標回転数Nrが減少し
たときに増加する修正値Δnを求め、この修正値
Δnを回転数偏差ΔNに加算して修正回転数偏差
ΔNaを求めて、この修正回転数偏差ΔNaが所定
値ΔNa1に達したとき、ポンプ制御係数Kpを減
少させることにより、ポンプ2,3の傾転角を減
少させる。このことは、第10図に示すように、
目標回転数Nrが大きいときには、回転数偏差Δ
Nがある程度大きくなつたときにポンプ制御係数
pを減少させ、目標回転数Nrが小さいときに
は、回転数偏差ΔNが小さいときにポンプ制御係
数Kpを減少させることと同じである。したがつ
て、中間速度の場合、アイドリングの場合には、
回転数偏差ΔNが少し大きくなると、ポンプ制御
係数Kpが減少し、ポンプ2,3の傾転角が減少
するため、トルク反力TPが減少するので、トル
ク反力TPが内燃機関1の最大出力トルクを越え
ることがないから、内燃機関1が停止するのを防
止することができる。すなわち、出力回転数Nと
トルク反力TPとの関係は第11図に示すように
なり、ポンプ2,3の吐出圧P1,P2が上昇して
も、ポンプ2,3の傾転角が減少されるので、ト
ルク反力TPが内燃機関1の最大出力トルクを越
えることはなく、内燃機関1が停止するのが防止
される。
Therefore, in the control method of the present invention, the correction value generation circuit 37 calculates a correction value Δn that increases when the target rotation speed N r decreases, and adds this correction value Δn to the rotation speed deviation ΔN to generate a correction rotation. When the corrected rotational speed deviation ΔN a reaches a predetermined value ΔN a1 , the tilting angles of the pumps 2 and 3 are decreased by decreasing the pump control coefficient K p . This means that, as shown in Figure 10,
When the target rotation speed N r is large, the rotation speed deviation Δ
This is the same as reducing the pump control coefficient K p when N becomes large to a certain extent, and decreasing the pump control coefficient K p when the target rotation speed N r is small and the rotation speed deviation ΔN is small. Therefore, at intermediate speeds, when idling,
When the rotational speed deviation ΔN increases a little, the pump control coefficient K p decreases, and the tilt angles of the pumps 2 and 3 decrease, so the torque reaction force T P decreases . Since the maximum output torque of the internal combustion engine 1 is not exceeded, it is possible to prevent the internal combustion engine 1 from stopping. In other words, the relationship between the output rotational speed N and the torque reaction force T P is as shown in FIG. Since the angle is reduced, the torque reaction force T P does not exceed the maximum output torque of the internal combustion engine 1 and the internal combustion engine 1 is prevented from stopping.

なお、第6図に示す目標回転数Nrと修正値Δ
nの関係を変えることにより、第11図に示す出
力回転数Nとトルク反力TPとの関係を任意に設
定することができる。また、制御装置13をマイ
クロコンピユータで構成することが可能である。
In addition, the target rotation speed Nr and correction value Δ shown in Fig. 6
By changing the relationship of n, the relationship between the output rotational speed N and the torque reaction force T P shown in FIG. 11 can be arbitrarily set. Moreover, it is possible to configure the control device 13 with a microcomputer.

以上説明したように、この発明に係る内燃機関
と液圧ポンプとを含む系の制御方法においては、
目標回転数がどんな値であつても内燃機関が停止
することはない。また、液圧ポンプの吐出圧が上
昇してトルク反力が大きくなつたときには、液圧
ポンプの傾転角を急に減少させる必要はないか
ら、液圧ポンプの傾転角が周期的に変動すること
がなく、安定した系となる。さらに、出力回転数
に対する液圧ポンプのトルク反力の特性を用途に
応じて任意にかつ容易に設定することができる。
このように、この発明の効果は顕著である。
As explained above, in the method for controlling a system including an internal combustion engine and a hydraulic pump according to the present invention,
The internal combustion engine will never stop no matter what the target rotational speed is. In addition, when the discharge pressure of the hydraulic pump increases and the torque reaction force increases, there is no need to suddenly decrease the tilting angle of the hydraulic pump, so the tilting angle of the hydraulic pump changes periodically. This results in a stable system. Furthermore, the characteristics of the torque reaction force of the hydraulic pump with respect to the output rotation speed can be arbitrarily and easily set according to the application.
As described above, the effects of this invention are remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る制御方法を実施するた
めの装置を示す図、第2図は内燃機関の燃料噴射
ポンプを示す図、第3図は液圧ポンプのレギユレ
ータを示す図、第4図は制御装置を示す図、第5
図はラツク変位目標値発生回路の特性を示すグラ
フ、第6図は修正値発生回路の特性を示すグラ
フ、第7図はポンプ制御係数発生回路の特性を示
すグラフ、第8図は液圧ポンプの吐出圧と傾転角
との関係を示すグラフ、第9図は内燃機関の出力
回転数と出力トルクとの関係を示すグラフ、第1
0図は回転数偏差とポンプ制御係数との関係を示
すグラフ、第11図は出力回転数と出力トルク、
トルク反力との関係を示すグラフである。 1……内燃機関、2,3……液圧ポンプ、4,
5……レギユレータ、6……燃料噴射ポンプ、8
……アクセルレバー、9,10……操作レバー、
11……検出器、12……検出器、13……制御
装置、30……ラツク変位目標値発生回路、33
……ポンプ制御係数発生回路、37……修正値発
生回路、40〜43……加算器、44,45……
乗算器。
Fig. 1 is a diagram showing a device for carrying out the control method according to the present invention, Fig. 2 is a diagram showing a fuel injection pump of an internal combustion engine, Fig. 3 is a diagram showing a regulator of a hydraulic pump, and Fig. 4 is a diagram showing a regulator of a hydraulic pump. Figure 5 shows the control device.
Figure 6 is a graph showing the characteristics of the easy displacement target value generation circuit, Figure 6 is a graph showing the characteristics of the correction value generation circuit, Figure 7 is a graph showing the characteristics of the pump control coefficient generation circuit, and Figure 8 is the graph showing the characteristics of the hydraulic pump. Fig. 9 is a graph showing the relationship between the discharge pressure and the tilt angle of the internal combustion engine.
Figure 0 is a graph showing the relationship between rotation speed deviation and pump control coefficient, Figure 11 is a graph showing the relationship between rotation speed deviation and pump control coefficient, and Figure 11 is a graph showing the relationship between rotation speed deviation and pump control coefficient.
It is a graph showing the relationship with torque reaction force. 1... Internal combustion engine, 2, 3... Hydraulic pump, 4,
5...Regulator, 6...Fuel injection pump, 8
...accelerator lever, 9,10...operation lever,
11...Detector, 12...Detector, 13...Control device, 30...Easy displacement target value generation circuit, 33
... Pump control coefficient generation circuit, 37 ... Correction value generation circuit, 40 to 43 ... Adder, 44, 45 ...
Multiplier.

Claims (1)

【特許請求の範囲】[Claims] 1 目標回転数と出力回転数との差すなわち回転
数偏差を求め、この回転数偏差が設定値より大き
いとき、この回転数偏差と増減が逆に対応するポ
ンプ制御係数を求め、このポンプ制御係数と操作
レバー操作量とを乗算して傾転角目標値を求め
て、この傾転角目標値により液圧ポンプの傾転角
を制御するとともに、上記設定値を上記目標回転
数により変化させることを特徴とする内燃機関と
液圧ポンプとを含む系の制御方法。
1 Find the difference between the target rotation speed and the output rotation speed, that is, the rotation speed deviation, and when this rotation speed deviation is larger than the set value, calculate the pump control coefficient whose increase/decrease corresponds inversely to this rotation speed deviation, and calculate this pump control coefficient. and the operation lever operation amount to obtain a tilt angle target value, control the tilt angle of the hydraulic pump using this tilt angle target value, and change the set value according to the target rotation speed. A method for controlling a system including an internal combustion engine and a hydraulic pump, characterized by:
JP6230980A 1979-10-15 1980-05-13 Method of controlling system including internal combustion engine and hydraulic pump Granted JPS56159580A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP6230980A JPS56159580A (en) 1980-05-13 1980-05-13 Method of controlling system including internal combustion engine and hydraulic pump
GB8116765A GB2072890B (en) 1979-10-15 1980-10-14 Method of controlling internal combustion engine and hydraulic pump system
DE803049938A DE3049938A1 (en) 1979-10-15 1980-10-14 Method of controlling internal combustion engine and hydraulic pump system
US06/276,367 US4395199A (en) 1979-10-15 1980-10-14 Control method of a system of internal combustion engine and hydraulic pump
PCT/JP1980/000247 WO1981001031A1 (en) 1979-10-15 1980-10-14 Method of controlling internal combustion engine and hydraulic pump system
EP80901973A EP0037838B1 (en) 1979-10-15 1981-04-21 Method of controlling internal combustion engine and hydraulic pump system
SE8103708A SE447594B (en) 1979-10-15 1981-06-12 COMBUSTION ENGINE AND HYDRAULUM PUMP SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6230980A JPS56159580A (en) 1980-05-13 1980-05-13 Method of controlling system including internal combustion engine and hydraulic pump

Publications (2)

Publication Number Publication Date
JPS56159580A JPS56159580A (en) 1981-12-08
JPS6228318B2 true JPS6228318B2 (en) 1987-06-19

Family

ID=13196399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6230980A Granted JPS56159580A (en) 1979-10-15 1980-05-13 Method of controlling system including internal combustion engine and hydraulic pump

Country Status (1)

Country Link
JP (1) JPS56159580A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988001349A1 (en) * 1986-08-15 1988-02-25 Kabushiki Kaisha Komatsu Seisakusho Hydraulic pump control unit

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591845U (en) * 1982-06-28 1984-01-07 株式会社小松製作所 Construction machinery engine control device
JPS591846U (en) * 1982-06-28 1984-01-07 株式会社小松製作所 Construction machinery engine control device
JPS59153989A (en) * 1983-02-19 1984-09-01 Hitachi Constr Mach Co Ltd Control device for drive system of hydraulic pump
JPS60195339A (en) * 1984-03-17 1985-10-03 Hitachi Constr Mach Co Ltd Hydraulic pump driving system controller
JPS60195338A (en) * 1984-03-17 1985-10-03 Hitachi Constr Mach Co Ltd Hydraulic pump driving system controller
US4637781A (en) * 1984-03-30 1987-01-20 Kabushiki Kaisha Komatsu Seisakusho Torque regulating system for fluid operated pump displacement control systems
JP4410640B2 (en) * 2004-09-06 2010-02-03 株式会社小松製作所 Load control device for engine of work vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988001349A1 (en) * 1986-08-15 1988-02-25 Kabushiki Kaisha Komatsu Seisakusho Hydraulic pump control unit

Also Published As

Publication number Publication date
JPS56159580A (en) 1981-12-08

Similar Documents

Publication Publication Date Title
US4606313A (en) Method of and system for controlling hydraulic power system
EP0181865B1 (en) Hydrostatic vehicle control
EP0182788B1 (en) Hydrostatic vehicle control
JP3888700B2 (en) Hydraulic power control device
KR910001692B1 (en) Rotational frequency control device for internal combustion engine
CN111828622B (en) Hydrostatic axial piston pump, hydrostatic travel drive and control method
CN110657236A (en) Hydrostatic axial piston pump for a hydrostatic travel drive
JPS6228318B2 (en)
US3983848A (en) Fuel injection system
US4711211A (en) Fuel injection apparatus for internal combustion engine
JPS628620B2 (en)
JP2678355B2 (en) Control equipment for construction machinery
JP2000154803A (en) Engine lag-down prevention device for hydraulic construction machine
JPS6318011B2 (en)
CN110657235B (en) Wheel drive arrangement for a hydrostatic transmission and hydrostatic transmission
JPH08312406A (en) Method and equipment for controlling torque of internal combustion engine
US7873462B2 (en) Method and device for air pilot control in speed-controlled internal combustion engines
JP2000161302A (en) Engine lug-down prevention device for hydraulic construction machine
US4727836A (en) Fuel injection apparatus for internal combustion engine
JPH10220274A (en) Control method for engine of construction machine
JP3538001B2 (en) Engine control device for construction machinery
JPS60195339A (en) Hydraulic pump driving system controller
JPS6230312B2 (en)
JPH0534519B2 (en)
JPH02115582A (en) Input torque controller for variable capacity type hydraulic pump