JPS6147567B2 - - Google Patents

Info

Publication number
JPS6147567B2
JPS6147567B2 JP53025784A JP2578478A JPS6147567B2 JP S6147567 B2 JPS6147567 B2 JP S6147567B2 JP 53025784 A JP53025784 A JP 53025784A JP 2578478 A JP2578478 A JP 2578478A JP S6147567 B2 JPS6147567 B2 JP S6147567B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
temperature
denitrification
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53025784A
Other languages
Japanese (ja)
Other versions
JPS54118382A (en
Inventor
Toshio Mizuno
Takabumi Sueyoshi
Haruya Nagai
Nobutake Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2578478A priority Critical patent/JPS54118382A/en
Publication of JPS54118382A publication Critical patent/JPS54118382A/en
Publication of JPS6147567B2 publication Critical patent/JPS6147567B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は硫黄酸化物及び水分を含有する排ガス
中に含まれる窒素酸化物を、所謂アンモニア接触
還元法によつて除去する脱硝プロセスに関する。 周知の通り、ボイラー、加熱炉、コークス炉及
び焼結炉等の固定発生源から排出される各種工業
排ガス中に含まれる50〜1000ppm程度の窒素酸
化物を除去する方法としては還元剤としてのアン
モニアと前記窒素酸化物を350〜450℃の温度条件
下で接触的に反応させて除去するアンモニア接触
還元法が特に代表的なものであるが最近に於ては
熱経済性の観点から前記の如き固定発生源から排
出される排ガス温度とほぼ同等なる温度範囲、即
ち150〜350℃の温度条件下で前記の反応を行なわ
せる低温アンモニア接触還元法が注目されてい
る。この低温アンモニア接触還元法に於ては前記
の如き低温反応に対して充分なる触媒活性を有す
る低温脱硝用触媒の開発と相俟つて、当該触媒の
寿命を長期に亘つて保ちつつ、工業的なる規模の
連続運転を可能ならしめる方法を見い出すことが
最大の課題となつている。 現在、既に開発されている前記の低温脱硝用触
媒としてはアルミナ、シリカアルミナ、シリカ、
硅藻土及びチタニアから選ばれた1種又は2種以
上の混合物から成る担体上に銅、チタン、バナジ
ウム、クロム、マンガン、鉄、コバルト、モリブ
デン、タングステン及びニツケルから選ばれた1
種又は2種以上の第1遷移金属の酸化物、硫酸
塩、金属酸素酸塩及び/又はヘテロポリ酸塩から
成る活性成分を担持した固体触媒等を挙げること
ができる。しかしながらこれらの触媒と雖も、前
記の如き低温度域に於けるアンモニア接触還元法
の工業プロセス用触媒として、中途で何らの処理
も施こすことなく長期に亘つて連続的に使用する
ことは極めて困難であるとされている。と云うの
は150〜350℃と云う比較的低温度の条件下で前記
の反応を行なわせようとすると、排ガス中に含有
する硫黄酸化物と水分、更には還元剤として導入
したアンモニアとが反応して、各種のアンモニウ
ム硫酸塩やアンモニウム亜硫酸塩等から成る固体
物質が生成され、これが前記の触媒上に沈着して
触媒の物理特性、例えば細孔構造等を阻害し、ひ
いては当該触媒の活性劣化をもたらしてしまうか
らである。 この場合に於ける触媒上への沈着物質としては
硫安、酸性硫安、二硫酸水素三アンモニウム、亜
硫安及び酸性亜硫安等から成るアンモニウム硫酸
塩やアンモニウム亜硫酸塩或いは煤等の不純物を
挙げることができ、更に当該沈着物質の主成分で
ある硫安や酸性硫安は下記の如き反応式に従つて
生成されることが知られている。 NH3(気体)+H2O(気体)+SO3(気
体) →NH4HSO4(固体) 2NH3(気体)+H2O(気体)+SO3(気
体) →(NH42SO4(固体) そこで従来に於ては触媒上に沈着した前記の如
き固前物質を350〜800℃、更に詳しくは400〜600
℃の温度条件下で分解させて、当該触媒の活性能
を賦活再生する方法が提案されている。これは前
記のアンモニウム硫酸塩等が350℃以上の温度条
件下で分解してガス成分になると云う性質を利用
したものであり、かかる技術を開示した公知文献
としては特開昭51−3366号、特開昭52−26394号
及び特開昭52−30285号等を認めることができ
る。 しかしながらこれらの公知文献に開示された触
媒再生操作に係る技術を前記の脱硝反応を行なわ
せつつ実施しようとすると、昇温操作に伴つて反
応装置内部に於ける圧力損失が急激に増大してし
まうため、例えばコークス炉等の排ガス発生源や
其の他の付帯設備に悪影響を及ぼしてしまうこと
となる。 これに対して従来に於ては特公昭48−17469
号、特公昭49−13463号及び特公昭51−57034号等
の公知文献に記載されているように、排ガス発生
源から直接、排ガス放出系に短絡的に通じるバイ
パス・ラインを設けて突発時や前記の如き触媒再
生時に発生する圧力変動を吸収する方法が提案さ
れている。しかしながらかかる方法にあつては脱
硝プロセスの通常運転時に於て、排ガス発生源か
らの未処理排ガスが直接、バイパス・ラインを介
して排ガス放出系に流れ込むのを逆に排ガス放出
系からの処理済み排ガスの還流によつて防止して
いるため、これに伴つて強力で、しかも処理容量
の大きな吸収排風機等が必要となるばかりでな
く、前記の如き圧力変動時に於ては未処理排ガス
が直接排ガス放出系の方面に流れ込んでしまうた
め、当該排ガス放出系の出口で測定される見掛上
の脱硝率が一時的に低下してしまうと云う欠点を
有している。 尚、賦活再生すべき触媒の装填された反応装置
への排ガスの導入を予め設けられた別の反応装置
に切換えることによつて、前記の触媒再生操作を
行なう方法も提案されているがこの方法によると
排ガス発生源から発生する排ガスの全量を処理す
ることのできる大きさの反応装置を少くとも2基
準備する必要があるばかりでなく、前記の排ガス
導入の切換えに伴う複雑な操作が必要となる。 そこで本発明者等は前記の如き従来法の問題点
を解決すべく鋭意研究を重ねた結果、前記の排ガ
スを分割して並列的に配設された複数個から成る
接触反応装置内に導入して前記の脱硝反応を行な
わせると共に夫々の反応装置内に装填された脱硝
触媒の再生操作を前記の反応を行なわせつつ交互
に行なえば、各々の反応装置内部で処理される排
ガス量などを何ら人為的に調整することもなく前
記の昇温操作に伴う圧力変動を容易に吸収し得る
ことを見い出し、本発明を為すに到つた。即ち本
発明は硫黄酸化物及び水分を含有する排ガス中に
含まれる窒素酸化物を、当該排ガス気流中に還元
剤として導入したアンモニアと150〜350℃の温度
条件下で反応させて除去するための脱硝プロセス
に於て、前記の排ガス気流中にアンモニアを導入
した混合ガスを並列的に配設された複数個から成
る接触反応装置内に分割導入して前記の脱硝反応
を行なわせると共に、各反応装置に於て当該プロ
セスの運動を何ら中断することなく夫々の反応器
内に装填された脱硝触媒の触媒床を前記の反応温
度よりも高い330〜650℃の温度雰囲気下に交互に
さらして加熱処理することによつて触媒活性能が
所望値以下に経時劣化した前記触媒を遂次的に賦
活再生することを特徴とする排ガス中に含有する
窒素酸化物の除去方法を提供するものである。 本発明方法に使用し得る前記の脱硝触媒は150
〜350℃の温度条件下での触媒活性を有している
ものの、前記の如きアンモニウム硫酸塩等の固体
物質の沈着によつてその触媒活性が低下してしま
う性質を持ち、更には前記の温度条件下に於ける
加熱処理操作を施こしても形態変化が起こらない
特性を備えた低温脱硝触媒であり、このような触
媒としては上述の如き、従来公知の低温脱硝触媒
を挙げることができる。因に、これらの触媒は一
般に充填層型反応器、パラレル・パツセージ型反
応器やハニカム型反応器等の各種反応装置に装填
されて使用されるが本発明方法はこれらの反応装
置構造、更には触媒床構造等に左右されることな
く適用することができる。 本発明方法に於て、これらの反応装置は必らず
複数個、並列的に配列されて使用されるが通常の
場合、かかる反応装置は並列的に2基、設置すれ
ばよい。これは反応装置の数を多くすればする
程、前記の圧力変動を容易に吸収することができ
るものの、これに反して設備費等が嵩んでしまう
傾向にあるからである。 本発明方法の再生操作に於て、前記触媒床の加
熱処理は外熱式反応器を用いて熱源としての高温
流体と間接的に熱交換させることよつて行なうこ
とも可能であるが、反応装置の前段に設けられた
加熱器、例えばインライン・ヒーター等によつて
当該排ガス温度よりも高い330℃以上の温度に予
め加熱した排ガス気流と連続的に直接接触させる
ことによつて行なうことが望ましい。このように
して、前記触媒床は330〜650℃、更に詳しくは
350〜450℃の温度雰囲気下にさらされて加熱処理
されるわけであるがかかる触媒床の加熱操作は毎
時50℃以下、更に詳しくは毎時20〜40℃の昇温速
度で行なうことが望ましい。これは本出願人等に
よる特願昭52−95381号でも述べたようにこの昇
温速度を毎時50℃以上とするとアンモニアの発生
量が増大し、それに伴つて系外に排出されるアン
モニアの量も多大となつて、二次公害を引き起こ
し兼ねないからである。 尚、前記触媒床の加熱処理温度として330〜650
℃の温度範囲を採用した理由は330℃以下では前
記触媒の再生を完全に行なうことができず、又
650℃以上では当該再生操作中に形態変化を起こ
してしまう触媒が多く、更に付言するならばそれ
以上の温度を採用する意味がないからである。 以下、図面に沿つて本発明方法を更に具体的に
説明する。 第1図は本発明方法による脱硝プロセスの典型
的な一実施例を示すもので、Aは排ガス発生源、
Bはアンモニア供給源、Cは吸引排風機、Dは排
ガス放出系、H−1並びにH−2はインライン・
ヒーター等の加熱器及びR−1並びにR−2は脱
硝触媒の装填された反応装置を夫々示している。 ここで前記の排ガス発生源Aから排出された
150〜350℃の温度雰囲気下にある窒素酸化物を含
有する排ガスは吸引排風機Cで昇圧されたのち、
アンモニア供給源Bから導入された還元剤として
のアンモニアと、NH3/NO(モル比)が2.0以
下、更に詳しくは0.6〜1.2となるような割合で混
合される。次いでかかる混合ガスは分岐点部Eで
2つに分割された後、加熱器H−1及びH−2
(ただし、通常運転中は排ガスを加熱する必要が
ないため停止している)を経由して、夫々の反応
装置内に於けるガス空塔速度(GHSV)が2000〜
20000hr-1となるような速度で反応装置R−1及
びR−2中に導びかれる。 このようにして反応装置R−1及びR−2中に
導びかれた排ガス中の窒素酸化物は150〜350℃の
温度条件下でアンモニアと接触的に反応して分解
され、しかる後排ガス放出系Dを介して系外に排
出されるが、かかる運転を長時間に亘つて連続的
に行なつているとその触媒上に前記の如きアンモ
ニウム硫酸塩等の固体物質が沈着して触媒活性が
経時的に減少し、それに伴つて脱硝率の低下を招
く。 このように脱硝率が低下し、所望値以下の脱硝
率しか得られなくなつた場合は加熱器H−1か、
もしくはH−2に自動的に点火して、その加熱器
中を通過する排ガスをプログラム設定器からの指
示により加熱すると共にかかる排ガス気流によつ
て反応装置R−1か、もしくはR−2の触媒床を
加熱する。この際の加熱温度及び昇温速度は前述
の通りであるが加熱処理時間は0.5〜10時間の範
囲より選択することが望ましい。このようにして
反応装置R−1及びR−2中に装填された触媒の
再生操作は夫々、交互に操返し行なわれるがかか
る再生操作は夫々の反応装置につき、4〜40日の
間隔で行なうことが経済的である。尚、この場合
に於て、前記の反応装置R−1及びR−2中の触
媒床を如何なる理由に於ても前記の再生温度まで
同時に加熱昇温するようなことがあつてはならな
い。と云うのはかかる昇温操作によつて反応装置
R−1及びR−2内部に於ける圧力損失が共に急
激に増大し、これが排ガス発生源A等に悪影響を
及ぼして、当初の目的を達成することができなく
なつてしまうからである。これに対して本発明方
法に於ては前述の通り、これらの反応装置中の触
媒床を交互に加熱昇温しているため、その昇温時
に於ける圧力損失が然程大きくないばかりでな
く、一方の反応装置即ち再生反応装置内部で生じ
た圧力変動を他方の反応装置内部で容易に吸収し
得るので前記の如き問題の発生を見ることはな
い。尚、ここで云う圧力損失の吸収は圧力損失が
高まつた、一方の反応装置内部に流れる排ガスの
一部を、他方の反応装置内部に何らの人為的操作
も施こすことなく自動的に流して、これらの反応
装置内部に於ける圧力をバランスさせることによ
つて行なわれる。 尚、第1図に見られる排ガス発生源Aから排ガ
ス放出系Dに到る点線ラインは従来公知のバイパ
スラインを示すもので、本発明方法を採用する限
りに於ては通常、かかるバイパス・ラインを設け
る必要はない。しかしながら排ガス発生源Aがコ
ークス炉等のように偶発的に小さな爆発を起こし
て一時的に多量の排ガスを流出する可能性がある
場合はかかる突発時にのみ効果を発揮するような
バイパス・ラインを安全のために付設しておいて
もよいことは勿論である。 次に実施例を示す。 実施例 1 市販のチタン−バナジウム系低温脱硝触媒を第
1図(但し、バイパスラインは設けられていな
い)に示す如く配設された2基の直方体形状のパ
ラレル・パツセージ型反応器R−1及びR−2
(内壁の一辺;19.5cm)に各々41Kgづつ装填し
て、これにNOx;300ppm、SOx;30ppm及び
H2O;12%、O2;4.57%、CO2;17%、CO;0.1
%を含み、残部が窒素から成る排ガス400Nm3/hr
を分割して導入すると共に還元剤としてのアンモ
ニアをNH3/NO(モル比)が1.1となるような割
合で供給して約200℃の温度条件下で低温脱硝反
応を行なわせた。この場合の反応装置内部に於け
るガス空塔速度(GHSV)は3960hr-1であり、
又、当初の脱硝率は94.0%であつた。しかしなが
らかかる反応を100時間連続して行なつたところ
脱硝率が90.0%まで低下してしまつていることが
認められたので第1図に示す加熱器(バーナを内
蔵したインライン・ヒーターを使用する)H−1
に点火して、当該加熱器中を通過する排ガス気流
を380℃まで昇温すると共に当該温度条件下に2
時間保ち前記反応装置R−1中に装填された触媒
の再生を行なつた。そして当該再生操作を開始す
る直前(通常運転時)と直後(再生運転時)に於
ける、各々の反応装置内部に流れ込む排ガス量
(Nm3/hr)及び各々の反応装置内部での圧力損失
(mmH2O)、更には各々の反応装置出口並びに当該
プロセス出口での脱硝率(%)を夫々求めたとこ
ろ次の第1表に示す如き結果となつた。
The present invention relates to a denitrification process for removing nitrogen oxides contained in exhaust gas containing sulfur oxides and moisture by a so-called ammonia catalytic reduction method. As is well known, ammonia as a reducing agent is a method for removing nitrogen oxides of about 50 to 1000 ppm contained in various industrial exhaust gases emitted from fixed sources such as boilers, heating furnaces, coke ovens, and sintering furnaces. The ammonia catalytic reduction method, in which nitrogen oxides and nitrogen oxides are catalytically reacted and removed under a temperature condition of 350 to 450°C, is particularly representative. A low-temperature ammonia catalytic reduction method is attracting attention in which the above reaction is carried out in a temperature range approximately equivalent to the temperature of exhaust gas discharged from a stationary source, ie, 150 to 350°C. In this low-temperature ammonia catalytic reduction method, in conjunction with the development of a low-temperature denitrification catalyst that has sufficient catalytic activity for the above-mentioned low-temperature reactions, it is possible to maintain the life of the catalyst over a long period of time and achieve industrial performance. The biggest challenge is to find a way to enable continuous operation on a large scale. Currently, the aforementioned low-temperature denitrification catalysts that have already been developed include alumina, silica alumina, silica,
1 selected from copper, titanium, vanadium, chromium, manganese, iron, cobalt, molybdenum, tungsten and nickel on a carrier consisting of one or a mixture of two or more selected from diatomaceous earth and titania.
Examples include solid catalysts supporting an active component consisting of an oxide, sulfate, metal oxyacid and/or heteropolyacid of one or more of the first transition metals. However, it is extremely difficult to use these catalysts continuously over a long period of time without any intermediate treatment as industrial process catalysts for the ammonia catalytic reduction method in the low temperature range mentioned above. It is said to be difficult. This is because when trying to carry out the above reaction at a relatively low temperature of 150 to 350 degrees Celsius, the sulfur oxides contained in the exhaust gas and moisture, as well as the ammonia introduced as a reducing agent, react. As a result, solid substances consisting of various ammonium sulfates, ammonium sulfites, etc. are generated, which deposit on the catalyst and impede the physical properties of the catalyst, such as pore structure, and eventually deteriorate the activity of the catalyst. This is because it brings about In this case, substances deposited on the catalyst include impurities such as ammonium sulfate, ammonium sulfite, and soot, which are composed of ammonium sulfate, acidic ammonium sulfate, triammonium hydrogen disulfite, ammonium sulfite, acidic ammonium sulfite, etc. Furthermore, it is known that ammonium sulfate and acidic ammonium sulfate, which are the main components of the deposited substance, are produced according to the following reaction formula. NH 3 (gas) + H 2 O (gas) + SO 3 (gas) → NH 4 HSO 4 (solid) 2NH 3 (gas) + H 2 O (gas) + SO 3 (gas) → (NH 4 ) 2 SO 4 (solid) ) Therefore, in the past, the above solidified substances deposited on the catalyst were heated at 350 to 800°C, more specifically at 400 to 600°C.
A method has been proposed in which the activity of the catalyst is activated and regenerated by decomposing it under temperature conditions of °C. This utilizes the property that ammonium sulfate and the like described above decompose into gas components under temperature conditions of 350°C or higher; known documents disclosing this technology include JP-A-51-3366; JP-A-52-26394 and JP-A-52-30285 can be recognized. However, if the techniques related to the catalyst regeneration operation disclosed in these known documents are attempted to be carried out while the above-mentioned denitrification reaction is being carried out, the pressure loss inside the reactor will rapidly increase as the temperature is increased. Therefore, it will have an adverse effect on exhaust gas generation sources such as coke ovens and other incidental equipment. On the other hand, in the past, the special public
As described in publicly known documents such as Japanese Patent Publication No. 49-13463 and Japanese Patent Publication No. 51-57034, a bypass line that connects directly from the exhaust gas generation source to the exhaust gas release system in a short circuit is installed to prevent sudden occurrences. A method has been proposed for absorbing pressure fluctuations that occur during catalyst regeneration as described above. However, in such a method, during normal operation of the denitrification process, untreated exhaust gas from the exhaust gas generation source flows directly into the exhaust gas discharge system via a bypass line, whereas treated exhaust gas from the exhaust gas discharge system flows directly into the exhaust gas discharge system. This method not only necessitates a powerful absorption fan with a large processing capacity, but also causes untreated exhaust gas to flow directly into the exhaust gas during pressure fluctuations such as those mentioned above. Since it flows into the direction of the exhaust gas discharge system, it has the disadvantage that the apparent denitrification rate measured at the outlet of the exhaust gas discharge system temporarily decreases. It should be noted that a method has also been proposed in which the catalyst regeneration operation described above is carried out by switching the introduction of exhaust gas into the reaction device loaded with the catalyst to be activated and regenerated to another pre-installed reaction device. According to the above, it is not only necessary to prepare at least two reactors large enough to treat the entire amount of exhaust gas generated from the exhaust gas generation source, but also complicated operations associated with switching the exhaust gas introduction mentioned above are required. Become. Therefore, the inventors of the present invention conducted intensive research to solve the problems of the conventional method as described above, and as a result, the above-mentioned exhaust gas was divided and introduced into a catalytic reaction device consisting of a plurality of units arranged in parallel. If the denitrification reaction described above is carried out in the reactors, and the regeneration operation of the denitrification catalyst loaded in each reactor is performed alternately while the above reaction is carried out, the amount of exhaust gas processed inside each reactor can be reduced at all. It was discovered that the pressure fluctuations accompanying the temperature raising operation described above can be easily absorbed without artificial adjustment, and the present invention was accomplished. That is, the present invention is a method for removing nitrogen oxides contained in exhaust gas containing sulfur oxides and moisture by reacting it with ammonia introduced as a reducing agent into the exhaust gas stream at a temperature of 150 to 350°C. In the denitrification process, the mixed gas in which ammonia is introduced into the exhaust gas stream is dividedly introduced into a contact reaction device consisting of a plurality of units arranged in parallel to carry out the denitrification reaction, and each reaction In the equipment, the catalyst bed of the denitrification catalyst loaded in each reactor is alternately exposed to an atmosphere at a temperature of 330 to 650°C higher than the reaction temperature and heated without interrupting the movement of the process in any way. The present invention provides a method for removing nitrogen oxides contained in exhaust gas, which comprises successively activating and regenerating the catalyst whose catalytic activity has deteriorated over time to a level below a desired value due to treatment. The denitrification catalyst that can be used in the method of the present invention is 150
Although it has catalytic activity at temperatures of ~350°C, its catalytic activity tends to decrease due to the deposition of solid substances such as ammonium sulfate, and furthermore, at temperatures above 350°C, It is a low-temperature denitrification catalyst that has the property of not undergoing a change in shape even when subjected to heat treatment under certain conditions, and examples of such a catalyst include the conventionally known low-temperature denitrification catalysts as described above. Incidentally, these catalysts are generally used by being loaded into various reaction apparatuses such as packed bed reactors, parallel passage reactors, and honeycomb reactors, and the method of the present invention can be applied to these reactor structures, as well as It can be applied regardless of the catalyst bed structure, etc. In the method of the present invention, a plurality of these reaction apparatuses are necessarily arranged in parallel and used, but in normal cases, two such reaction apparatuses may be installed in parallel. This is because the larger the number of reactors, the easier it is to absorb the above-mentioned pressure fluctuations, but on the other hand, equipment costs tend to increase. In the regeneration operation of the method of the present invention, the heating treatment of the catalyst bed can be performed by indirectly exchanging heat with a high-temperature fluid as a heat source using an external heating type reactor. It is desirable that this be carried out by direct continuous contact with an exhaust gas stream that has been preheated to a temperature of 330° C. or higher, which is higher than the exhaust gas temperature, using a heater installed upstream of the exhaust gas, such as an in-line heater. In this way, said catalyst bed is heated to 330-650°C, more specifically
Although the catalyst bed is subjected to heat treatment by being exposed to an atmosphere at a temperature of 350 to 450°C, it is desirable that the heating operation of the catalyst bed be carried out at a temperature increase rate of 50°C or less per hour, more specifically, at a temperature increase rate of 20 to 40°C per hour. This is because, as stated in Japanese Patent Application No. 52-95381 filed by the present applicant, if the temperature increase rate is set to 50°C or more per hour, the amount of ammonia generated increases, and the amount of ammonia discharged from the system increases accordingly. This is because the amount of pollution may become large and cause secondary pollution. In addition, the heat treatment temperature of the catalyst bed is 330 to 650.
The reason for adopting the temperature range of ℃ is that the catalyst cannot be completely regenerated below 330℃, and
This is because at temperatures above 650°C, many catalysts undergo morphological changes during the regeneration operation, and furthermore, there is no point in employing temperatures higher than that. Hereinafter, the method of the present invention will be explained in more detail with reference to the drawings. FIG. 1 shows a typical embodiment of the denitrification process according to the method of the present invention, where A is an exhaust gas generation source;
B is the ammonia supply source, C is the suction exhaust fan, D is the exhaust gas release system, H-1 and H-2 are the in-line
A heater such as a heater, and R-1 and R-2 each indicate a reaction device loaded with a denitrification catalyst. Here, the exhaust gas emitted from the exhaust gas generation source A is
The exhaust gas containing nitrogen oxides in a temperature atmosphere of 150 to 350°C is pressurized by suction exhaust fan C, and then
Ammonia as a reducing agent introduced from ammonia supply source B is mixed at a ratio such that NH 3 /NO (molar ratio) is 2.0 or less, more specifically 0.6 to 1.2. Next, the mixed gas is divided into two at branch point E, and then heated to heaters H-1 and H-2.
(However, it is stopped during normal operation because there is no need to heat the exhaust gas.) The gas superficial velocity (GHSV) in each reactor is 2000~
20000 hr -1 into reactors R-1 and R-2. Nitrogen oxides in the exhaust gas introduced into the reactors R-1 and R-2 in this way are decomposed by catalytically reacting with ammonia at a temperature of 150 to 350°C, and then the exhaust gas is released. It is discharged out of the system via system D, but if such operation is continued for a long time, solid substances such as ammonium sulfate as described above will deposit on the catalyst and the catalyst activity will be reduced. It decreases over time, resulting in a decrease in the denitrification rate. If the denitrification rate decreases and you can no longer obtain the denitrification rate below the desired value, use heater H-1,
Alternatively, H-2 is automatically ignited to heat the exhaust gas passing through the heater according to instructions from the program setting device, and the exhaust gas stream is used to heat the catalyst in reactor R-1 or R-2. Heat the floor. The heating temperature and temperature increase rate at this time are as described above, but the heat treatment time is preferably selected from the range of 0.5 to 10 hours. The regeneration operation of the catalysts loaded in the reactors R-1 and R-2 in this way is repeated alternately, and the regeneration operation is performed for each reactor at intervals of 4 to 40 days. It is economical. In this case, the catalyst beds in the reactors R-1 and R-2 must not be heated to the regeneration temperature at the same time for any reason. This is because the pressure loss inside reactors R-1 and R-2 increases rapidly due to such temperature raising operation, which has a negative effect on exhaust gas generation source A, etc., and the original purpose is not achieved. This is because you will become unable to do so. On the other hand, in the method of the present invention, as mentioned above, the catalyst beds in these reactors are alternately heated and raised in temperature, so not only is the pressure loss during the temperature rise not so large; Since the pressure fluctuations occurring inside one reactor, that is, the regeneration reactor, can be easily absorbed inside the other reactor, the above-mentioned problem does not occur. Note that the absorption of pressure loss referred to here means that a portion of the exhaust gas flowing into one reactor, where the pressure loss has increased, is automatically passed into the other reactor without any manual operation. This is done by balancing the pressure inside these reactors. Note that the dotted line from the exhaust gas generation source A to the exhaust gas release system D shown in FIG. 1 indicates a conventionally known bypass line, and as long as the method of the present invention is adopted, such a bypass line is usually There is no need to provide However, if the exhaust gas generation source A is such as a coke oven or the like, where there is a possibility that a small explosion may occur and a large amount of exhaust gas is temporarily released, a bypass line that is only effective in such a sudden event is installed to ensure safety. Of course, it may also be provided for this purpose. Next, examples will be shown. Example 1 Commercially available titanium-vanadium-based low-temperature denitrification catalysts were installed in two rectangular parallel parallel passage reactors R-1 and 2, which were arranged as shown in FIG. 1 (however, no bypass line was provided). R-2
(One side of the inner wall; 19.5 cm) was loaded with 41 kg each, and NOx; 300 ppm, SOx; 30 ppm and
H 2 O; 12%, O 2 ; 4.57%, CO 2 ; 17%, CO; 0.1
% and the balance is nitrogen 400Nm 3 /hr
was introduced in portions, and ammonia as a reducing agent was supplied at a ratio such that NH 3 /NO (molar ratio) was 1.1 to carry out a low-temperature denitrification reaction at a temperature of about 200°C. In this case, the gas superficial velocity (GHSV) inside the reactor is 3960 hr -1 ,
In addition, the initial denitrification rate was 94.0%. However, after conducting this reaction continuously for 100 hours, it was found that the denitrification rate had decreased to 90.0%, so we used the heater shown in Figure 1 (an in-line heater with a built-in burner). H-1
is ignited to raise the temperature of the exhaust gas flow passing through the heater to 380℃, and at the same time
After a period of time, the catalyst loaded in the reactor R-1 was regenerated. Then, the amount of exhaust gas flowing into each reactor (Nm 3 /hr) and the pressure loss inside each reactor (during normal operation) and immediately after (during regeneration operation) the regeneration operation is started mmH 2 O), and the denitrification rate (%) at the outlet of each reactor and the outlet of the process were determined, and the results were as shown in Table 1 below.

【表】 これに対して比較のために前記の低温脱硝触媒
82Kgを装填した1基の直方体形状のパラレル・パ
ツセージ型反応器(内壁の一辺;27.6cm)を用い
て、これに前記の排ガス400Nm3/hrを導入すると
共に還元剤としてのアンモニアを前記の割合で供
給して約200℃の温度条件下で低温脱硝反応を行
なわせ、更に脱硝率が90%となつた時点で前記の
排ガス気流を380℃の温度まで昇温すると共に当
該温度条件下に2時間保ち前記反応装置中に装填
された触媒の再生を行なつた。そして前記の場合
と同様に当該再生操作を行なう直前(通常運転
時)と直後(再生運転時)に於ける、反応装置内
部での圧力損失(mmH2O)と反応装置出口での脱
硝率(%)を求めたところ次の第2表に示す如き
結果となつた。尚、当該比較実験に於ては1基の
反応装置しか使用しておらず、しかも前記のバイ
パス・ライン等も設けていないのでここで云う脱
硝率は当該プロセスの出口に於ける脱硝率と見做
すことができる。
[Table] For comparison, the above-mentioned low-temperature denitrification catalyst
Using one rectangular parallel passage type reactor (one side of inner wall: 27.6 cm) loaded with 82 kg, the above-mentioned exhaust gas of 400 Nm 3 /hr was introduced into it, and ammonia as a reducing agent was added at the above-mentioned rate. The denitration reaction is carried out at a low temperature of approximately 200°C, and when the denitrification rate reaches 90%, the exhaust gas stream is heated to a temperature of 380°C and A period of time was maintained to regenerate the catalyst loaded in the reactor. Similarly to the above case, the pressure loss (mmH 2 O) inside the reactor and the denitrification rate ( %), the results are shown in Table 2 below. In addition, in this comparative experiment, only one reactor was used, and the above-mentioned bypass line was not installed, so the denitrification rate mentioned here can be considered as the denitrification rate at the outlet of the process. I can do it.

【表】 前記の第1表及び第2表の結果からも明らかな
ように本発明方法によれば反応装置内部に於ける
圧力損失を然程増大せしめることなく(排ガス発
生源で許容し得る圧力変動の範囲内にある)、前
記の脱硝反応を行なわせつつ当該触媒の再生操作
を容易に実施し得ることが認められた。 実施例 2 市販のチタン−バナジウム系低温脱硝触媒を第
1図(ただし、実施例1の場合と異なりバイパ
ス・ラインが設けられている)に示す如く配設さ
れた2基のパラレル・パツセージ型反応器R′−
1及びR′−2(内壁直径;550cm)に各々17900
Kgづつ装填して、これにNOx;300ppm、SOx;
50ppm、CO;0.1%、CO2;20%、H2O;10%、
O2;2%及びN2残部から成る排ガス180000Nm3/h
rを分割して導入すると共に還元剤としてのアン
モニアをNH3/NO(モル比)が1.1〜1.2となるよ
うな割合で供給して約200℃の温度条件下で低温
脱硝反応を行なわせた。この場合の反応装置内部
に於けるガス空塔速度(GHSV)は4140hr-1であ
り、又当初の脱硝率は94.0%であつた。しかしな
がらかかる反応を109時間連続して行なつたとこ
ろ脱硝率が91.0%まで低下してしまつていること
が認められたので実施例1の場合と同様に第1図
に示す加熱器(インライン・ヒーターを使用す
る)H′−1に自動的に点火して当該加熱器中を
通過する前記排ガス気流を350℃まで昇温すると
共に当該温度条件下に2時間保ち前記反応装置
R′−1中に装填された触媒の再生を行なつた。
そして当該再生操作を開始する直前(通常運転
時)と直後(再生運転時)に於ける、各々の反応
装置内に流れ込む排ガス量(m3/hr)、各々の反応
装置内部での圧力損失(mmH2O)及びバイパス・
ラインを経由して排ガス放出系に短絡する未処理
排ガスの漏洩率(%)、更には各々の反応装置出
口並びに当該プロセス出口での脱硝率(%)を
夫々求めたところ次の第3表に示す如き結果とな
つた。
[Table] As is clear from the results in Tables 1 and 2 above, the method of the present invention does not significantly increase the pressure loss inside the reactor (at a pressure that is permissible at the exhaust gas generation source). (within a range of variation), it was found that the catalyst can be easily regenerated while the denitrification reaction is being carried out. Example 2 A commercially available titanium-vanadium-based low-temperature denitrification catalyst was used for two parallel passage type reactions arranged as shown in Figure 1 (however, unlike in Example 1, a bypass line was provided). Vessel R′−
17900 each for 1 and R'-2 (inner wall diameter; 550cm)
Load each kg of NOx; 300ppm, SOx;
50ppm, CO; 0.1%, CO2 ; 20%, H2O ; 10%,
Exhaust gas consisting of 2% O 2 and the balance N 2 180000Nm 3 /h
A low-temperature denitrification reaction was carried out at a temperature of approximately 200°C by introducing r in portions and supplying ammonia as a reducing agent at a ratio such that NH 3 /NO (molar ratio) was 1.1 to 1.2. . In this case, the gas superficial velocity (GHSV) inside the reactor was 4140 hr -1 and the initial denitrification rate was 94.0%. However, after carrying out this reaction continuously for 109 hours, it was observed that the denitrification rate had decreased to 91.0%. ) H′-1 is automatically ignited to raise the temperature of the exhaust gas stream passing through the heater to 350°C and maintain the temperature condition for 2 hours in the reactor.
The catalyst loaded in R'-1 was regenerated.
Then, the amount of exhaust gas flowing into each reactor (m 3 /hr) and the pressure loss inside each reactor (during normal operation) and immediately after (during regeneration operation) the regeneration operation is started. mmH 2 O) and bypass
The leakage rate (%) of untreated exhaust gas that is short-circuited to the exhaust gas release system via the line, and the denitrification rate (%) at each reactor outlet and the relevant process outlet were determined, and the results are shown in Table 3 below. The results were as shown.

【表】【table】

【表】 これに対して、比較のために前記のプロセスに
於て脱硝率が91%まで低下してしまつた時点で、
第1図に示す加熱器H′−1とH′−2の両方に点
火して、当該加熱器中を通過する排ガス気流を
350℃まで昇温すると共に当該温度条件下に2時
間保ち反応装置R′−1及びR′−2中に装填され
た触媒の再生を同時に行なつた。そして前記の場
合と同様に当該再生操作を行なつた直後(再生運
転時)に於ける、各々の反応装置内部に流れ込む
排ガス量(Nm3/hr)、各々の反応装置内部での圧
力損失(mmH2O)及びバイパス・ラインを経由し
て排ガス放出系に短絡する未処理排ガスの漏洩率
(%)、更には各々の反応装置出口並びに当該プロ
セス出口での脱硝率(%)を夫々求めたところ次
の第4表に示す如き結果となつた。尚、当該再生
操作を行なう直前、即ち通常運転時に於ける、こ
れらの測定結果は前記の第3表に示す通りであつ
た。
[Table] On the other hand, for comparison, in the above process, when the denitrification rate decreased to 91%,
Both heaters H'-1 and H'-2 shown in Figure 1 are ignited to reduce the exhaust gas flow passing through the heaters.
The temperature was raised to 350°C, and the temperature was maintained for 2 hours to simultaneously regenerate the catalysts loaded in reactors R'-1 and R'-2. Then, in the same way as in the previous case, immediately after performing the regeneration operation (during regeneration operation), the amount of exhaust gas flowing into each reactor (Nm 3 /hr), the pressure loss inside each reactor ( mmH 2 O) and the leakage rate (%) of untreated exhaust gas short-circuited to the exhaust gas release system via the bypass line, as well as the denitrification rate (%) at each reactor outlet and the process outlet, respectively. The results were as shown in Table 4 below. The results of these measurements immediately before the regeneration operation, ie, during normal operation, were as shown in Table 3 above.

【表】【table】

【表】 前記の第3表及び第4表の結果からも明らかな
ように、本発明方法によれば突発時に於ける安全
を考慮して前記のバイパス・ラインを付設しても
前記の圧力損失が然程大きくならないため当該バ
イパス・ラインを経由して排ガス放出系に短絡す
る未処理排ガスの漏洩率が極めて少ないことが認
められた。
[Table] As is clear from the results in Tables 3 and 4 above, according to the method of the present invention, even if the bypass line is provided in consideration of safety in the event of an emergency, the pressure loss described above will not occur. It was confirmed that the leakage rate of untreated exhaust gas short-circuited to the exhaust gas release system via the bypass line was extremely low because the leakage rate did not become very large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法による脱硝プロセスの典型
的な一実施例を示すもので、Aは排ガス発生源、
Bはアンモニア供給源、Cは吸引排風機、Dは排
ガス放出系、H−1並びにH−2はインライン・
ヒーター等の加熱器及びR−1並びにR−2は脱
硝触媒の装填された反応装置を夫々示している。
FIG. 1 shows a typical embodiment of the denitrification process according to the method of the present invention, where A is an exhaust gas generation source;
B is the ammonia supply source, C is the suction exhaust fan, D is the exhaust gas release system, H-1 and H-2 are the in-line
A heater such as a heater, and R-1 and R-2 each indicate a reaction device loaded with a denitrification catalyst.

Claims (1)

【特許請求の範囲】 1 硫黄酸化物及び水分を含有する排ガス中に含
まれる窒素酸化物を、当該排ガス気流中に還元剤
として導入したアンモニアと150〜350℃の温度条
件下で接触的に反応させて除去するための脱硝プ
ロセスに於て、前記の排ガス気流中にアンモニア
を導入した混合ガスを並列的に配設された複数個
から成る接触反応装置内に分割導入して前記の脱
硝反応を行なわせると共に、各反応装置に於て当
該プロセスの運転を何ら中断することなく夫々の
反応器内に装填された脱硝触媒の触媒床を前記の
反応温度よりも高い330〜650℃の温度雰囲気下に
交互にさらして加熱処理することによつて触媒活
性能が所望値以下に経時劣化した前記触媒を逐次
的に賦活再生することを特徴とする排ガス中に含
有する窒素酸化物の除去方法。 2 前記の排ガスはボイラー、加熱炉、コークス
炉及び焼結炉等の固定発生源から排出される排ガ
スで、50〜1000ppmの窒素酸化物を含んでいる
ことを特徴とする特許請求の範囲第1項記載の方
法。 3 前記の排ガスは脱硝触媒を装填した反応装置
内に於けるガス空塔速度(GHSV)が2000〜
20000hr-1となるような速度で前記プロセス系に
導入されていることを特徴とする特許請求の範囲
第1項記載の方法。 4 前記の脱硝触媒はアルミナ、シリカアルミ
ナ、シリカ、珪藻土及びチタニアから選ばれた1
種又は2種以上の混合物から成る担体上に銅、チ
タン、バナジウム、クロム、マンガン、鉄、コバ
ルト、モリブデン、タングステン及びニツケルか
ら選ばれた1種又は2種以上の第1遷移金属の酸
化物、硫酸塩、金属酸素酸塩及び/又はヘテロポ
リ酸塩から成る活性成分を坦持した固体触媒であ
ることを特徴とする特許請求の範囲第1項記載の
方法。 5 前記反応装置と前記混合ガスの分岐点部との
間に位置する夫々のラインに当該混合ガスを加熱
するための加熱器が設けられていることを特徴と
する特許請求の範囲第1項記載の方法。 6 前記の加熱器はインライン・ヒータであるこ
とを特徴とする特許請求の範囲第5項記載の方
法。 7 前記反応装置の数は2基であることを特徴と
する特許請求の範囲第1項及び第5項のいずれか
1項に記載の方法。 8 前記アンモニアの排ガス中への導入は前記加
熱器の前段で行なわれることを特徴とする特許請
求の範囲第5項記載の方法。 9 前記の再生操作は賦活再生すべき触媒の装填
された反応装置の前段に設けられた加熱器で、当
該加熱器中を通過する排ガスを当該排ガス温度よ
りも高い330〜650℃の温度に加熱して行なわれる
ことを特徴とする特許請求の範囲第5項記載の方
法。 10 前記の加熱温度は350〜450℃の範囲にある
ことを特徴とする特許請求の範囲第9項記載の方
法。 11 前記の再生操作は夫々の反応装置につき、
0.5〜10時間行なわれることを特徴とする特許請
求の範囲第1項、第9項及び第10項のいずれか
1項に記載の方法。 12 前記の再生操作は夫々の反応器につき、4
〜40日の間隔で行なわれることを特徴とする特許
請求の範囲第1項及び第9項及至第11項のいず
れか1項に記載の方法。 13 前記の賦活再生すべき触媒は排ガス中に含
有する硫黄酸化物と水分、更には還元剤として導
入したアンモニアとが反応して生成されたアンモ
ニウム硫酸塩やアンモニウム亜硫酸塩等が触媒表
面上に沈着することによつて、その触媒活性能が
所望値以下に経時劣化した触媒であることを特徴
とする特許請求の範囲第1項記載の方法。
[Claims] 1. Nitrogen oxides contained in exhaust gas containing sulfur oxides and moisture are catalytically reacted with ammonia introduced as a reducing agent into the exhaust gas stream at a temperature of 150 to 350°C. In the denitrification process for denitrification and removal, the mixed gas containing ammonia introduced into the exhaust gas stream is dividedly introduced into a contact reaction device consisting of a plurality of units arranged in parallel to carry out the denitrification reaction. At the same time, the catalyst bed of the denitrification catalyst loaded in each reactor was heated in an atmosphere at a temperature of 330 to 650°C higher than the above reaction temperature without interrupting the operation of the process in any way. A method for removing nitrogen oxides contained in exhaust gas, which comprises sequentially reactivating and regenerating the catalyst whose catalytic activity has deteriorated over time to a desired value or less by being alternately exposed to heat treatment and subjected to heat treatment. 2. Claim 1, characterized in that the exhaust gas is exhaust gas discharged from fixed sources such as boilers, heating furnaces, coke ovens, and sintering furnaces, and contains 50 to 1000 ppm of nitrogen oxides. The method described in section. 3 The above exhaust gas has a gas superficial velocity (GHSV) of 2000~2000 in the reactor loaded with the denitrification catalyst.
A method according to claim 1, characterized in that the process system is introduced at a rate of 20000 hr -1 . 4 The denitrification catalyst is selected from alumina, silica alumina, silica, diatomaceous earth, and titania.
oxides of one or more first transition metals selected from copper, titanium, vanadium, chromium, manganese, iron, cobalt, molybdenum, tungsten and nickel on a support consisting of a species or a mixture of two or more; 2. The method according to claim 1, characterized in that the catalyst is a solid catalyst supporting an active component consisting of a sulfate, a metal oxyacid and/or a heteropolyacid. 5. Claim 1, characterized in that each line located between the reaction device and the branch point of the mixed gas is provided with a heater for heating the mixed gas. the method of. 6. The method of claim 5, wherein said heater is an in-line heater. 7. The method according to any one of claims 1 and 5, characterized in that the number of reactors is two. 8. The method according to claim 5, characterized in that the ammonia is introduced into the exhaust gas before the heater. 9 The above regeneration operation involves heating the exhaust gas passing through the heater to a temperature of 330 to 650°C, which is higher than the temperature of the exhaust gas, using a heater installed upstream of the reaction device loaded with the catalyst to be activated and regenerated. The method according to claim 5, characterized in that the method is carried out as follows. 10. The method according to claim 9, wherein the heating temperature is in the range of 350 to 450°C. 11 The above regeneration operation is carried out for each reactor,
11. A method according to any one of claims 1, 9 and 10, characterized in that it is carried out for 0.5 to 10 hours. 12 The above regeneration operation is carried out for each reactor,
12. A method according to any one of claims 1 and 9 to 11, characterized in that it is carried out at intervals of ~40 days. 13 The catalyst to be activated and regenerated has ammonium sulfate, ammonium sulfite, etc. produced by the reaction of sulfur oxides contained in the exhaust gas and moisture, as well as ammonia introduced as a reducing agent, which are deposited on the catalyst surface. 2. The method according to claim 1, wherein the catalyst has a catalytic activity that deteriorates over time to a level below a desired value.
JP2578478A 1978-03-07 1978-03-07 Entraining method of nitrogen oxide in exhaust gas Granted JPS54118382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2578478A JPS54118382A (en) 1978-03-07 1978-03-07 Entraining method of nitrogen oxide in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2578478A JPS54118382A (en) 1978-03-07 1978-03-07 Entraining method of nitrogen oxide in exhaust gas

Publications (2)

Publication Number Publication Date
JPS54118382A JPS54118382A (en) 1979-09-13
JPS6147567B2 true JPS6147567B2 (en) 1986-10-20

Family

ID=12175449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2578478A Granted JPS54118382A (en) 1978-03-07 1978-03-07 Entraining method of nitrogen oxide in exhaust gas

Country Status (1)

Country Link
JP (1) JPS54118382A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119278U (en) * 1987-01-28 1988-08-02

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3505416A1 (en) * 1985-02-16 1986-08-21 Kraftanlagen Ag, 6900 Heidelberg METHOD FOR THE SELECTIVE REMOVAL OF NITROGEN OXIDS FROM EXHAUST GASES
US4853193A (en) * 1986-01-10 1989-08-01 Exxon Research And Engineering Company Process for removing NOx and SOx from a gaseous mixture
JP6616737B2 (en) * 2016-05-31 2019-12-04 日立造船株式会社 Exhaust gas denitration device, incinerator and exhaust gas denitration method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119278U (en) * 1987-01-28 1988-08-02

Also Published As

Publication number Publication date
JPS54118382A (en) 1979-09-13

Similar Documents

Publication Publication Date Title
KR100327788B1 (en) Exhaust gas denitration method
RU2116123C1 (en) Method of removing sulfur compounds from residual gas
JP7223154B2 (en) Method for storing, reducing, and denitrifying industrial exhaust gas
JPS5843224A (en) Dry type flue gas desulfurization and denitration method
US20050112042A1 (en) Exhaust gas treatment method, exhaust gas treatment system, and catalytic oxidation apparatus
JPS6147567B2 (en)
EP3840859B1 (en) A process for selective catalytic reduction process and for regenerating deactivated scr catalyst of a parallel flue gas treating system
CN109663496A (en) A method of removing sulfureous in flue gas oxide and/or nitrogen oxides
EP0604198B1 (en) Method for treating ammonia
JP2021534960A (en) The selective catalytic reduction process and the method of regenerating the inactivating catalyst of that process.
EP3515578B1 (en) Method of regenerating a denox catalyst
JPH09234340A (en) Purification of exhaust gas containing oxidizable nitrogen compound
JPS61287423A (en) Treatment of exhaust gas
JP3704159B2 (en) Exhaust gas treatment method
JP3779889B2 (en) Catalyst regeneration method
KR20210077018A (en) Method for treating exhaust gas
CN109789372A (en) The method for reducing nitrogen oxide compound
JPS6350052B2 (en)
RU2081685C1 (en) Method for purifying flue gases from nitrogen oxides
JPS5913893B2 (en) Flue gas denitrification catalyst with low temperature activity
JP2000254453A (en) Process and equipment for waste gas treatment
JP2021534961A (en) Offline catalytic regeneration of the selective catalytic reduction process and the inactivation catalyst of that process
JPH07136464A (en) Apparatus and method for treating nitrogen oxide in exhaust gas
JPS6211891B2 (en)
JPS6257368B2 (en)