JPS614739A - Porous electrolytic polymer film and its preparation - Google Patents

Porous electrolytic polymer film and its preparation

Info

Publication number
JPS614739A
JPS614739A JP12365484A JP12365484A JPS614739A JP S614739 A JPS614739 A JP S614739A JP 12365484 A JP12365484 A JP 12365484A JP 12365484 A JP12365484 A JP 12365484A JP S614739 A JPS614739 A JP S614739A
Authority
JP
Japan
Prior art keywords
film
polymer
electrode
polymer film
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12365484A
Other languages
Japanese (ja)
Inventor
Toshiaki Tamamura
敏昭 玉村
Osamu Niwa
修 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP12365484A priority Critical patent/JPS614739A/en
Publication of JPS614739A publication Critical patent/JPS614739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain the titled film having a thicknesswise unsymmetrical constitution and excellent electrical conductivity, by the electrolytic polymerization of an aromatic compound on an electrode having a polymer film adhering thereto to form a composite with the film, followed by removal of the film polymer by extraction. CONSTITUTION:An insulating polymer film such as a PVC resin film is sticked to an electrode prepared by depositing a conductive metal oxide such as indium oxide on a base plate such as a glass plate to give an electrode having a polymer film adhering thereto. This electrode and a counter electrode are immersed in an electrolyte solution prepared by dissolving an aromatic compound (e.g. pyrrole) and an electrolyte such as an organic quaternary ammonium salt in an acetonitrile solvent to cause to undergo electrolytic polymerization, allowing the electrolytic polymer of the aromatic compound aforementioned (e.g. a polypyrrole) to form a composite with the polymer film. This composite film is stripped off from the base plate and only the polymer film is removed by extraction to give the titled film which has a densely deposited electrolytic polymer on one side and a porous constitution on the other side and inside.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、各種分離膜等に使用できる新しい多孔質高分
子フィルム及びその製造方法に関する0 〔従来の技術〕 従来、多孔質の高分子フィルムを製造する方法としては
発泡剤を用いる方法、樹脂フィルムのゲルを作り、ゲル
から溶媒等を除去する方法、樹脂に充てん剤を混合し、
フィルムに成形後光てん剤を除去する方法等が知られて
いた。このような多孔質フィルムは、ガスや液体、イオ
ン等の分離膜として非常に大きな需要が期待されている
。分離膜としての分離性能の向上Jは、膜厚方向に非対
称な構造を有する多孔質フィルムが要求されている。す
なわち、片面の表面は比較的ち密な構造をもち、気体、
液体、イオン等の分離能が高く、フィルム内部及び裏面
は多孔質で分離した気体、液体、イオン等の分子が通過
しやすい構造が望ましい。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a new porous polymer film that can be used for various separation membranes, etc., and a method for producing the same. Methods of manufacturing include using a foaming agent, creating a resin film gel and removing the solvent etc. from the gel, and mixing a filler with the resin.
A method is known in which the photonic agent is removed after the film is formed. Such porous films are expected to be in great demand as separation membranes for gases, liquids, ions, etc. In order to improve the separation performance of a separation membrane, a porous film having an asymmetric structure in the thickness direction is required. In other words, one surface has a relatively dense structure, and gas,
It is desirable that the film has a high separation ability for liquids, ions, etc., and that the inside and back surface of the film are porous so that separated molecules of gas, liquid, ions, etc. can easily pass through.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の方法ではこのような構造の多孔質
フィルムを得ることは困難であった。
However, it has been difficult to obtain a porous film with such a structure using conventional methods.

また、近年ポリアセチレンやポリピロール等の導電性高
分子フィルムの研究が活発になつ℃おり、特にポリアセ
チレンフィルムは繊維状で表面積の大きい一種の多孔質
フィルムを与える。
In recent years, research on conductive polymer films such as polyacetylene and polypyrrole has become active. In particular, polyacetylene films are fibrous and provide a type of porous film with a large surface area.

この多孔質性のため多量のイオンを取込みやすく、また
、イオンの電気化学的ドーピングにより電気伝導度が変
化するためフィルム状の電池材として注目されているが
、非対称の多孔質フィルムを得ることは難しい。
This porosity makes it easy to incorporate large amounts of ions, and electrochemical doping of ions changes the electrical conductivity, so it is attracting attention as a film-like battery material, but it is difficult to obtain an asymmetric porous film. difficult.

他方、ビロールやチオフェンのようなある種の芳香族化
合物は電解重合により電極上に導電性の高分子フィルム
を与えることが知られる。
On the other hand, certain aromatic compounds such as virol and thiophene are known to provide conductive polymer films on electrodes through electrolytic polymerization.

本発明者等は既に絶縁性の高分子フィルム中に電気化学
的に芳香族化合物の電解重合体を複合化させ、新しい導
電性高分子フィルムが得られる方法を開発した(特願昭
58−186991号、同58−215201号、同5
8−2’ 15204号)。
The present inventors have already developed a method for obtaining a new conductive polymer film by electrochemically compounding an electrolytic polymer of an aromatic compound into an insulating polymer film (Japanese Patent Application No. 58-186991) No. 58-215201, No. 5
8-2' No. 15204).

すなわち、電解重合による導電性高分子フィルムは通常
電極基板を、アセトニトリル等の有機溶媒中に電解重合
用モノマーとなる芳香族化合物と通電させるための電解
質とを溶解させた溶液中に、対向電極と共に入れ、両電
極間に通電させることにより形成される。この際、電極
基板を絶縁性の高分子フィルムでコーティングすれば、
当然通電できず導電性フィルムは全く形成されない。し
かしながら本発明者等は電極基板上に各種の高分子フィ
ルムを塗布し、これを溶解させることのない適切な電解
反応溶液を組合せることにより電解反応が通常の電極上
と同様に進むことを既に見出した。
In other words, a conductive polymer film produced by electrolytic polymerization is usually produced by placing an electrode substrate together with a counter electrode in a solution containing an aromatic compound as a monomer for electrolytic polymerization and an electrolyte for conducting electricity in an organic solvent such as acetonitrile. It is formed by applying current between the two electrodes. At this time, if the electrode substrate is coated with an insulating polymer film,
Naturally, electricity cannot be passed and no conductive film is formed. However, the present inventors have already shown that by coating various polymer films on electrode substrates and combining them with an appropriate electrolytic reaction solution that does not dissolve the films, the electrolytic reaction proceeds in the same way as on ordinary electrodes. I found it.

上り己のポリピロール、ポリチオフェンのような導電性
高分子フィルムの構造は電解重合の条件により、その構
造や機械的性質が異なるが、通常、均一な構造をもち、
非対称の多孔質なフィルムを得ることは困難である。
The structure and mechanical properties of conductive polymer films such as polypyrrole and polythiophene differ depending on the conditions of electrolytic polymerization, but they usually have a uniform structure.
It is difficult to obtain asymmetric porous films.

本発明の目的は、従来の欠点を除去し、非対称の構造を
もつ導電性の多孔質フィルム及びその製造方法を提供す
ることにある。
An object of the present invention is to eliminate the conventional drawbacks and provide a conductive porous film with an asymmetric structure and a method for producing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明を概説すれば、本発明の第1の発明は多孔質電解
重合体フィルムに関する発明であり、芳香族化合物の電
解重合体フィルムであって、多孔質のものであることを
特徴とする。
To summarize the present invention, the first invention relates to a porous electrolytic polymer film, which is an electrolytic polymer film of an aromatic compound, and is characterized in that it is porous.

そして、本発明の第2の発明は多孔質電解重合体フィル
ムの製造方法に関する発明であって、電極上に高分子フ
ィルムを密着させる工程、該フィルム付電極上で芳香族
化合物の電解重合を行って該芳香族化合物の重合体を該
高分子フィルム中に複合させる工程、及び該複合フィル
ムより該高分子フィルムを抽出除去する工程の各工程を
包含することを特徴とする。
A second invention of the present invention relates to a method for producing a porous electrolytic polymer film, which includes a step of closely adhering a polymer film to an electrode, and electrolytically polymerizing an aromatic compound on the film-attached electrode. The method is characterized in that it includes the following steps: a step of compounding the polymer of the aromatic compound into the polymer film, and a step of extracting and removing the polymer film from the composite film.

本発明者等の開発した既述の方法で得られた導電性高分
子フィルムは芳香族化合物の電解重合体と、絶縁性の高
分子フィルム材の混合物であり、お互いに化学的な結合
があることは確認されない。一般5に芳香族化合物の電
解重合体は溶剤にほとんど不溶のため、このフィルムか
ら絶縁性の高分子フィルム材を溶剤を用いて抽出・除去
できる。抽出後のフィルムは芳香族化合物の電解重合体
の単独フィルムとなるが、得られたフィルムの表・裏を
走査電子顕微鏡で観察すると電極に接していた裏面はち
密に電解重合体が堆積しているが反対の面は空げきの多
い多孔質の状態である。これは抽出前の複合化されたフ
ィルムの裏面は覚醒重合体が大部分であるのに対して表
面は絶縁性の高分子フィルム材が多く、電解重合体の占
める体積が少ないためである。このフィルムの構造は用
いる電層重合条件によりかなり変化するものの、いずれ
の場合も膜厚方向内で非対称な多孔質フィルムを与える
0 本発明に使用できる電解重合体を与える芳香族化合物と
してはピロール、6−メチルビロール、N−メチルピロ
ール、チオフェン、フラン、フェノール、チオフェノー
ル、セレノフェン、テルロフェン、ビフェニル、アズレ
ン、p−ターフェニル、0−ターフェニル、p−クォー
タフェニル、2−ヒドロキシビフェニル、ジフェニルス
ルフィド、2−(α−チェニル)チオフェン、2−(α
−チェニル)フラン、2−(2−ヒロリル)ビロール、
2−(2−ピロリル)チオフェン、2−フェニルチオフ
ェン、α−チェニルフェニルエーテル、β−フリル−α
−チェニルセレニド、2−(2−ピロリル)セレノフェ
ン、2−(2−セレニエニル)テルロフェン、N−ビニ
ルカルバゾール、N−エチニルカルバゾール、メチルア
ズレン、ピレン等の芳香族化合物が使用できる。また、
芳香族化合物ではないが各種置換ブタジェン化合物も使
用できる0 次に、電解重合時の電解質としては有機第4級アンモニ
ウム塩、無機塩、プロトン酸及びエステル等種々の化合
物が使用できる。溶剤としてはアセトニ) IJル系の
ものを通常使用するが1、芳香族化合物の電解重合が可
能で、適当な電解質を溶解させ、るものであれば選択で
きる。
The conductive polymer film obtained by the above-described method developed by the present inventors is a mixture of an electrolytic polymer of an aromatic compound and an insulating polymer film material, and they have chemical bonds with each other. That is not confirmed. Generally speaking, electrolytic polymers of aromatic compounds are almost insoluble in solvents, so the insulating polymeric film material can be extracted and removed from the film using a solvent. The film after extraction becomes a single film of electrolytic polymer of aromatic compounds, but when the front and back sides of the obtained film were observed with a scanning electron microscope, it was found that the electrolytic polymer was densely deposited on the back side that was in contact with the electrode. However, the other side is porous with many voids. This is because the back side of the composite film before extraction is mostly made up of awakened polymer, whereas the front side is made up of a lot of insulating polymeric film material, and the volume occupied by the electrolytic polymer is small. The structure of this film varies considerably depending on the electropolymerization conditions used, but in any case it gives a porous film that is asymmetric in the thickness direction. Examples of aromatic compounds that give the electrolytic polymer that can be used in the present invention include pyrrole, 6-methylpyrrole, N-methylpyrrole, thiophene, furan, phenol, thiophenol, selenophene, tellurophene, biphenyl, azulene, p-terphenyl, 0-terphenyl, p-quarterphenyl, 2-hydroxybiphenyl, diphenyl sulfide, 2 -(α-chenyl)thiophene, 2-(α
-chenyl)furan, 2-(2-hyloryl)virol,
2-(2-pyrrolyl)thiophene, 2-phenylthiophene, α-chenylphenyl ether, β-furyl-α
-Aromatic compounds such as chenylselenide, 2-(2-pyrrolyl)selenophene, 2-(2-selenienyl)tellophene, N-vinylcarbazole, N-ethynylcarbazole, methylazulene, and pyrene can be used. Also,
Although not aromatic compounds, various substituted butadiene compounds can also be used.Next, various compounds such as organic quaternary ammonium salts, inorganic salts, protonic acids, and esters can be used as electrolytes during electrolytic polymerization. As a solvent, an acetonyl-based solvent is usually used, but any solvent can be selected as long as it is capable of electrolytically polymerizing aromatic compounds and dissolves a suitable electrolyte.

また、電極上に塗布する絶縁性の高分子フィルム材とし
ては、均一にフィルムを形成でき、かつ複合化の後に溶
剤により抽出・除去できる材料であれば使用できる。こ
のようなフィルム材としてはポリ塩化ビニル系樹脂、ポ
リスチレン系樹脂、アクリレート系高分子材、メタクリ
レート系高分子材等があるが、これらの材料は抽出・除
去されてしまうため本発明の多孔質フィルム材の製造方
法としては基本的に重要なものではない。
Further, as the insulating polymer film material to be applied on the electrode, any material can be used as long as it can form a uniform film and can be extracted and removed with a solvent after composite formation. Such film materials include polyvinyl chloride resin, polystyrene resin, acrylate polymer material, methacrylate polymer material, etc. However, since these materials are extracted and removed, the porous film of the present invention It is not fundamentally important as a method of manufacturing the material.

他方、電解重合用の基板としては、金、白金、パラジウ
ム等の貴金属あるいは酸化スズ、酸化インジウム等の導
電性金属酸化物、あるいはこれらを適当な基板上にメッ
キ、蒸着、スパッタリングのいずれかの方法で堆積した
ものが使用でき、また、これらをドラム状の形状にする
ことにより連続的に製造することも可能である。
On the other hand, as a substrate for electrolytic polymerization, noble metals such as gold, platinum, and palladium, or conductive metal oxides such as tin oxide and indium oxide, or these may be plated, vapor-deposited, or sputtered onto a suitable substrate. It is possible to use those deposited in the following manner, and it is also possible to manufacture them continuously by forming them into a drum shape.

〔実施例〕〔Example〕

以下、本発明を実施例により更に具体的に説明するが、
本発明はこれら実施例に限定されな実施例1 ガラス基板上に1ooXのクロム及び700Xの金を蒸
着した後、7ooXの酸化インジウムをスパッタリング
法で形成した。このようにして得た酸化インジウム層を
表面にした導電性基板上に、ポリ塩化ビニル(分子量7
万)のメチルエテルケトン溶液からキャスティング法に
より厚さ2O2μmのフィルムを形成した。このフィル
ム付基板を、アセトニトリル−メチルエテルケトン(1
:1)の混合溶媒に、0.6モル/lのテトラエテルア
ンモニウムパラトルエンスルホネート、1モル/lのピ
ロールを溶解した電解液に、白金メンキしたチタンメツ
シュを対向電極として、浸漬し、50■の電圧で10分
間ピロールの電解重合を行うと、黒色のポリピロールの
析出が認められた。フイ・ルムは基板からはく離し、重
量を測定した後、テトラヒドロフラン溶液に1時間浸漬
し、ポリ塩化ビニルを除去した。得られたフィルムの重
量を測定したところ浸漬前の21チで、膜厚は45μm
であり、空孔率を密度の測定から調べたところ25%で
あった。このフィルムの電気伝導度は12S/αで高い
導電性を示した。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these examples. Example 1 After 100X of chromium and 700X of gold were deposited on a glass substrate, 700X of indium oxide was formed by sputtering. Polyvinyl chloride (molecular weight 7
A film with a thickness of 202 μm was formed from a methyl ether ketone solution of 10,000 ml by a casting method. This film-coated substrate was coated with acetonitrile-methyl ether ketone (1
: A platinum-plated titanium mesh was immersed as a counter electrode in an electrolytic solution prepared by dissolving 0.6 mol/l of tetraethelammonium paratoluenesulfonate and 1 mol/l of pyrrole in the mixed solvent of 1). When pyrrole was electrolytically polymerized at voltage for 10 minutes, black polypyrrole was observed to be deposited. The film was peeled off from the substrate, its weight was measured, and then immersed in a tetrahydrofuran solution for 1 hour to remove the polyvinyl chloride. When the weight of the obtained film was measured, it was 21 inches before dipping, and the film thickness was 45 μm.
The porosity was determined to be 25% by density measurement. The electrical conductivity of this film was 12S/α, indicating high electrical conductivity.

更に、フィルムの構造を走査電子顕微鏡で測定したとこ
ろ、基板面に接していた裏面はち密な構造をもっている
のに対し、表面は1μm前後の細かい凹凸が一面にみら
れ、多孔質であることが確認もれた。
Furthermore, when the structure of the film was measured using a scanning electron microscope, it was found that the back side, which was in contact with the substrate surface, had a dense structure, whereas the front surface had fine irregularities of around 1 μm, indicating that it was porous. Confirmation was omitted.

実施例2 実施例1と同様の基板上に同様にポリ塩化ビニルを10
μmの厚さに塗布した。このフィルム付基板を、アセト
ニトリル溶媒に、1モルのピロール、0.3モルのテト
ラエテルアンモニウムバークロレートを溶解させた電解
液に浸漬し、白金メンキしたチタンメンシュを対向電極
としてXOVの電圧で10分間ピロールの電解重合を行
った。
Example 2 Polyvinyl chloride was deposited on the same substrate as in Example 1.
It was applied to a thickness of μm. This film-coated substrate was immersed in an electrolytic solution in which 1 mol of pyrrole and 0.3 mol of tetraethelammonium verchlorate were dissolved in acetonitrile solvent, and a platinum-coated titanium mensch was used as a counter electrode at a voltage of XOV for 10 Electrolytic polymerization of pyrrole was carried out for minutes.

このフィルムを基板からはく離し、フィルムの重量を測
定した後、テトラヒドロフラン溶液に1時間浸漬し、ポ
リ塩化ビニルを除去した。
This film was peeled off from the substrate, the weight of the film was measured, and then immersed in a tetrahydrofuran solution for 1 hour to remove polyvinyl chloride.

得られたフィルムの重量を測定したところ、浸漬前の1
7%で膜厚は5.8μmであった。密度を測定して空孔
率を求めたところ、37%であった。このフィルムの電
気伝導度を4端子法で測定したところ2.58 / c
mと高い導電性を示した。
When the weight of the obtained film was measured, it was found that 1
At 7%, the film thickness was 5.8 μm. The porosity was determined by measuring the density and was found to be 37%. The electrical conductivity of this film was measured using the four-terminal method and was 2.58/c.
It showed high conductivity of m.

更にフィルムの構造を走査電子顕微鏡で観察したところ
、基板面に接していた裏面は細かい。
Furthermore, when the structure of the film was observed using a scanning electron microscope, the back surface that was in contact with the substrate surface was fine.

メツシュ状であるのに対し、表面はすき間の多い構造が
みられ、非対称の多孔質のフィルムであった。
In contrast to the mesh-like structure, the surface had a structure with many gaps, making it an asymmetric porous film.

実施例3 実施例1と同じ基板上にキャスト法により厚さ12μm
のポリスチレンフィルムを塗布スる。
Example 3 Thickness: 12 μm by casting method on the same substrate as Example 1
Apply a polystyrene film.

他方、チオノエフ1モル/1.テトラブテルアンモニウ
ムパークロレー) 0.4モル/lを含むアセトニトリ
ル−ニトロベンゼン(3:1)溶液を調製した。この溶
液中にフィルム付基板を浸漬し、白金メツシュの対向電
極との間に4゜■の電圧で15分間チオフェンの電解重
合を行った。その結果、緑青色のポリチオフェンの形成
が認められた。フィルムを基板よりはく離した後、メチ
ルエチルケトンに2時間浸漬し、ボ′リステレンを溶解
除去した。このようにして得られたフィルムは重量が浸
漬前に比べて23チになり、膜厚は5.6μ常であった
。また密度の測定からの空孔率は28%であった。更に
、フィルムの構造を走査電子顕微鏡で観察したところ、
基板面に接していた裏面はち密で明確な構造がみられな
いのに対し、表面はすき間の多い構造がみられ、フィル
ムが非対称の多孔質構造であることが確認された。
On the other hand, Thionoev 1 mol/1. An acetonitrile-nitrobenzene (3:1) solution containing 0.4 mol/l of tetrabuterammonium perchlorate was prepared. The film-coated substrate was immersed in this solution, and thiophene was electrolytically polymerized at a voltage of 4° for 15 minutes between the platinum mesh and the counter electrode. As a result, formation of green-blue polythiophene was observed. After the film was peeled off from the substrate, it was immersed in methyl ethyl ketone for 2 hours to dissolve and remove the bolysterene. The weight of the film thus obtained was 23 cm compared to before dipping, and the film thickness was 5.6 μm. Further, the porosity from density measurement was 28%. Furthermore, when we observed the structure of the film using a scanning electron microscope, we found that
The back side, which was in contact with the substrate surface, was dense and had no clear structure, whereas the front side had a structure with many gaps, confirming that the film had an asymmetric porous structure.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明方法によれば電気化学的に
芳香族化合物の電解重合体を高分子フィルム中に複合化
し、得られた複合フィルムから高分子フィルム材を抽出
・除去することにより、非対称の多孔質、フィルムが得
られる。このフィルムは複合する条件により多様な構造
の多孔質フィルムが得られ、また高い導電性を示す特徴
がある。
As explained above, according to the method of the present invention, an electrolytic polymer of an aromatic compound is electrochemically composited into a polymer film, and the polymer film material is extracted and removed from the resulting composite film. An asymmetric porous film is obtained. This film has the characteristic that porous films with various structures can be obtained depending on the combination of conditions and exhibit high electrical conductivity.

これらのフィルムは分離膜や電池用の多孔質材としての
産業上の利用分野がある。
These films have industrial applications as separation membranes and porous materials for batteries.

Claims (1)

【特許請求の範囲】 1、芳香族化合物の電解重合体フィルムであつて、多孔
質のものであることを特徴とする多孔質電解重合体フィ
ルム。 2、電極上に高分子フィルムを密着させる工程、該フィ
ルム付電極上で芳香族化合物の電解重合を行つて該芳香
族化合物の重合体を該高分子フィルム中に複合させる工
程、及び該複合フィルムより該高分子フィルムを抽出除
去する工程の各工程を包含することを特徴とする多孔質
電解重合体フィルムの製造方法。
[Scope of Claims] 1. A porous electrolytic polymer film of an aromatic compound, which is porous. 2. A step of closely adhering a polymer film onto the electrode, a step of electrolytically polymerizing an aromatic compound on the electrode with the film to composite the polymer of the aromatic compound into the polymer film, and the composite film. A method for producing a porous electrolytic polymer film, comprising the steps of extracting and removing the polymer film.
JP12365484A 1984-06-18 1984-06-18 Porous electrolytic polymer film and its preparation Pending JPS614739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12365484A JPS614739A (en) 1984-06-18 1984-06-18 Porous electrolytic polymer film and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12365484A JPS614739A (en) 1984-06-18 1984-06-18 Porous electrolytic polymer film and its preparation

Publications (1)

Publication Number Publication Date
JPS614739A true JPS614739A (en) 1986-01-10

Family

ID=14865963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12365484A Pending JPS614739A (en) 1984-06-18 1984-06-18 Porous electrolytic polymer film and its preparation

Country Status (1)

Country Link
JP (1) JPS614739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6594141B2 (en) 2001-10-19 2003-07-15 Nec Tokin Toyama, Ltd. Solid electrolytic capacitor and method for preparing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6594141B2 (en) 2001-10-19 2003-07-15 Nec Tokin Toyama, Ltd. Solid electrolytic capacitor and method for preparing the same

Similar Documents

Publication Publication Date Title
Bartlett et al. Electrochemical syntheses of highly ordered macroporous conducting polymers grown around self-assembled colloidal templates
EP2909364B1 (en) Electropolymerization of a coating onto an electrode material
KR900003155B1 (en) Polymer film with conductive pattern and method of manufacturing the same
Majda et al. Electrochemical behavior of tris (2, 2'-bipyridine) ruthenium complexes in films of poly (styrenesulfonate) on electrodes
WO1988008210A1 (en) Sheet-like electrode, method of producing the same, and secondary cell
Higgins et al. Grafting and electrochemical characterisation of poly-(3, 4-ethylenedioxythiophene) films, on Nafion and on radiation-grafted polystyrenesulfonate–polyvinylidene fluoride composite surfaces
US5189770A (en) Method of making solid electrolyte capacitor
Kupila et al. Redox processes in thick films of polypyrrole/dodecylsulfate in the presence of alkali and tetramethylammonium chlorides
JPS614739A (en) Porous electrolytic polymer film and its preparation
Hwang et al. Conductivity and stability of polypyrrole film electrosynthesized on a PbO2/SnO2/Ti substrate
JPH03231932A (en) Porous film produced by electrolytic polymerization and production thereof
Matencio et al. Electrochemical study of poly (vinyl chloride)/polypyrrole blends
JPH0750106A (en) Micron and submicron order solid microelectrode of conductive polymer and its manufacture
JPS62292855A (en) Electrically conductive high-molecular material
JPH0124236B2 (en)
JPS63248054A (en) Conductive high-molecular electrode material and its manufacture
JPS6223195A (en) Conductive circuit board and improvement in conductivity thereof
JP3344152B2 (en) Manufacturing method of electrode plate for lead-acid battery
JPH0720504A (en) Electrode and electrochemical display device using same
JPS62296375A (en) Manufacture of polymer composite material
JP2001163983A (en) Polymerization additive
Chen et al. Synthesis and characterization of electroactive polymers based on pyrrole
SU1613450A1 (en) Method of producing conducting polymeric coating
JPS63102104A (en) Ion conducting organic film
JPS612204A (en) Conductive polymer film material and method of producing same