JPS63248054A - Conductive high-molecular electrode material and its manufacture - Google Patents
Conductive high-molecular electrode material and its manufactureInfo
- Publication number
- JPS63248054A JPS63248054A JP62079796A JP7979687A JPS63248054A JP S63248054 A JPS63248054 A JP S63248054A JP 62079796 A JP62079796 A JP 62079796A JP 7979687 A JP7979687 A JP 7979687A JP S63248054 A JPS63248054 A JP S63248054A
- Authority
- JP
- Japan
- Prior art keywords
- film
- electrode
- polymer
- molecular
- electrode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007772 electrode material Substances 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 239000002131 composite material Substances 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 16
- 150000001491 aromatic compounds Chemical class 0.000 claims abstract description 15
- 229920000642 polymer Polymers 0.000 claims abstract description 14
- 229920006254 polymer film Polymers 0.000 claims description 27
- 238000006116 polymerization reaction Methods 0.000 claims description 19
- 229920001940 conductive polymer Polymers 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 230000010220 ion permeability Effects 0.000 abstract description 4
- 238000009792 diffusion process Methods 0.000 abstract description 3
- 239000002120 nanofilm Substances 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 65
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 39
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- WYURNTSHIVDZCO-UHFFFAOYSA-N tetrahydrofuran Substances C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 9
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 8
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 8
- 230000000379 polymerizing effect Effects 0.000 description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 229920000915 polyvinyl chloride Polymers 0.000 description 7
- 239000004800 polyvinyl chloride Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 6
- 238000000605 extraction Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000011259 mixed solution Substances 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 229930192474 thiophene Natural products 0.000 description 5
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QKFFSWPNFCXGIQ-UHFFFAOYSA-M 4-methylbenzenesulfonate;tetraethylazanium Chemical compound CC[N+](CC)(CC)CC.CC1=CC=C(S([O-])(=O)=O)C=C1 QKFFSWPNFCXGIQ-UHFFFAOYSA-M 0.000 description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- -1 paratoluenesulfonate anion Chemical class 0.000 description 3
- 229920002454 poly(glycidyl methacrylate) polymer Polymers 0.000 description 3
- 229920001197 polyacetylene Polymers 0.000 description 3
- 229920000128 polypyrrole Polymers 0.000 description 3
- 229920000123 polythiophene Polymers 0.000 description 3
- QENGPZGAWFQWCZ-UHFFFAOYSA-N 3-Methylthiophene Chemical compound CC=1C=CSC=1 QENGPZGAWFQWCZ-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- CUFNKYGDVFVPHO-UHFFFAOYSA-N azulene Chemical compound C1=CC=CC2=CC=CC2=C1 CUFNKYGDVFVPHO-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- XJKSTNDFUHDPQJ-UHFFFAOYSA-N 1,4-diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=C(C=2C=CC=CC=2)C=C1 XJKSTNDFUHDPQJ-UHFFFAOYSA-N 0.000 description 1
- LYTMVABTDYMBQK-UHFFFAOYSA-N 2-benzothiophene Chemical compound C1=CC=CC2=CSC=C21 LYTMVABTDYMBQK-UHFFFAOYSA-N 0.000 description 1
- JCCCMAAJYSNBPR-UHFFFAOYSA-N 2-ethylthiophene Chemical compound CCC1=CC=CS1 JCCCMAAJYSNBPR-UHFFFAOYSA-N 0.000 description 1
- RFSKGCVUDQRZSD-UHFFFAOYSA-N 3-methoxythiophene Chemical compound COC=1C=CSC=1 RFSKGCVUDQRZSD-UHFFFAOYSA-N 0.000 description 1
- QZNFRMXKQCIPQY-UHFFFAOYSA-N 3-propylthiophene Chemical compound CCCC=1C=CSC=1 QZNFRMXKQCIPQY-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910001200 Ferrotitanium Inorganic materials 0.000 description 1
- 229930194542 Keto Natural products 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 241000121220 Tricholoma matsutake Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229930184652 p-Terphenyl Natural products 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920005553 polystyrene-acrylate Polymers 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- MABNMNVCOAICNO-UHFFFAOYSA-N selenophene Chemical compound C=1C=C[se]C=1 MABNMNVCOAICNO-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- TULWUZJYDBGXMY-UHFFFAOYSA-N tellurophene Chemical compound [Te]1C=CC=C1 TULWUZJYDBGXMY-UHFFFAOYSA-N 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-M toluene-4-sulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-M 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/137—Electrodes based on electro-active polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
各種電気化学デバイスに使用できる新しい導電性高分子
電極材料及びその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new conductive polymer electrode material that can be used in various electrochemical devices and a method for producing the same.
従来、導電性高分子電極材料を得る方法としては、(1
)電極基板上に化学的に導電性高分子を重合する方法、
(2)芳香族化合物上ツマ−を電極基板上で電気化学的
に酸化、重合する方法が知られている。この様な導電性
高分子電極は電池用、エレクトロクロミック用電極とし
ての需要が期待されている。電極材料としての特性向上
には膜内でのイオン拡散速度の大きく、内部抵抗が小さ
く、かつ電極との密着性に優れたフィルムが望ましい。Conventionally, methods for obtaining conductive polymer electrode materials include (1
) a method of chemically polymerizing conductive polymers onto an electrode substrate;
(2) A method of electrochemically oxidizing and polymerizing an aromatic compound on an electrode substrate is known. Such conductive polymer electrodes are expected to be in demand as electrodes for batteries and electrochromics. In order to improve properties as an electrode material, it is desirable to have a film that has a high ion diffusion rate within the film, a low internal resistance, and excellent adhesion to the electrode.
上記(1)の代表例としてポリアセチレンが研究されて
いる。ポリアセチレンフィルムは繊維状で表面積が大き
い多孔質フィルムを与える。このため、多量のイオンを
取り込み易く、イオンの電気化学的ドーピングによシミ
低伝導度が変化するため、フィルム状の電池材料として
注目されている。(2)の例としてはビロール、チオフ
ェン、アニリンなどを電気化学的に酸化して得られるポ
リピロール、ポリチオフェン、ポリアニリン等の電解重
合導電性フィルムが研究されている。これらの高分子フ
ィルムの構造は電圧、基板、溶媒、電解質により変える
ことが可能で、電圧印加により可逆的にイオンのドーピ
ング/脱ドープができ、また含有可能なイオンの量も多
いため、電池材料として研究されている。また、上記反
応に伴って可逆な色変化が起こるため表示素子への応用
も研究されている。Polyacetylene has been studied as a representative example of (1) above. Polyacetylene film is fibrous and provides a porous film with a large surface area. Therefore, it is attracting attention as a film-like battery material because it easily incorporates a large amount of ions and its low conductivity changes through electrochemical doping of ions. As an example of (2), electropolymerized conductive films of polypyrrole, polythiophene, polyaniline, etc. obtained by electrochemically oxidizing virol, thiophene, aniline, etc. have been studied. The structure of these polymer films can be changed by changing the voltage, substrate, solvent, and electrolyte, and ions can be reversibly doped/undoped by voltage application, and the amount of ions that can be contained is large, so they can be used as battery materials. It is being researched as Furthermore, since a reversible color change occurs with the above reaction, its application to display elements is also being studied.
ポリアセチレンフィルムは電極材料としての特性は良い
が、大気中で不安定で取扱いが非常に困難である。一方
、電解重合フィルムは安定性に優れ、重合条件によりフ
ィルム構造、電気化学的特性を変化させることができる
が、重合条件を変えることによって得られる構造は限ら
れ、一般に均一な構造をもち、多孔質でイオン拡散性に
優れかつ密着性に優れた層構造を実現することは困難で
ある。本発明者らは既に絶縁性の高分子フィルム中に電
気化学的に芳香族化合物の電解重合体を複合化させ、新
しい導電性高分子フィルムが得られることを見出した(
特願昭58−186991号、同58−215201号
、同58−215204号)。すなわち、電解重合によ
る導電性高分子フィルムは通常の電極基板を、アセトニ
トリル等の有機溶媒中に電解重合用モノマーとなる芳香
族化合物と通電させるための電解質とを溶解させた溶液
中に、対向電極と共に入れ、両極間に通電させることK
よシ形成される。この際、電極基板を絶縁性の高分子フ
ィルムでコートすれば、轟然通電できず導電性フィルム
は全く形成されない。しかしながら本発明者らは電極基
板上に各種の高分子フィルムを塗布し、これを溶解させ
ることのない適切々電解反応溶液を組合せることによシ
、電解反応が通常の電極上と同様に進み、絶縁性の高分
子と電解重合ポリマーの複合したフィルムが得られるこ
とを見出した。Although polyacetylene film has good properties as an electrode material, it is unstable in the atmosphere and is extremely difficult to handle. On the other hand, electrolytically polymerized films have excellent stability and can change the film structure and electrochemical properties depending on the polymerization conditions, but the structures that can be obtained by changing the polymerization conditions are limited and generally have a uniform structure and porous It is difficult to realize a layered structure with high quality, excellent ion diffusivity, and excellent adhesion. The present inventors have already discovered that a new conductive polymer film can be obtained by electrochemically compounding an electrolytic polymer of an aromatic compound into an insulating polymer film (
Japanese Patent Application No. 58-186991, No. 58-215201, No. 58-215204). In other words, a conductive polymer film produced by electrolytic polymerization is produced by placing a common electrode substrate on a counter electrode in a solution containing an aromatic compound that will become a monomer for electrolytic polymerization and an electrolyte for conducting electricity in an organic solvent such as acetonitrile. K
It is well formed. At this time, if the electrode substrate is coated with an insulating polymer film, no current can be passed and no conductive film is formed at all. However, the present inventors applied various types of polymer films on electrode substrates and combined them with an appropriate electrolytic reaction solution that does not dissolve the films, thereby allowing the electrolytic reaction to proceed in the same way as on ordinary electrodes. It was discovered that a composite film of an insulating polymer and an electrolytically polymerized polymer can be obtained.
更に1本発明者らは該複合フィルムから溶剤によシ絶縁
性高分子を抽出除去し、膜厚方向に非対称なイオン透過
性に優れたフィルムを開発している(特願昭59−12
5654号)。このフィルムは、膜中でのイオン透過性
は従来の電解重合フィルムに比較し向上したが、抽出中
に電極からのはく離が起こり電極への密着性の向上が困
難である。Furthermore, the present inventors extracted and removed the insulating polymer from the composite film using a solvent, and developed a film with excellent ion permeability that is asymmetrical in the film thickness direction (Japanese Patent Application No. 1986-12).
No. 5654). Although this film has improved ion permeability in the membrane compared to conventional electropolymerized films, it peels off from the electrode during extraction, making it difficult to improve adhesion to the electrode.
本発明の目的は、従来の欠点を除去し、高いイオン透過
性と基板への密着性を兼ね備えた導電性高分子電極材料
、及びその製造方法を提供することにある。An object of the present invention is to provide a conductive polymer electrode material that eliminates the conventional drawbacks and has both high ion permeability and adhesion to a substrate, and a method for manufacturing the same.
本発明を概説すれば、本発明の第1の発明は導電性高分
子電極材料に関する発明であって、電極上にコートした
2種の絶縁性高分子フィルム中に芳香族化合物の電解重
合体を形成させた後、上層の絶縁性高分子フィルムのみ
を抽出除去して得られる材料であることを特徴とする。To summarize the present invention, the first invention relates to a conductive polymer electrode material, in which an electrolytic polymer of an aromatic compound is contained in two types of insulating polymer films coated on an electrode. It is characterized in that it is a material obtained by extracting and removing only the upper layer of the insulating polymer film after formation.
そして、本発明の第2の発明は導電性高分子電極材料の
製造方法に関する発明であって、電極上に下層の絶縁性
高分子フィルムをコートする工程、その上に上層の絶縁
性高分子フィルムをコートする工程、該フィルムつき電
極基板上で芳香族化合物の電解重合を行って該芳香族化
合物の重合体を該下層及び上層高分子フィルム中に複合
させる工程、及び該複合フィルムより該上層高分子フィ
ルムのみを抽出除去する工程の各工程を包含することを
特徴とする。The second invention of the present invention relates to a method for manufacturing a conductive polymer electrode material, which includes a step of coating a lower layer of an insulating polymer film on the electrode, and a step of coating an upper layer of an insulating polymer film on the electrode. a step of electrolytically polymerizing an aromatic compound on the electrode substrate with the film to composite the polymer of the aromatic compound into the lower and upper polymer films; It is characterized by including each step of extracting and removing only the molecular film.
本発明の電極材料は、具体的には金属などの電極上に形
成された電解重合複合フィルムで第1図に示す様に絶縁
性高分子が抽出除去された多孔質層と電極に密着した複
合層をもつことを特徴とする。すなわち第1図は本発明
の導電性高分子電極材料の構造を示す断面概略図であシ
、符号1は上層の絶縁性高分子フィルムを抽出除去した
後の多孔質電解重合層、2は下層の絶縁性高分子−電解
重合高分子複合層、Sは電極を意味する。Specifically, the electrode material of the present invention is an electropolymerized composite film formed on an electrode such as a metal, and as shown in FIG. It is characterized by having layers. That is, FIG. 1 is a schematic cross-sectional view showing the structure of the conductive polymer electrode material of the present invention, where 1 is the porous electropolymerized layer after the upper insulating polymer film has been extracted and removed, and 2 is the lower layer. Insulating polymer-electrolytically polymerized polymer composite layer, S means an electrode.
本発明に使用できる電解重合体を与える芳香族化合物と
しては電解重合可能外ものであれば良く、例エハヒロー
ル、3−メチルビロール、11−メチルビロール、N−
フェニルビロール、チオフェン、フラン、フェノール、
3−メチルチオフェン、5−エチルチオフェン、3−プ
ロピルチオフェン、3−メトキシチオフェン、セレノフ
ェン、テルロフェン、ビフェニル、アズレン、アニリン
、イソチアナフテン、カルバゾール、p−ターフェニル
、0−ターフェニル、ビテオフエン、α−ターチェニル
、ピレン等の芳香族化合物が挙げられる。The aromatic compound that provides the electrolytic polymer that can be used in the present invention may be any compound that can be electrolytically polymerized, such as Ehahirol, 3-methylvirol, 11-methylvirol, N-
phenylvirol, thiophene, furan, phenol,
3-Methylthiophene, 5-ethylthiophene, 3-propylthiophene, 3-methoxythiophene, selenophene, tellurophene, biphenyl, azulene, aniline, isothianaphthene, carbazole, p-terphenyl, 0-terphenyl, biteophene, α- Examples include aromatic compounds such as terchenyl and pyrene.
次に、電解重合時の電解質としては通常電解重合に使わ
れているものならいずれでも良く、例えば有機第4級ア
ンモニウム塩、無機塩、プロトン酸、及びエステル等稽
々の化合物が使用できる。また、ポリアニオンも使用可
能である。Next, as the electrolyte for electrolytic polymerization, any electrolyte that is normally used in electrolytic polymerization may be used, such as organic quaternary ammonium salts, inorganic salts, protonic acids, esters, and other common compounds. Polyanions can also be used.
溶剤としては、通常はアセトニトリル、又はアセトニト
リル/ニトロベンゼン混合溶媒ヲ使用するが、芳香族化
合物の電解重合が可能で、適当な電解質を溶解して通電
できるものであれば使用できる。As the solvent, acetonitrile or an acetonitrile/nitrobenzene mixed solvent is usually used, but any solvent can be used as long as it is capable of electrolytically polymerizing aromatic compounds and can dissolve an appropriate electrolyte and conduct electricity.
電極上にコートする下層の絶縁性高分子フィルムは、均
一に薄膜を形成でき、重合溶媒によシ若干膨潤し、電極
との密着性の良い材料で、上層の絶縁性高分子フィルム
を抽出除去する際の溶媒に不溶であれば使用できる。こ
の様なフィルムとしては例えばノボラック樹脂、メタク
リレート系高分子材料、ポリイミド、ゴム系高分子材料
などが使用できる。The lower insulating polymer film coated on the electrode can form a uniform thin film, swells slightly in the polymerization solvent, and has good adhesion to the electrode, allowing the upper insulating polymer film to be extracted and removed. It can be used as long as it is insoluble in the solvent used. As such a film, for example, novolac resin, methacrylate polymer material, polyimide, rubber polymer material, etc. can be used.
下層高分子フィルムつき電極上にコートする上層の絶縁
性高分子フィルム材としては、均一にフィルムを形成で
き、かつ複合化の後に溶剤により抽出除去できる材料で
あれば使用できる。As the upper insulating polymer film material to be coated on the electrode with the lower polymer film, any material can be used as long as it can form a uniform film and can be extracted and removed with a solvent after composite formation.
この様なフィルム材としては例えばポリ塩化ビニル系樹
脂、ポリスチレン系樹脂、アクリレート系樹脂などが挙
げられる。Examples of such film materials include polyvinyl chloride resins, polystyrene resins, and acrylate resins.
他方、電解重合用の基板としては、金、白金、パラジウ
ム等の貴金属、クロム、チタン、ステンレス等の酸化皮
膜つき金属、あるいは酸化スズ、酸化インジウム等の導
電性金属酸化物、あるいはこれらを適当な基板上に例え
ばメッキ、蒸着、スパッタリング等の方法で堆積したも
のが使用でき、また、帯状の金属箔電極を用いて連続製
造することも可能である。On the other hand, as a substrate for electrolytic polymerization, noble metals such as gold, platinum, and palladium, metals with oxide films such as chromium, titanium, and stainless steel, or conductive metal oxides such as tin oxide and indium oxide, or appropriate combinations of these can be used. It is possible to use a material deposited on a substrate by, for example, plating, vapor deposition, sputtering, or the like, and it is also possible to continuously manufacture the material using a strip-shaped metal foil electrode.
以下、本発明を実施例によシ更に具体的に説明するが、
本発明はこれら実施例に限定されない。Hereinafter, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to these examples.
実施例 1
T1 箔基板上に10nmのクロムを蒸着した後、ポリ
グリシジルメタクリレートをα1μ惰の厚みにスピンコ
ードした。乾燥後、ポリ塩化ビニル(分子iニア000
0)のメチルエチルケト/−テトラヒドロフラン混合溶
液からキャスティング法により厚さ20μ情のフィルム
を形成した。Example 1 After evaporating 10 nm of chromium onto a T1 foil substrate, polyglycidyl methacrylate was spin-coded to a thickness of α1μ. After drying, polyvinyl chloride (molecule i near 000
A film having a thickness of 20 μm was formed from the methyl ethyl keto/-tetrahydrofuran mixed solution of Example 0) by a casting method.
このフィルムつき基板をアセトニトリル/ニトロベンゼ
ン(4:1)の混合溶液ニ、03モル/lのテトラエテ
ルアンモニウム・バークロレート、1モル/1のチオフ
ェンを溶解した電解溶液に、白金コートチタン電極を対
向電極として、浸漬し、銀/銀イオン電極に対してt6
vの電位で電荷量:10/a/デオフエンの電解重合を
行うと黒色の複合フィルムが得られた。重合後、電極つ
きの複合フィルムをテトラヒドロフラン中に60分浸漬
し、ポリ塩化ビニルを除、去した。抽出後のフィルム表
面を走査型電子顕微鏡で観察したところ、表面には1μ
惰程度の凹凸がみられ多孔質な電極材料が得られた。抽
出後のフィルムとクロムコートチタン電極の密着性は高
く、アセトニトリル中でドープ/脱ドープ反応を行わせ
ても、フィルムと電極のはく離は起こらなかった。絶縁
性フィルムの無い同一電極上で、同一重合条件(電位:
1.6V、電荷量:10/i)で作製したポリチオフェ
ンフィルムと本発明で得られたフィルムのドープ電流ピ
ーク値の大きさを比較すると、本発明で得たフィルムで
はピーク値が15チはど向上した。This film-coated substrate was placed in an electrolytic solution containing a mixed solution of acetonitrile/nitrobenzene (4:1), 0.3 mol/l of tetraethelammonium verchlorate, and 1 mol/l of thiophene, and a platinum-coated titanium electrode was placed as a counter electrode. t6 for the silver/silver ion electrode, immersed as
A black composite film was obtained by electrolytically polymerizing the charge amount: 10/a/deophene at a potential of v. After polymerization, the composite film with electrodes was immersed in tetrahydrofuran for 60 minutes to remove polyvinyl chloride. When the surface of the film after extraction was observed with a scanning electron microscope, it was found that 1μ
A porous electrode material with roughness comparable to that of a ridge was obtained. The adhesion between the extracted film and the chromium-coated titanium electrode was high, and no peeling occurred between the film and the electrode even when the doping/dedoping reaction was performed in acetonitrile. The same polymerization conditions (potential:
Comparing the magnitude of the doping current peak value of the polythiophene film produced at 1.6V, charge amount: 10/i) and the film obtained by the present invention, it is found that the peak value of the film obtained by the present invention is 15%. Improved.
実施例 2
T1 箔基板上に10nmのクロムを蒸着後、ボリグリ
シジルメタクリレートを(L2μ毒の厚みにスピンコー
ドし、100℃で30分硬化させた。Example 2 After evaporating 10 nm of chromium onto a T1 foil substrate, polyglycidyl methacrylate was spin-coded to a thickness of L2μ and cured at 100° C. for 30 minutes.
乾燥後、ポリ塩化ビニル(分子量: 70000)のメ
チルエチルケトン−テトラヒドロフラン混合溶液からキ
ャスティング法により厚さ20μ洛のフィルムを形成し
た。このフィルムつき基板全アセトニトリル/ニトロベ
ンゼン(4:1)の混合溶液に、Q、3モル/lのテト
ラエチルアンモニウム・バークロレート、1モルフtの
チオフェンを溶解した電解溶液に、白金コートチタン電
極を対向電極として、浸漬し、銀/銀イオン電極に対し
て1.8vの電位で1.50 / crlの電荷量だけ
チオフェンの電解重合を行うと黒色の複合フィルムが得
られた。重合後、電極つきの複合フィルムをテトラヒド
ロフラン中に60分浸漬し、ポリ塩化ビニルを除去した
。抽出後のフィルム表面を走査型電子顕微鏡で観察した
ところ、表面には1.5μ懲程度の凹凸がみられ多孔質
な電極材料が得られた。抽出後のフィルムとクロムコー
トチタン電極の密着性は高く、アセトニトリル中でドー
プ/脱ドープ反応を行わせても、フィルムと電極のはく
離は起こら浸かった。フィルムをコートしていない同一
電極を用いて同一重合条件(電位:1.8V、電荷量:
t 5 C/ tJ )で作製したポリチオフェンフィ
ルムと本発明で得られたフィルムのドープ電流ピーク値
の大きさを比較すると、本発明で得たフィルムではピー
ク値が12チtなど向上した。After drying, a film having a thickness of 20 μm was formed from a mixed solution of polyvinyl chloride (molecular weight: 70,000) in methyl ethyl ketone and tetrahydrofuran by a casting method. A platinum-coated titanium electrode was placed as a counter electrode in an electrolytic solution prepared by dissolving Q, 3 mol/l of tetraethylammonium verchlorate, and 1 mol/l of thiophene in a mixed solution of total acetonitrile/nitrobenzene (4:1). A black composite film was obtained by electrolytically polymerizing thiophene by a charge amount of 1.50/crl at a potential of 1.8 V with respect to a silver/silver ion electrode. After polymerization, the composite film with electrodes was immersed in tetrahydrofuran for 60 minutes to remove polyvinyl chloride. When the surface of the film after extraction was observed with a scanning electron microscope, irregularities of about 1.5 microns were observed on the surface, indicating that a porous electrode material was obtained. The adhesion between the extracted film and the chromium-coated titanium electrode was high, and even when the doping/dedoping reaction was performed in acetonitrile, the film and electrode did not peel off. The same polymerization conditions (potential: 1.8 V, charge amount:
Comparing the magnitude of the doping current peak value between the polythiophene film produced using t 5 C/ tJ ) and the film obtained according to the present invention, the peak value was improved by 12 cm, etc. in the film obtained according to the present invention.
実施例 5
実施例1と同じ基板を使用し、下層の絶縁性高分子フィ
ルム材として厚み:12μ惰のノボラック樹脂を上層の
絶縁性高分子フィルムとして25Pmのポリ塩化ビニル
をコートした。このフィルムツキ基板ヲアセトニトリル
/ニトロベンゼン(4:1)の混合溶液に、15モル/
lのテトラエチルアンモニウム・パラトルエンスルホネ
ート、1モル/lのビロールを溶解した電解溶液に、白
金コートチタン電極を対向電極として、浸漬し、銀/銀
イオン電極に対して1,2Vの電位で180 / 5/
の電荷量だけビロールの電解重合を行うと黒色の複合フ
ィルムが得られた。重合後、電極つきの複合フィルムを
テトラヒドロフラン中に60分浸漬し、ポリ塩化ビニル
を除去した。抽出後のフィルム表面を走査型電子顕微鏡
で観察したところ、表面は15〜zOμ惰′の細かい凹
凸が観測された。本発明で得られた導電性高分子電極を
テトラエテルアンモニウムパラトルエンスルホネート=
11′モル/2を含むアセトニトリル中に浸漬し、パラ
トルエンスルホネートアニオンのドープ/脱ドープを繰
返し行った。ドープ/脱ドープを500回以上繰返して
もフィルムは金属電極からはく離しなかった。ドープ電
流はフィルムをコートしていない同一電極を用い、同一
重合条件(電位:t2V、電荷量=α80 / 51”
)で作製したポリピロールフィルムに比較し、20チ
大きな値が得られた。Example 5 The same substrate as in Example 1 was used, and a novolac resin having a thickness of 12 μm was coated as the lower layer insulating polymer film material, and a 25 Pm polyvinyl chloride was coated as the upper layer insulating polymer film material. This film-based substrate was added to a mixed solution of acetonitrile/nitrobenzene (4:1) at 15 mol/l.
A platinum-coated titanium electrode was immersed as a counter electrode in an electrolytic solution containing 1 mol/l of tetraethylammonium paratoluenesulfonate and 1 mol/l of virol, and the electrode was immersed at a potential of 1.2 V with respect to the silver/silver ion electrode. 5/
A black composite film was obtained by electrolytically polymerizing virole with a charge amount of . After polymerization, the composite film with electrodes was immersed in tetrahydrofuran for 60 minutes to remove polyvinyl chloride. When the surface of the film after extraction was observed with a scanning electron microscope, fine irregularities of 15 to zOμ inertia' were observed on the surface. The conductive polymer electrode obtained in the present invention is made of tetraethelammonium paratoluenesulfonate =
The sample was immersed in acetonitrile containing 11'mol/2, and doping/undoping of paratoluenesulfonate anion was repeated. Even after repeating doping/dedoping more than 500 times, the film did not peel off from the metal electrode. The doping current used the same electrode without film coating, and the same polymerization conditions (potential: t2V, charge amount = α80/51"
), a value 20 cm larger was obtained compared to the polypyrrole film produced in
実施例 4
金をコートした厚み(L5mのプラスチック電極に、下
層の絶縁性高分子フィルム材として厚み:αIPgのポ
リグリシジルメタクリレートを上層の絶縁性高分子フィ
ルム材として15μ惧のフッ化ビニリデンートリフルオ
ロエチレン共重合体(共重合比52.5 : 47.5
)をコートした。Example 4 A gold coated plastic electrode with a thickness of L5m was coated with polyglycidyl methacrylate having a thickness of αIPg as the lower layer insulating polymer film material and vinylidene fluoride-trifluoride with a thickness of approximately 15 μm as the upper layer insulating polymer film material. Ethylene copolymer (copolymerization ratio 52.5: 47.5
) was coated.
このフィルムつき基板をエタノール/アセトニトリル(
4:1)の混合溶液に100モル/lのテトラエチルア
ンモニウム・パラトルエンスルホネート、1モルフ1の
ビロールを溶解した電解溶液に、金コートガラス電極を
対向電極として、浸漬し、銀/銀イオン電極に対してt
2Vの電位でt 50 / cJの電荷量だけビロール
の電解重合を行うと黒色の複合フィルムが得られた。重
合後、電極つきの複合フィルムをアセトニトリル中に6
0分浸漬し、フッ化ビニリデン−トリフルオロエチレン
共重合体を除去した。This film-coated substrate was washed with ethanol/acetonitrile (
A gold-coated glass electrode was immersed as a counter electrode in an electrolyte solution containing 100 mol/l of tetraethylammonium paratoluenesulfonate and 1 morph of virol dissolved in a mixed solution of 4:1), and a silver/silver ion electrode was used. against t
When virol was electrolytically polymerized at a potential of 2 V and a charge amount of t 50 /cJ, a black composite film was obtained. After polymerization, the composite film with electrodes was placed in acetonitrile for 6 hours.
The sample was immersed for 0 minutes to remove the vinylidene fluoride-trifluoroethylene copolymer.
抽出後のフィルム表面を走査型電子顕微鏡で観察したと
ころ、表面は1〜20μ悔のマツシュルーム状に観測さ
れた。本発明で得られた導電性高分子電極をテトラエチ
ルアンモニウムパラトルエンスルホネート:α1モル/
lを含trアセトニトリル中に浸漬し、パラトルエンス
ルホネートアニオンのドープ/脱ドープを繰返し行った
。ドープ/脱ドープを500回以上繰返してもフィルム
は金属電極からはく離しなかった。When the surface of the film after extraction was observed with a scanning electron microscope, the surface was observed to have a pine mushroom shape with a thickness of 1 to 20 μm. The conductive polymer electrode obtained in the present invention was made of tetraethylammonium para-toluene sulfonate: α1 mol/
1 was immersed in tr-containing acetonitrile, and doping/dedoping of para-toluenesulfonate anion was repeated. Even after repeating doping/dedoping more than 500 times, the film did not peel off from the metal electrode.
ドープ電流は絶縁性フィルムをコートしていない電極を
用い、同一重合条件(電位:t2V。For the doping current, an electrode not coated with an insulating film was used under the same polymerization conditions (potential: t2V).
電荷量: t 50 / J)で作製したポリピロール
フィルムに比較し、12チ大きな値が得られた。Compared to the polypyrrole film prepared with charge amount: t50/J), a value 12 times larger was obtained.
実施例 5
白金コートしたチタン基板を使用し、下層の絶縁性高分
子フィルム材として厚み:11μ雷のナイロンを上層の
絶縁性高分子フィルム材として20μmのポリビニルア
ルコールをコートシタ。Example 5 A platinum-coated titanium substrate was used, and the lower insulating polymer film material was coated with 11 μm thick nylon, and the upper layer was coated with 20 μm polyvinyl alcohol.
このフィルムつき基板を(lL1モルフtの塩酸、1モ
ル/lのアニリン水溶液に、金コートカラス電極を対向
電極として、浸漬し、銀/銀イオン電極に対してQ、6
vの電位でt00/♂電荷量だけアニリンの電解重合を
行うと黒色の複合フィルムが得られた。重合後、電極つ
きの複合フィルムを温水中に5時間浸漬し、ポリビニル
アルコールを除去した。抽出後のフィルム表面を走査型
電子顕微鏡で観察したところ、表面は1〜2μ慣の凹凸
が観測された。本発明で得られた導電性高分子電極をテ
トラエテルアンモニウムクロライド:α1モル/lを含
むアセトニトリル中に浸漬し、塩素イオンのドープ/脱
ドープを繰返し行った。ドープ/脱ドープを1000回
以上繰返してもフィルムは金属電極からはく離しなかっ
た。ドーグ′g1mは絶縁性フィルムをコートしていな
い同一電極を用い同一重合条件(電位:(L6V、電荷
量=taa/、りで作製したポリアニリンフィルムに比
較し、124大きな値が得られた。This film-coated substrate was immersed in an aqueous solution of hydrochloric acid of 1 mol/l and aniline of 1 mol/l, with a gold-coated glass electrode as a counter electrode, and Q, 6
A black composite film was obtained by electrolytically polymerizing aniline by the amount of charge t00/♂ at a potential of v. After polymerization, the composite film with electrodes was immersed in warm water for 5 hours to remove polyvinyl alcohol. When the surface of the film after extraction was observed using a scanning electron microscope, irregularities of 1 to 2 μm in diameter were observed on the surface. The conductive polymer electrode obtained in the present invention was immersed in acetonitrile containing 1 mol/l of tetraethelammonium chloride, and doping/undoping with chlorine ions was repeated. Even after repeating doping/undoping more than 1000 times, the film did not peel off from the metal electrode. Dogue'g1m obtained a value 124 larger than that of a polyaniline film prepared under the same polymerization conditions (potential: (L6V, charge amount = taa/, ri) using the same electrode not coated with an insulating film.
〔発明1の効果〕
以上説明したように、本発明−よれば電気化学的に芳香
族化合物の電解重合体を2種の積層した高分子フィルム
中に複合化し、得られた複合フィルムより上層の高分子
フィルムのみを抽出、除去することKより多孔質でイオ
ン拡散速度が大きく、かつ電極密着性が高い導電性電極
材料が得られる。このフィルムは材料によりさまざまな
構造の高分子電極が実現でき、電池用の電極材料やエレ
クトロクロミック素子用の電極として、産業上の利用分
野がある。[Effects of Invention 1] As explained above, according to the present invention, an electrolytic polymer of an aromatic compound is electrochemically composited into two laminated polymer films, and the upper layer of the obtained composite film is By extracting and removing only the polymer film, a conductive electrode material that is more porous, has a higher ion diffusion rate, and has higher electrode adhesion than K can be obtained. This film can be used to create polymer electrodes with various structures depending on the material, and has industrial applications as an electrode material for batteries and electrodes for electrochromic devices.
第1図は本発明の導電性高分子電極材料の構造を示す断
面概略図である。FIG. 1 is a schematic cross-sectional view showing the structure of the conductive polymer electrode material of the present invention.
Claims (1)
に芳香族化合物の電解重合体を形成させた後、上層の絶
縁性高分子フィルムのみを抽出除去して得られる材料で
あることを特徴とする導電性高分子電極材料。 2、電極上に下層の絶縁性高分子フィルムをコートする
工程、その上に上層の絶縁性高分子フィルムをコートす
る工程、該フィルムつき電極基板上で芳香族化合物の電
解重合を行つて該芳香族化合物の重合体を該下層及び上
層高分子フィルム中に複合させる工程、及び該複合フィ
ルムより該上層高分子フィルムのみを抽出除去する工程
の各工程を包含することを特徴とする導電性高分子電極
材料の製造方法。[Claims] 1. After forming an electrolytic polymer of an aromatic compound in two types of insulating polymer films coated on an electrode, only the upper insulating polymer film is extracted and removed. A conductive polymer electrode material characterized in that it is a material that can be used as a conductive polymer. 2. A step of coating a lower insulating polymer film on the electrode, a step of coating an upper insulating polymer film thereon, and electrolytic polymerization of an aromatic compound on the electrode substrate with the film to form the aromatic compound. A conductive polymer characterized by comprising the steps of: combining a polymer of a group compound into the lower and upper polymer films; and extracting and removing only the upper polymer film from the composite film. Method for manufacturing electrode materials.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62079796A JPS63248054A (en) | 1987-04-02 | 1987-04-02 | Conductive high-molecular electrode material and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62079796A JPS63248054A (en) | 1987-04-02 | 1987-04-02 | Conductive high-molecular electrode material and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63248054A true JPS63248054A (en) | 1988-10-14 |
Family
ID=13700179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62079796A Pending JPS63248054A (en) | 1987-04-02 | 1987-04-02 | Conductive high-molecular electrode material and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63248054A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01134855A (en) * | 1987-11-20 | 1989-05-26 | Mitsubishi Kasei Corp | Secondary battery |
-
1987
- 1987-04-02 JP JP62079796A patent/JPS63248054A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01134855A (en) * | 1987-11-20 | 1989-05-26 | Mitsubishi Kasei Corp | Secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI266345B (en) | Method for preparing electrode system, electrode system prepared therefrom, and electric device comprising the same | |
KR890004938B1 (en) | Electrically conduction polymer film and method of manufacturing the same | |
US7442284B2 (en) | Coated carbon nanotube array electrodes | |
Yassar et al. | Conductivity and conjugation length in poly (3-methylthiophene) thin films | |
EP2909364B1 (en) | Electropolymerization of a coating onto an electrode material | |
US4898766A (en) | Polymer film with conductive pattern and method of manufacturing the same | |
Otero et al. | Revisiting the electrochemical and polymeric behavior of a polypyrrole free-standing electrode in aqueous solution | |
JPS63135453A (en) | Highly electrically conductive polymer composition and production thereof | |
DE10237577A1 (en) | Substituted poly (alkylenedioxythiophenes) as solid electrolytes in electrolytic capacitors | |
JPS63248054A (en) | Conductive high-molecular electrode material and its manufacture | |
KR101719143B1 (en) | The method of electrode coated with conducting polymer | |
Rosati et al. | Iron (III)-Tosylate doped PEDOT and PEG: a nanoscale conductivity study of an electrochemical system with biosensing applications | |
JP2007046033A (en) | Method for producing conductive polymer membrane, conductive polymer film and method for forming coated membrane | |
JPH0523292B2 (en) | ||
Eslamian et al. | Conducting Polymer Microtubes for Bioactuators | |
JPH03231932A (en) | Porous film produced by electrolytic polymerization and production thereof | |
RU2154817C2 (en) | Current-conducting composite polymer membrane | |
JP4257293B2 (en) | MOLECULAR ORIENTED POLYMER GEL, MOLECULAR ORIENTED POLYMER CAST FILM USING SELF-ORGANIZING AMPHOPHILIC COMPOUND AS TEMPLATE, AND METHOD FOR PRODUCING THEM | |
JPS614739A (en) | Porous electrolytic polymer film and its preparation | |
JPS613742A (en) | Conductive high-molecular sheet and manufacture thereof | |
JPS63281354A (en) | Lithium battery | |
CN113517145A (en) | Plate of super capacitor, super capacitor and manufacturing method thereof | |
JPS612204A (en) | Conductive polymer film material and method of producing same | |
JPS61131304A (en) | Conductive high polymer film and manufacture thereof | |
JPS60177506A (en) | Conductive polymer film and method of producing same |