JPS6147210B2 - - Google Patents

Info

Publication number
JPS6147210B2
JPS6147210B2 JP5975183A JP5975183A JPS6147210B2 JP S6147210 B2 JPS6147210 B2 JP S6147210B2 JP 5975183 A JP5975183 A JP 5975183A JP 5975183 A JP5975183 A JP 5975183A JP S6147210 B2 JPS6147210 B2 JP S6147210B2
Authority
JP
Japan
Prior art keywords
diameter
pipe
less
heat
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5975183A
Other languages
Japanese (ja)
Other versions
JPS59185724A (en
Inventor
Hisakatsu Nishihara
Junichi Sugitani
Hiroyuki Ran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP5975183A priority Critical patent/JPS59185724A/en
Publication of JPS59185724A publication Critical patent/JPS59185724A/en
Publication of JPS6147210B2 publication Critical patent/JPS6147210B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐熱鋳鋼管の製造方法に関し、特に
遠心鋳造耐熱鋳鋼管を素管として、これに冷間加
工を加えることにより、展伸・縮径された小口径
長尺の継目無耐熱鋳鋼管を製造するものである。 遠心鋳鋼管は、通常水平横型遠心鋳造用鋳型を
高速回転(重力倍数:約60〜250G)させなが
ら、所定の溶湯を鋳込み、鋳型内に溶湯シリンダ
ーを形成して凝固させることにより得られ、凝固
後の鋳造体に切削加工による内・外径加工を施し
て所定の管体に仕上げられる。遠心鋳造による製
管法は、塑性加工法、例えば熱間押出加工法のよ
うに、ビレツトを素材とし、加熱,ピアシング,
再加熱,押出加工の各工程を要する方法に比較し
て工程が簡素で、経済的である。 しかしながら、遠心鋳造法は、比較的口径の大
きい管体の製造に適しているが、小口径管を鋳造
することは容易でない。それは、口径が小さくな
る程、鋳型内にのぞむ鋳込樋を細くせねばなら
ず、それに伴つて鋳込樋の内孔が溶湯やスラグに
よつて閉塞され易くなるからであり、また鋳型内
への単位時間当りの注湯量が少くなるため、鋳型
内での溶湯シリンダーが形成される以前に、鋳型
内壁との接触により凝固温度に到達した個所から
順次凝固が進行する結果、ひけ巣やキライ(ガス
孔)等の鋳造欠陥が発生し易くなる。これらの不
具合は鋳造管が長尺になる程、顕著となる。この
ため、外径約50mm以下、単管長約5m以上の小口
径・長尺管の耐熱鋳鋼管を遠心鋳造法で製造する
ことは極めて困難である。 本発明は、上記問題を解決するために、遠心鋳
造された耐熱鋳鋼管を素管とし、これを塑性加工
することにより小口径・長尺耐熱鋳鋼管を得よう
とするものであり、その加工法として冷間圧延縮
径加工を適用すれば、塑性加工時に割れが発生し
にくく、従つて比較的冷間加工性の劣る遠心鋳造
管に対しても、適当な加工条件を与えれば亀裂等
を生じることな所望の管サイズへの縮径・展伸が
可能であろうとの観点から種々研究を重ねた結果
完成されたものである。 以下、本発明方法について詳述する。 本発明は、C0.05〜0.25%、Si2.0%以下、
Mn2.0%以下、Cr19.0〜27.0%、Ni30.0〜40.0
%、Nb0.2〜2.0%、N0.1%以下、残部Feおよび
不可避不純物からなる耐熱鋳鋼の遠心鋳造管を素
管とし、該素管に切削加工による適当な内・外径
加工を加えたのち、冷間圧延による縮径加工を行
う。 冷間圧延縮径加工は、減面率40〜60%におい
て、減径率を30%以下とする。減面率および減径
率は次式により求められる。 減面率(%)=(1−A/A)×100 〔但し、A0:塑性加工前の管断面積、A:塑
性加工後の管断面積〕。 減径率(%)=(1−D/D)×100 〔但し、D0:塑性加工前の管外径(または内
径)、D:塑性加工後の管外径(または内径)〕。 上記冷間圧延縮径加工において、減径率を30%
以下とするのは、それを越えると、減面率が40〜
60%の範囲内であつても、塑性加工時に管体、特
にその管端面に多数の亀裂が発生し、縮径加工が
困難となるからである。減径率を30%以下に制限
することにより、亀裂等のトラブルを生じること
なく所望のサイズに展伸・縮径された健全な小口
径・長尺管を得ることができる。冷間圧延縮径加
工を一そう円滑に行うためのより好ましい加工条
件は、減面率40〜60%において、減径率を30%以
下で、かつ10%以上に限定することである。 素管として使用される遠心鋳造管の鋳造サイズ
は目的とする管サイズに応じ、不必要に大径でな
く、かつ鋳造技術上の困難を伴なわない適当なサ
イズであればよい。例えば、外径38.1mm、肉厚
3.2mm、長さ5000mmの管体を目的とする場合、切
削加工により外径52mm、肉厚6mm、長さ2000mmに
仕上げられた鋳造管を素管として前記加工条件下
に冷間圧延縮径加工することにより容易に目的の
管サイズを得ることができる。 本発明耐熱鋳鋼管の前記化学成分組成は、縮径
加工における冷間加工性,耐熱特性,その他の諸
特性を考慮して特定されたものであり、各成分の
限定理由は次のとおりである。 C:0.05〜0.25% 強度改善に有効であるが、0.25%をこえると、
冷間圧延縮径加工時の亀裂の発生により健全な管
を得難く、一方、0.05%に満たないと、耐熱用途
に必要な高温強度が不足する。 Si:2.0%以下 素管鋳造の際の溶湯の流動性を得るのに必要で
あるが、2.0%をこえると管の溶接性が劣化す
る。 Mn:2.0%以下 溶湯の脱酸・脱硫・溶解・精錬時のスラグ流動
性の向上を目的として添加されるが、2.0%をこ
えると効果はほぼ飽和する。 Cr:19.0〜27.0% 高温用材料として必要な耐酸化性を得るのに必
要であるが、19.0%未満ではその効果が不足し、
一方27.0%を越えると、材料の硬化による縮径加
工が困難となり、また溶接性も劣化する。 Ni:30.0〜40.0% 高温強度の向上に必要である。30.0%未満で
は、他の元素との組合せにおいても高温強度が不
足し、一方40.0%をこえても、Niの増量に見合う
高温強度向上効果が得られず、不経済となる。 Nb:0.2〜2.0% 高温強度、その他の高温特性の確保に重要な元
素である。0.2%に満たないと、その効果は十分
でなく、一方2.0%をこえると、高温域で耐酸化
性の劣化が著しくなる。 N:0.1%以下 強度向上効果を有するが、0.1%をこえると、
冷間加工性が悪く、縮径加工が困難となり、健全
な管が得られない。 P、S、その他の不純物は、通常の溶製技術上
の不可避的混入を許容する。例えば、Pは0.03%
以下、Sは0.03%以下であればさしつかえない。 第1表に、遠心鋳造管(機械加工後の外径50〜
60mm、肉厚4〜6mm、長さ2000mm)を素管とする
冷間圧延縮径加工(減面率40〜60%、減径率25〜
30%)による小口径管の製管例を示す。試番1〜
10は本発明規定の成分組成を有する耐熱鋳鋼、11
および12はCまたはNが本発明の上限規定を逸脱
する耐熱鋳鋼であり、各試番の上段は本発明の加
工条件を満たす例、下段は減径率が本発明の規定
から逸脱する比較例である。表中、「塑性加工管
の性状」欄における「〇」は塑性加工管の外面お
よび両端面のいづれにも割れがなく、かつ内面に
も微細な割れが認められず、健全な管性状を有す
ること、「×」印は管の内・外面または管端面の
いづれかに割れが発生したことを意味する。
The present invention relates to a method for manufacturing heat-resistant cast steel pipes, and in particular to a long, small-diameter, seamless heat-resistant cast steel pipe that is expanded and reduced in diameter by applying cold working to a centrifugally cast heat-resistant cast steel pipe as a raw pipe. It manufactures. Centrifugally cast steel pipes are usually obtained by rotating a horizontal centrifugal casting mold at high speed (gravity multiplier: approximately 60 to 250G) and casting a specified amount of molten metal, forming a cylinder of molten metal in the mold and allowing it to solidify. The inner and outer diameters of the cast body are then machined to create the desired tube body. The pipe manufacturing method using centrifugal casting uses billet material as a plastic processing method, such as hot extrusion processing, and involves heating, piercing,
The process is simpler and more economical than methods that require reheating and extrusion. However, although the centrifugal casting method is suitable for manufacturing relatively large diameter tubes, it is not easy to cast small diameter tubes. This is because the smaller the diameter, the thinner the casting gutter that looks into the mold, and the more likely the inner hole of the casting gutter will be clogged with molten metal and slag. Since the amount of molten metal poured per unit time is smaller, solidification progresses sequentially from the point where the molten metal reaches the solidification temperature due to contact with the inner wall of the mold, before a cylinder of molten metal is formed in the mold, resulting in shrinkage cavities and cracks ( Casting defects such as gas holes) are more likely to occur. These problems become more noticeable as the cast pipe becomes longer. For this reason, it is extremely difficult to manufacture small-diameter, long heat-resistant cast steel pipes with an outer diameter of about 50 mm or less and a single pipe length of about 5 m or more using the centrifugal casting method. In order to solve the above-mentioned problems, the present invention attempts to obtain a small-diameter, long heat-resistant cast steel pipe by plastically working a heat-resistant cast steel pipe that has been centrifugally cast as a blank pipe, and the processing If cold rolling diameter reduction is applied as a method, cracks are less likely to occur during plastic working, and even centrifugally cast pipes with comparatively poor cold workability can be freed from cracks if appropriate processing conditions are applied. This was completed as a result of various studies from the viewpoint of making it possible to reduce and expand the diameter of the tube to the desired size. The method of the present invention will be described in detail below. The present invention has C0.05 to 0.25%, Si2.0% or less,
Mn2.0% or less, Cr19.0~27.0%, Ni30.0~40.0
%, Nb0.2-2.0%, N0.1% or less, the balance is Fe and unavoidable impurities.The base tube is a centrifugally cast tube made of heat-resistant cast steel, and the tube is machined to the appropriate inner and outer diameters by cutting. Afterwards, the diameter is reduced by cold rolling. In cold rolling diameter reduction processing, the diameter reduction rate is set to 30% or less when the area reduction rate is 40 to 60%. The area reduction rate and diameter reduction rate are determined by the following formula. Area reduction rate (%) = (1-A/A 0 )×100 [where A 0 : pipe cross-sectional area before plastic working, A: pipe cross-sectional area after plastic working]. Diameter reduction rate (%) = (1-D/D 0 ) × 100 [where, D 0 : outer diameter (or inner diameter) of the tube before plastic working, D: outer diameter (or inner diameter) of the tube after plastic working]. In the above cold rolling diameter reduction process, the diameter reduction rate is 30%.
The following is defined as if the area reduction rate exceeds 40~
This is because even if it is within the 60% range, many cracks will occur in the tube, especially in the tube end surface, during plastic working, making diameter reduction processing difficult. By limiting the diameter reduction rate to 30% or less, it is possible to obtain a healthy small-diameter long tube that has been expanded and contracted to a desired size without causing problems such as cracks. A more preferable processing condition for performing the cold rolling diameter reduction process more smoothly is to limit the diameter reduction rate to 30% or less and 10% or more when the area reduction rate is 40 to 60%. The casting size of the centrifugally cast tube used as the raw tube may be an appropriate size that is not unnecessarily large in diameter and does not pose difficulties in casting technology, depending on the intended tube size. For example, outer diameter 38.1mm, wall thickness
If the purpose is a tube body of 3.2 mm and length of 5000 mm, a cast tube finished by cutting to an outer diameter of 52 mm, wall thickness of 6 mm, and length of 2000 mm is used as a raw tube and subjected to cold rolling diameter reduction under the above processing conditions. By doing this, you can easily obtain the desired tube size. The chemical composition of the heat-resistant cast steel pipe of the present invention was specified in consideration of cold workability in diameter reduction processing, heat resistance characteristics, and other various properties, and the reasons for limiting each component are as follows. . C: 0.05-0.25% Effective for improving strength, but if it exceeds 0.25%,
It is difficult to obtain a sound tube due to the occurrence of cracks during cold rolling and diameter reduction processing, and on the other hand, if it is less than 0.05%, the high temperature strength required for heat-resistant applications is insufficient. Si: 2.0% or less It is necessary to obtain the fluidity of the molten metal during casting of the raw pipe, but if it exceeds 2.0%, the weldability of the pipe will deteriorate. Mn: 2.0% or less Mn is added for the purpose of improving slag fluidity during deoxidation, desulfurization, melting, and refining of molten metal, but if it exceeds 2.0%, the effect is almost saturated. Cr: 19.0-27.0% Necessary to obtain the oxidation resistance necessary for high-temperature materials, but if it is less than 19.0%, the effect will be insufficient,
On the other hand, if it exceeds 27.0%, diameter reduction processing due to hardening of the material becomes difficult, and weldability also deteriorates. Ni: 30.0 to 40.0% Necessary for improving high temperature strength. If it is less than 30.0%, the high-temperature strength will be insufficient even in combination with other elements, while if it exceeds 40.0%, the effect of improving high-temperature strength commensurate with the increase in Ni content will not be obtained, which will be uneconomical. Nb: 0.2-2.0% This is an important element for ensuring high-temperature strength and other high-temperature properties. If the content is less than 0.2%, the effect will not be sufficient, while if it exceeds 2.0%, the oxidation resistance will deteriorate significantly at high temperatures. N: 0.1% or less Has the effect of improving strength, but if it exceeds 0.1%,
Cold workability is poor, diameter reduction processing is difficult, and a sound tube cannot be obtained. P, S, and other impurities are allowed to be unavoidably mixed in by ordinary melting techniques. For example, P is 0.03%
Below, S is acceptable as long as it is 0.03% or less. Table 1 shows centrifugally cast pipes (outer diameter 50~ after machining).
60mm, wall thickness 4-6mm, length 2000mm) as a raw pipe by cold rolling diameter reduction (area reduction rate 40-60%, diameter reduction rate 25-
30%) is shown below. Trial number 1~
10 is heat-resistant cast steel having the composition specified by the present invention; 11
and 12 are heat-resistant cast steels in which C or N deviates from the upper limit stipulations of the present invention; the upper row of each trial number is an example that satisfies the processing conditions of the present invention, and the lower row is a comparative example in which the diameter reduction rate deviates from the stipulation of the present invention. It is. In the table, "〇" in the "Properties of plastically processed pipe" column indicates that the plastically processed pipe has no cracks on either the outer surface or both end surfaces, and no microscopic cracks are observed on the inner surface, indicating sound pipe properties. An "x" mark means that a crack has occurred on either the inner or outer surface of the tube or the end surface of the tube.

【表】 前記表における試番1〜10の各上段の例に示さ
れるように、本発明の規定する化学成分組成と加
工条件とを満たすことにより、割れを生じずに展
伸・縮径を達成し健全な小口径・長尺管が得られ
る。一方、試番1〜10の下段の例のように、化学
成分組成が適正であつても、加工条件が本発明規
定からはずれると割れが発生する。更に、試番10
および11のように、化学成分組成が適正を欠く
と、減径率のいかんにかかわらず、割れが発生
し、とくに減径率が30%をこえる例では、管端面
の割れが著しく製管不可能であつた。また、試番
10,11の塑性加工管は、切断後の液体浸透探傷検
査により管内面に微細な割れが発生していること
も認められた。 以上のように、本発明によれば、遠心耐熱鋳鋼
管を素管として所望の管サイズ、とくに遠心鋳造
では不可能な小口径・長尺耐熱鋳鋼管を製造する
ことができる。また、本発明は、遠心鋳造管を素
管とするのであるから、熱間押出加工管のような
複雑な加工工程を要する管体を素管とする場合に
比較して製造コストが安価であり、加えて耐熱用
途における高温特性、とくに高温強度にもすぐれ
る。それは、耐熱鋳鋼管は、一般に熱間塑性加工
により形成された耐熱鋼管よりも、結晶粒が粒大
であること、鋳造凝固過程で結晶粒界に析出する
一次炭化物と金属マトリツクスとの結合力が強固
であること、また高温強度向上のために必要な合
金元素の選択が比較的自由であること(後者で
は、熱間塑性加工が行なわれるので、添加可能な
合金元素は、熱間加工性を損なわないものに限定
される)などによる。もつとも、本発明方法によ
り得られた塑性加工管に対し、必要に応じて塑性
変形による歪硬化を回復するために溶体化処理を
行う際に、再結晶現象に伴うクリープ破断強度の
低下を生じるが、その熱処理において、化学成分
組成に応じて比較的高めの温度(例えば、1250℃
以上)を設定して結晶粒の粒大化を図れば、高温
強度の大幅な低下を防止し、良好な高温強度を保
持することは十分に可能である。 本発明により得られる耐熱鋳鋼管は、種々の耐
熱用途に供され、例えばピツグテイル等の引抜
管、あるいはヘアピンチユーブ、スチームスーパ
ーヒーターチユーブ、その他各種熱交換器用継目
無鋼管の代替品として有用である。
[Table] As shown in the examples in the upper row of each trial number 1 to 10 in the above table, by satisfying the chemical composition and processing conditions specified by the present invention, it is possible to expand and reduce the diameter without causing cracks. This results in a healthy small diameter and long pipe. On the other hand, as shown in the lower examples of trial numbers 1 to 10, even if the chemical composition is appropriate, cracks occur if the processing conditions deviate from the specifications of the present invention. Furthermore, trial number 10
If the chemical composition is not appropriate, as shown in 11 and 11, cracks will occur regardless of the diameter reduction rate, and especially in cases where the diameter reduction rate exceeds 30%, the cracks on the pipe end face will be significant and will result in poor pipe manufacturing. It was possible. Also, trial number
In the plastically processed tubes Nos. 10 and 11, microscopic cracks were found to have occurred on the inner surface of the tubes by liquid penetrant inspection after cutting. As described above, according to the present invention, it is possible to manufacture a desired pipe size using a centrifugal heat-resistant cast steel pipe as a raw pipe, especially a small diameter and long heat-resistant cast steel pipe that is impossible with centrifugal casting. In addition, since the present invention uses a centrifugally cast pipe as the raw pipe, the manufacturing cost is lower than when the raw pipe is a pipe that requires a complicated processing process, such as a hot extruded pipe. In addition, it has excellent high-temperature properties in heat-resistant applications, especially high-temperature strength. Heat-resistant cast steel pipes generally have larger crystal grains than heat-resistant steel pipes formed by hot plastic working, and the bonding strength between primary carbides that precipitate at grain boundaries during the casting solidification process and the metal matrix is strong. It must be strong, and the selection of alloying elements required to improve high-temperature strength must be relatively free (in the latter case, hot plastic working is performed, so the alloying elements that can be added must be able to improve hot workability). (Limited to items that do not cause damage) etc. However, when the plastically worked pipe obtained by the method of the present invention is subjected to solution treatment to recover strain hardening due to plastic deformation as necessary, the creep rupture strength may decrease due to the recrystallization phenomenon. In the heat treatment, the temperature is relatively high (e.g. 1250℃) depending on the chemical composition.
If the above) is set to increase the grain size of the crystal grains, it is fully possible to prevent a significant decrease in high temperature strength and maintain good high temperature strength. The heat-resistant cast steel pipe obtained by the present invention is used for various heat-resistant applications, and is useful as a substitute for drawn pipes such as pigtails, hair-pinch tubes, steam superheater tubes, and seamless steel tubes for various other heat exchangers.

Claims (1)

【特許請求の範囲】[Claims] 1 C0.05〜0.25%、Si2.0%以下、Mn2.0%以
下、Cr19.0〜27.0%、Ni30.0〜40.0%、Nb0.2〜
2.0%、N0.1以下、残部Feおよび不可避的不純物
からなる耐熱鋳鋼遠心鋳造管を素管とし、切削加
工により内・外径加工したのち、減面率40〜60
%、かつ減径率30%以下の加工条件下に、冷間縮
径圧延加工することを特徴とする耐熱鋳鋼管の製
造方法。
1 C0.05~0.25%, Si2.0% or less, Mn2.0% or less, Cr19.0~27.0%, Ni30.0~40.0%, Nb0.2~
A heat-resistant cast steel centrifugally cast tube consisting of 2.0% N0.1 or less, the balance Fe and unavoidable impurities is used as the raw tube, and after processing the inner and outer diameters by cutting, the area reduction rate is 40 to 60.
% and a diameter reduction rate of 30% or less.
JP5975183A 1983-04-05 1983-04-05 Manufacture of heat resistant cast steel pipe Granted JPS59185724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5975183A JPS59185724A (en) 1983-04-05 1983-04-05 Manufacture of heat resistant cast steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5975183A JPS59185724A (en) 1983-04-05 1983-04-05 Manufacture of heat resistant cast steel pipe

Publications (2)

Publication Number Publication Date
JPS59185724A JPS59185724A (en) 1984-10-22
JPS6147210B2 true JPS6147210B2 (en) 1986-10-17

Family

ID=13122259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5975183A Granted JPS59185724A (en) 1983-04-05 1983-04-05 Manufacture of heat resistant cast steel pipe

Country Status (1)

Country Link
JP (1) JPS59185724A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7922065B2 (en) 2004-08-02 2011-04-12 Ati Properties, Inc. Corrosion resistant fluid conducting parts, methods of making corrosion resistant fluid conducting parts and equipment and parts replacement methods utilizing corrosion resistant fluid conducting parts
US9375771B2 (en) 2009-08-17 2016-06-28 Ati Properties, Inc. Method of producing cold-worked centrifugal cast tubular products
US9574684B1 (en) * 2009-08-17 2017-02-21 Ati Properties Llc Method for producing cold-worked centrifugal cast composite tubular products
US10118259B1 (en) 2012-12-11 2018-11-06 Ati Properties Llc Corrosion resistant bimetallic tube manufactured by a two-step process

Also Published As

Publication number Publication date
JPS59185724A (en) 1984-10-22

Similar Documents

Publication Publication Date Title
SU852179A3 (en) Method of making steel seamless pipes
CN101530907B (en) Clad tube blank of dual metal seamless steel tube used for boiler and manufacturing method thereof
JPS6147210B2 (en)
JP3711959B2 (en) Heat resistant low alloy steel pipe and method for producing the same
JP3525666B2 (en) Non-heat treated high strength seamless steel pipe
JP2002327234A (en) Round billet for seamless steel tube, and seamless steel tube
CN113020313A (en) Ledeburite die steel seamless steel tube and preparation method thereof
JPH10291008A (en) Tool for hot making tube and its manufacture
WO1993018196A1 (en) Fe-Cr-Al ALLOY STEEL SHEET AND PRODUCTION THEREOF
JP4360295B2 (en) Seamless steel pipe
JPS63313635A (en) Production of high strength al pipe stock for heat exchanger
JPH01129929A (en) Production of work roll for hot rolling
JP2588573B2 (en) High chrome cast iron composite roll
JP3456468B2 (en) Martensitic stainless steel seamless steel pipe with excellent machinability and hot workability
JPH03215625A (en) Production of superplastic duplex stainless steel and hot working method therefor
JPH069693B2 (en) Method for producing duplex stainless steel pipe with excellent corrosion resistance
JPS6136567B2 (en)
JPS647147B2 (en)
JPH10130783A (en) Non-heat treated high strength seamless steel tube
JP3665093B2 (en) Seamless steel pipe cored bar tool manufacturing mold and seamless steel pipe cored bar tool manufacturing method using this mold
JPS5935826A (en) Manufacture of small aperture and long-sized double pipe
JPS63255322A (en) Manufacture of seamless two-phase stainless steel tube
JPH0457401B2 (en)
JP2000061577A (en) Production of two-phase stainless steel forged pipe
JPS6159381B2 (en)