JPS6147062B2 - - Google Patents

Info

Publication number
JPS6147062B2
JPS6147062B2 JP5525379A JP5525379A JPS6147062B2 JP S6147062 B2 JPS6147062 B2 JP S6147062B2 JP 5525379 A JP5525379 A JP 5525379A JP 5525379 A JP5525379 A JP 5525379A JP S6147062 B2 JPS6147062 B2 JP S6147062B2
Authority
JP
Japan
Prior art keywords
armature
commutator
commutator pieces
magnetic pole
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5525379A
Other languages
Japanese (ja)
Other versions
JPS55147964A (en
Inventor
Itsuki Ban
Manabu Shiraki
Kazuhito Egami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekoh Giken KK
Original Assignee
Sekoh Giken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekoh Giken KK filed Critical Sekoh Giken KK
Priority to JP5525379A priority Critical patent/JPS55147964A/en
Publication of JPS55147964A publication Critical patent/JPS55147964A/en
Publication of JPS6147062B2 publication Critical patent/JPS6147062B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/54Disc armature motors or generators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Brushless Motors (AREA)
  • Dc Machiner (AREA)

Description

【発明の詳細な説明】 本発明は、複数個の電機子巻線を円板状若しく
は円筒状の無鉄心電機子に配設して特に有効な直
流電動機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a particularly effective DC motor in which a plurality of armature windings are arranged in a disc-shaped or cylindrical ironless armature.

従来より複数個の電機子巻線を有する重ね巻或
いは波巻の巻線を用いた有鉄心電動機は数多く使
用されている。しかしながら、従来の巻線をその
まま無鉄心電動機に採用する場合においては、第
1、第2図示に基づにて説明するように種々の欠
点がある。第1、第2図示は従来より公知の波巻
の巻線を無鉄心電動機に採用した場合に考えられ
る展開式巻線図である。第1図は、界磁磁極が6
磁極で、5個の電機子巻線よりなる波巻電機子の
展開式巻線図である。界磁磁極1は60度の開角で
N,S極に磁化された磁極1−1,1−2,…
…,1−6より構成されている。整流子3は72度
の開度(磁極幅の6/5)の整流子片3−1,3−
2,3−3,3−4,3−5より構成されてい
る。電機子2は各電機子巻線の発生トルクに寄与
する導体部の開角を磁極幅と同一にしたクロス接
続正規波巻である。電機子巻線2−1,2−2,
2−3,2−4,2−5は互いに72度の開角(磁
極幅の6/5)の等しいピツチで重畳せずに配設さ
れている。各電機子巻線は波巻接続とされ、電機
子巻線2−1と2−3、2−3と2−5、2−5
と2−2、2−2と2−4、2−4と2−1の接
続部はそれぞれ整流子片3−2,3−4,3−
1,3−3,3−5に接続されている。刷子4−
1,4−2は直流電源正負極5−1,5−2より
それぞれ給電されており、開角は180度(磁極幅
の3/1)となつている。図示の関係位置では矢印
方向に通電され、それぞれの電機子巻線にトルク
が発生して電機子2及び整流子3はそれぞれ矢印
A,B方向に回転する整流子電動機となるもので
ある。第1図示の実施例によると、電機子巻線の
数が少ないために1回転中における電機子電流の
切り換わりは10回(特異点は除く)の割合で行な
われることになり整流特性は良好でない。このた
め反トルクが生じ効率及び起動トルクを減少せし
める。更に直流電源正負極間に存在する電機子巻
線の数は非常に少なくなるため高電圧用の直流電
動機として使用することは不可能となり、火花の
発生は増大し、短絡事故等も生じ易く電動機の耐
久性は減少する。以上のような欠点を除去するた
めに電機子巻線を多層に重畳して構成した場合に
ついて第2図に説明する。第2図は、界磁磁極が
6磁極で、15個の電機子巻線よりなる波巻電機子
の展開式巻線図である。界磁磁極1は第1図示に
おいて説明したものと全く同一である。整流子7
は24度の開角(磁極幅の2/5)の整流子片7−
1,7−2,……,7−15より構成されてい
る。電機子6は各電機子巻線の発生トルクに寄与
する導体部の開角を磁極幅と同一にしたクロス接
続正規三重波巻である。電機子巻線6−1,6−
2,……,6−15は互いに24度の開角(磁極幅
の2/5)の等しいピツチで多層に重畳して配設さ
れている。各電機子巻線は波巻接続とされ、電機
子巻線6−1と6−7、6−7と6−13、6−
13と6−4、6−4と6−10、6−10と6
−1の接続部はそれぞれ整流子片7−4,7−1
0,7−1,7−7,7−13に接続されてい
る。電機子巻線6−2と6−8、6−8と6−1
4、6−14と6−5、6−5と6−11、6−
11と6−2の接続部はそれぞれ整流子片7−
5,7−11,7−2,7−8,7−14に接続
されている。電機子巻線6−3と6−9、6−9
と6−15、6−15と6−6、6−6と6−1
2、6−12と6−3の接続部はそれぞれ整流子
片7−6,7−12,7−3,7−9,7−15
に接続されている。前述した通り三重波巻である
ため刷子は3対となり,刷子4−1,4−2は直
流電源正負極5−1,5−2より,刷子4−3,
4−4は直流電源正負極5−3,5−4より、刷
子4−5,4−6は直流電源正負極5−5,5−
6よりそれぞれ給電されており,それぞれの開角
は60度(磁極幅)となつている。図示の関係位置
では矢印方向に通電され、それぞれの電機子巻線
にトルクが発生して電機子6及び整流子7はそれ
ぞれ矢印A,B方向に回転する整流子電動機とな
るものである。第2図の実施例によると、電機子
巻線が多層に重畳されることになるため電機子の
厚みが増加する。かかる厚みは電機子を貫通する
有効な界磁磁極を著しく弱化して効率及び起動ト
ルクを減少せしめる欠点がある。このため従来に
おいては、発生トルクに寄与する導体部の厚みを
薄くするよう努力していた。しかし、かかる工程
は加圧成形等によつて行なわれるために、電機子
巻線が断線したり、短絡等の不良品が多く発生し
ていた。更に電機子巻線を配設する際において相
互の位置関係が規制されていないため、位相関係
がずれ易く高効率の直流電動機を得ることが非常
に困難であり、その製造工程も煩雑で量産性がな
く高価なものとなつていた。また従来の円筒状電
機子を備えた無鉄心電動機に使用されている方法
には、巻幅の両端部分が重ならないようにするた
めに、絶縁電線を一本ずつ整列巻により全巻幅或
いは一部分を巻幅に対して斜めに巻いて路180度
毎に両端で交互に折返し、順次連続巻回して円筒
状電機子を形成する方法が用いられているが、こ
の場合においても量産性がなく高価なものとなつ
ていた。
Conventionally, a large number of iron core motors have been used that use lap windings or wave windings having a plurality of armature windings. However, when conventional windings are used as they are in ironless motors, there are various drawbacks as will be explained based on the first and second figures. The first and second illustrations are expanded winding diagrams that can be considered when conventionally known wave-wound windings are employed in an ironless motor. Figure 1 shows that the field magnetic poles are 6.
FIG. 2 is an expanded winding diagram of a wave-wound armature with magnetic poles and consisting of five armature windings. The field magnetic poles 1 are magnetic poles 1-1, 1-2,... magnetized to N and S poles with an opening angle of 60 degrees.
..., 1-6. The commutator 3 has commutator pieces 3-1, 3- with an opening degree of 72 degrees (6/5 of the magnetic pole width).
It is composed of 2, 3-3, 3-4, and 3-5. The armature 2 is a cross-connected regular wave winding in which the opening angle of the conductor portion contributing to the generated torque of each armature winding is made equal to the magnetic pole width. Armature winding 2-1, 2-2,
2-3, 2-4, and 2-5 are arranged at equal pitches with an opening angle of 72 degrees (6/5 of the magnetic pole width) without overlapping each other. Each armature winding has a wave winding connection, and armature windings 2-1 and 2-3, 2-3 and 2-5, 2-5
The connections between and 2-2, 2-2 and 2-4, and 2-4 and 2-1 are commutator pieces 3-2, 3-4, and 3-, respectively.
1, 3-3, and 3-5. Brush 4-
1 and 4-2 are supplied with power from DC power supply positive and negative poles 5-1 and 5-2, respectively, and the opening angle is 180 degrees (3/1 of the magnetic pole width). In the illustrated related positions, electricity is applied in the direction of the arrow, torque is generated in each armature winding, and the armature 2 and commutator 3 become commutator motors rotating in the directions of arrows A and B, respectively. According to the embodiment shown in Figure 1, since the number of armature windings is small, the armature current switches at a rate of 10 times (excluding singular points) during one rotation, so the rectification characteristics are good. Not. This creates a counter-torque that reduces efficiency and starting torque. Furthermore, the number of armature windings that exist between the positive and negative electrodes of a DC power supply will be extremely small, making it impossible to use it as a high-voltage DC motor, increasing the number of sparks, and easily causing short-circuit accidents. The durability of will decrease. In order to eliminate the above-mentioned drawbacks, a case in which armature windings are constructed in multiple layers will be explained with reference to FIG. 2. FIG. 2 is an expanded winding diagram of a wave-wound armature with six field magnetic poles and 15 armature windings. The field pole 1 is exactly the same as that described in the first illustration. Commutator 7
is a commutator piece 7- with an opening angle of 24 degrees (2/5 of the magnetic pole width)
1, 7-2, . . . , 7-15. The armature 6 is a cross-connected regular triple wave winding in which the opening angle of the conductor portion contributing to the generated torque of each armature winding is made equal to the magnetic pole width. Armature winding 6-1, 6-
2, . . . , 6-15 are stacked in multiple layers at equal pitches with an opening angle of 24 degrees (2/5 of the magnetic pole width). Each armature winding is wave-wound connected, and armature windings 6-1 and 6-7, 6-7 and 6-13, 6-
13 and 6-4, 6-4 and 6-10, 6-10 and 6
-1 connections are commutator pieces 7-4 and 7-1, respectively.
0, 7-1, 7-7, 7-13. Armature windings 6-2 and 6-8, 6-8 and 6-1
4, 6-14 and 6-5, 6-5 and 6-11, 6-
The connection parts of 11 and 6-2 are connected to commutator pieces 7-
5, 7-11, 7-2, 7-8, and 7-14. Armature winding 6-3 and 6-9, 6-9
and 6-15, 6-15 and 6-6, 6-6 and 6-1
The connection parts of 2, 6-12 and 6-3 are commutator pieces 7-6, 7-12, 7-3, 7-9, 7-15, respectively.
It is connected to the. As mentioned above, there are three pairs of brushes because of triple wave winding, and brushes 4-1 and 4-2 are connected to DC power supply positive and negative electrodes 5-1 and 5-2, brushes 4-3,
4-4 is the DC power supply positive and negative poles 5-3, 5-4, and the brushes 4-5, 4-6 are DC power supply positive and negative poles 5-5, 5-
6, and the opening angle of each is 60 degrees (magnetic pole width). In the illustrated related positions, electricity is applied in the direction of the arrow, torque is generated in each armature winding, and the armature 6 and commutator 7 become commutator motors rotating in the directions of arrows A and B, respectively. According to the embodiment of FIG. 2, the thickness of the armature increases because the armature windings are superimposed in multiple layers. Such thickness has the disadvantage of significantly weakening the effective field poles passing through the armature, reducing efficiency and starting torque. For this reason, in the past, efforts have been made to reduce the thickness of the conductor portion that contributes to the generated torque. However, since this process is carried out by pressure molding or the like, many defective products such as armature winding breakage or short circuits occur. Furthermore, since the mutual positional relationship is not regulated when arranging the armature windings, the phase relationship tends to shift, making it extremely difficult to obtain a highly efficient DC motor, and the manufacturing process is also complicated, making it difficult to mass-produce. It was becoming expensive. In addition, in the method used for conventional ironless motors equipped with cylindrical armatures, insulated wires are wound one by one in an aligned manner to avoid overlapping the ends of the winding width, either by winding the entire winding width or by winding a part of it. The method used is to wind diagonally to the width of the winding, turn it back alternately at both ends every 180 degrees, and wind it continuously in order to form a cylindrical armature, but even in this case, it is not suitable for mass production and is expensive. It had become a thing.

本発明は上記した欠点を除去すると共に、構成
が簡素化され、従つて量産に適し、廉価に供給で
き、効率が良効なこの種の直流電動機を得ること
のできる効果を有するものである。即ち、2mn個
(mは1以上の整数、nは3以上の整数)の磁極
を備えた界磁磁極に対して、m(2n±1)個の
電機子巻線、及び1回転中における電機子電流の
切り換わりを2mn(2n±1)回(特異点は除く)
行なう整流装置を備えることにより、電機子の厚
みを薄く形成でき、高トルク、高効率で整流特性
も良好な直流電動機を得ることのできるものであ
る。また特許出願公告「昭44−4450」により、4
極またはそれ以上の界磁極に対して界磁磁数±1
個の電機子巻線と電機子巻線数の2倍の整流子片
を有している直流電動機は公知である。界磁磁極
が4磁極の場合は著しい効果を有するものである
が、界磁磁極が6磁極以上になると電機子巻線数
に2倍の整流子片では、反トルクが多く効率及び
起動トルクの減少が著しいものである。本発明
は、界磁磁極が6磁極以上についてなされたもの
で、次にかかる効果を有する本発明装置の詳細を
第3図以下について説明する。
The present invention has the effect of eliminating the above-mentioned drawbacks, and making it possible to obtain a DC motor of this type that has a simple structure, is suitable for mass production, can be supplied at low cost, and has good efficiency. In other words, for a field magnetic pole having 2mn magnetic poles (m is an integer of 1 or more, n is an integer of 3 or more), m (2n±1) armature windings, and the electric machine during one rotation. The child current switches 2mn (2n±1) times (excluding singular points)
By providing a rectifying device for this purpose, the thickness of the armature can be made thin, and a DC motor with high torque, high efficiency, and good rectification characteristics can be obtained. In addition, according to the patent application announcement "Sho 44-4450", 4
field number ±1 for one or more field poles
Direct current motors are known which have two armature windings and twice the number of armature windings. When the field magnetic poles are 4 magnetic poles, it has a remarkable effect, but when the field magnetic poles are 6 or more magnetic poles, a commutator piece with twice the number of armature windings has a large amount of counter torque, which reduces efficiency and starting torque. The decrease is significant. The present invention has been made for field magnetic poles of six or more magnetic poles, and the details of the present invention apparatus having the above effects will now be described with reference to FIG. 3 and subsequent figures.

第3図は、円板状の電機子を設けた整流子電動
機の構成の説明図である。プレス加工された軟鋼
製の筐体10には軸承12が固定され、またプレ
ス加工された軟鋼製の筐体9がビス18によつて
筐体10に固定されて磁路となつている。筐体9
には軸承11が固定され、軸承11,12には回
転軸8が支承され、回転軸8の一端は筐体10に
圧接している。筐体10には、N,S磁極が回転
軸方向に磁化された円環状の界磁磁極13が貼着
して固定されている。回転軸8には一体にモール
ドされた電機子14及び整流子15が固定されて
いる。電機子14は筐体9と界磁磁極13との空
隙磁界内に介在するように構成されている。記号
17は刷子保持具であり、整流子15に摺接する
刷子16を保持している。
FIG. 3 is an explanatory diagram of the configuration of a commutator motor provided with a disk-shaped armature. A bearing 12 is fixed to a pressed mild steel case 10, and a pressed mild steel case 9 is fixed to the case 10 with screws 18 to form a magnetic path. Housing 9
A bearing 11 is fixed to the bearings 11 and 12, and a rotating shaft 8 is supported on the bearings 11 and 12, and one end of the rotating shaft 8 is pressed against the housing 10. An annular field magnetic pole 13 in which the N and S magnetic poles are magnetized in the direction of the rotation axis is adhered and fixed to the housing 10 . An armature 14 and a commutator 15 that are integrally molded are fixed to the rotating shaft 8. The armature 14 is configured to be interposed in the air gap magnetic field between the housing 9 and the field magnetic pole 13. Reference numeral 17 denotes a brush holder, which holds the brush 16 that comes into sliding contact with the commutator 15.

次に第4図示より第15図示において、上述し
た円板状の電機子を設けた整流子電動機に本発明
を適用した実施例について説明する。
Next, referring to FIGS. 4 to 15, an embodiment in which the present invention is applied to a commutator motor provided with the above-mentioned disk-shaped armature will be described.

第4図に示したものはm=1,n=3の場合、
即ち、界磁磁極が2mn=6磁極、電機子巻線の数
がm(2n−1)=5個、整流子片の数がmn×(2n
−1)=15個よりなる実施例の展開式巻線図であ
る。第1図示の実施例より整流子片の数のみが増
加し、第2図示の実施例より電機子巻線の数のみ
が減少している本発明の実施例である。界磁磁極
19は第7図aに示すように60度の開角でN,S
極に回転軸方向に磁化された磁極19−1,19
−2,……,19−6よりなり、第3図示の界磁
磁極13に相当する。整流子21は24度の開角
(磁極幅の2/5)の整流子片21−1,21−2,
……,21−15より構成され、360/mn=120
度の開角(磁極幅の2/1)だけ離れたmn=3個ず
つの整流子片同士を短絡部材となる導線等により
電気的に短絡している。即ち、整流子片21−1
と21−6と21−11、及び整流子片21−2
と21−7と21−12、及び整流子片21−3
と21−8と21−13、及び整流子片21−4
と21−9と21−14、及び整流子片21−5
と21−10と21−15をそれぞれ短絡してお
り、第3図示の整流子15に相当する。電動子2
0は電機子巻線20−1,20−2,20−3,
20−4,20−5が第7図bに示すように配設
され、一体にモールドされて構成している。即
ち、各電機子巻線は互いに72度の開角(磁極幅の
6/5)の等しいピツチで互いに隣接して重畳せず
に配設されている。電機子巻線の発生トルクに寄
与する導体部(電機子巻線20−1の場合は20
−1−a,20−1−b部である)の開角は60度
で磁極幅と等しくされており、第3図示の電機子
14に相当する。第4図に戻り、電機子巻線20
−1の一端は整流子片21−2に、他端は整流子
片21−3に接続されており、他も同様に電機子
巻線20−2の両端はそれぞれ整流子片21−
5,21−6に、電機子巻線21−3の両端はそ
れぞれ21−8,21−9に、電機子巻線20−
4の両端はそれぞれ整流子片21−11,21−
12に、電機子巻線20−5の両端はそれぞれ整
流子片21−14,21−15に接続されてい
る。かかる接続方法は波巻或いは重ね巻の巻線方
法と異なつているが、電動機としての特性は全く
同一となるものであり、後述する実施例について
も同様であるが、一方法のみについて説明する。
記号22−1,22−2は直流電源正負極23−
1,23−2よりそれぞれ給電される刷子を示
し、開角は180度(磁極幅の3/1)となつている
が、360/2mn=60度の開角(磁極幅)、或いは300
度の開角(磁極幅の5/1)でも等価となり実施で
きるものである。図示の関係位置では矢印方向に
通電され、それぞれの電機子巻線にトルクが発生
して電動子20及び整流子21はそれぞれ矢印
A,B方向に回転する。かくして1回転中におけ
る電機子電流の切り換わりが2mn(2n−1)=30
回(特異点は除く)の割合で行なわれ、引続いた
トルクが発生して回転する整流子電動機となるも
のである。
What is shown in Fig. 4 is when m=1, n=3,
That is, the field magnetic poles are 2mn = 6 magnetic poles, the number of armature windings is m (2n - 1) = 5, and the number of commutator pieces is mn x (2n
-1) is an expanded winding diagram of an embodiment consisting of 15 windings. This is an embodiment of the present invention in which only the number of commutator pieces is increased compared to the embodiment shown in the first figure, and only the number of armature windings is decreased compared to the embodiment shown in the second figure. The field magnetic poles 19 are N and S at an opening angle of 60 degrees as shown in Figure 7a.
Magnetic poles 19-1, 19 magnetized in the direction of the rotation axis
-2, . . . , 19-6, and corresponds to the field magnetic pole 13 shown in the third figure. The commutator 21 has commutator pieces 21-1, 21-2 with an opening angle of 24 degrees (2/5 of the magnetic pole width).
..., 21-15, 360/mn=120
Three commutator pieces (mn = 3) separated by an opening angle of 1.5 degrees (2/1 of the magnetic pole width) are electrically short-circuited using a conductive wire or the like that serves as a short-circuiting member. That is, commutator piece 21-1
and 21-6 and 21-11, and commutator piece 21-2
and 21-7 and 21-12, and commutator piece 21-3
and 21-8 and 21-13, and commutator piece 21-4
and 21-9 and 21-14, and commutator piece 21-5
21-10 and 21-15 are short-circuited, respectively, and correspond to the commutator 15 shown in the third diagram. Electric child 2
0 is armature winding 20-1, 20-2, 20-3,
20-4 and 20-5 are arranged as shown in FIG. 7b and are integrally molded. In other words, each armature winding has an opening angle of 72 degrees with respect to the magnetic pole width.
6/5) and are arranged adjacent to each other at an equal pitch without overlapping. The conductor part that contributes to the generated torque of the armature winding (20 in the case of armature winding 20-1)
-1-a, 20-1-b portions) have an opening angle of 60 degrees, which is equal to the magnetic pole width, and corresponds to the armature 14 shown in the third figure. Returning to Figure 4, armature winding 20
-1 is connected to the commutator piece 21-2, the other end is connected to the commutator piece 21-3, and the other ends of the armature winding 20-2 are connected to the commutator piece 21-2, respectively.
5 and 21-6, both ends of the armature winding 21-3 are connected to 21-8 and 21-9, respectively, and the armature winding 20-
Both ends of 4 are commutator pieces 21-11 and 21-, respectively.
12, both ends of the armature winding 20-5 are connected to commutator pieces 21-14 and 21-15, respectively. Although this connection method is different from wave winding or lap winding winding methods, the characteristics of the motor are exactly the same, and the same applies to the embodiments described later, but only one method will be described.
Symbols 22-1, 22-2 are DC power supply positive and negative poles 23-
1 and 23-2 respectively, and the opening angle is 180 degrees (3/1 of the magnetic pole width), but the opening angle of 360/2mn = 60 degrees (magnetic pole width), or 300 degrees.
It is equivalent and can be implemented even with a degree opening angle (5/1 of the magnetic pole width). In the illustrated related positions, electricity is applied in the direction of the arrows, torque is generated in each armature winding, and the armature 20 and commutator 21 rotate in the directions of arrows A and B, respectively. Thus, the switching of armature current during one rotation is 2mn (2n - 1) = 30
(excluding singular points), and the subsequent torque is generated, resulting in a rotating commutator motor.

第5、第6図に示したものは、m=1,n=3
の場合、即ち、界磁磁極が2mn=6磁極、電機子
巻線の数がm(2n+1)=7個、整流子片の数が
mn(2n+1)=21個よりなる実施例の展開式巻線
図である。界磁磁極19は第4図示において説明
したものと同様である。整流子25は約17.1度の
開角(磁極幅の2/7)の整流子片25−1,25
−2,……,25−21より構成され、360/mn
=120度の開角(磁極幅の2/1)だけ離れたmn=
3個ずつの整流子片同士を短絡部材となる導線等
により電気的に短絡している。即ち、整流子片2
5−1と25−8と25−15、及び整流子片2
5−2と25−9と25−16、及び整流子片2
5−3と25−10と25−17、及び整流子片
25−4と25−11と25−18、及び整流子
片25−5と25−12と25−19、及び整流
子片25−6と25−13と25−20、及び整
流子片25−7と25−14と25−21をそれ
ぞれ短絡しており、第3図示の整流子15に相当
する。第5図示の電機子24は電機子巻線24−
1,24−2,……,24−7が第7図cに示す
ように配設され、一体にモールドされて構成して
いる。即ち、各電機子巻線はそれぞれ約51.4度の
開角(磁極幅の6/7)の等しいピツチで互いに隣
接して重畳せずに配設されている。かかる配設に
よると電機子巻線の発生トルクに寄与する導体部
(電機子巻線24−1の場合は24−1−a,2
4−1−b部である)の開角は図示の如く磁極幅
よりやや狭くなつている。このため反トルクが生
じる欠点があるが、第1に磁極幅を電機子巻線の
発生トルクに寄与する導体部の開角とほぼ等しく
する。第2に刷子自体の開角を広くする。等々の
従来より公知の手段を用いてもよいことは明白で
ある。以下に述べる実施例についても全く同様で
ある。第6図示の電機子26は電機子巻線26−
1,26−2,……,26−7が第7図dに示す
ように配設され、一体にモールドされて構成して
いる。即ち、各電機子巻線はそれぞれ約51.4度
(磁極幅の6/7)の等しいピツチで一部分が重畳し
て配設されている。電機子巻線の発生トルクに寄
与する導体部(電機子巻線26−1の場合は26
−1−a,26−1−b部である)の開角は60度
で磁極幅と等しくされている。電機子24,26
は第3図示の電機子14に相当する。第5、第6
図示に戻り、電機子巻線24−1,26−1の一
端は整流子片25−2に、他端は整流子片25−
3に接続されており、他も同様に電機子巻線24
−2,26−2の両端はそれぞれ整流子片25−
5,25−6に、電機子巻線24−3,26−3
の両端はそれぞれ整流子片25−8,25−9
に、電機子巻線24−4,26−4の両端はそれ
ぞれ整流子片25−11,25−12に、電機子
巻線24−5,26−5の両端はそれぞれ整流子
片25−14,25−15に、電機子巻線24−
6,26−6の両端はそれぞれ整流子片25−1
7,25−18に、電機子巻線24−7,26−
7の両端はそれぞれ整流子片25−20,25−
21に接続されている。刷子22−1,22−2
の開角等は第4図示において説明したものと同様
である。図示の関係位置では矢印方向に通電さ
れ、各電機子巻線にトルクが発生して電機子2
4,26及び整流子25はそれぞれ矢印A,B方
向に回転する。かくして1回転中における電機子
電流の切り換わりが2m×n(2n+1)=42回(特
異点は除く)の割合で行なわれ、引続いたトルク
が発生して回転する整流子電動機となるものであ
る。
What is shown in Figures 5 and 6 is m=1, n=3
In the case of , the field magnetic poles are 2mn = 6 magnetic poles, the number of armature windings is m (2n + 1) = 7, and the number of commutator pieces is
It is an expanded type winding diagram of an embodiment consisting of mn (2n+1)=21 pieces. The field magnetic poles 19 are similar to those described in the fourth illustration. The commutator 25 has commutator pieces 25-1 and 25 with an opening angle of approximately 17.1 degrees (2/7 of the magnetic pole width).
-2,...,25-21, 360/mn
= mn separated by an opening angle of 120 degrees (2/1 of the magnetic pole width) =
Three commutator pieces are electrically short-circuited with each other by a conductive wire or the like serving as a short-circuiting member. That is, commutator piece 2
5-1, 25-8, 25-15, and commutator piece 2
5-2, 25-9, 25-16, and commutator piece 2
5-3, 25-10 and 25-17, commutator pieces 25-4, 25-11 and 25-18, commutator pieces 25-5, 25-12 and 25-19, and commutator piece 25- 6, 25-13, and 25-20, and commutator pieces 25-7, 25-14, and 25-21 are short-circuited, respectively, and correspond to the commutator 15 shown in the third diagram. The armature 24 shown in FIG.
1, 24-2, . . . , 24-7 are arranged as shown in FIG. 7c and are integrally molded. That is, the armature windings are arranged adjacent to each other at equal pitches with an opening angle of about 51.4 degrees (6/7 of the magnetic pole width) without overlapping. According to this arrangement, the conductor portions that contribute to the generated torque of the armature winding (24-1-a, 24-1-a in the case of the armature winding 24-1)
As shown in the figure, the opening angle of the portion 4-1-b is slightly narrower than the magnetic pole width. For this reason, there is a drawback that counter torque occurs, but first, the magnetic pole width is made approximately equal to the opening angle of the conductor portion that contributes to the torque generated by the armature winding. Second, widen the opening angle of the brush itself. It is clear that other conventionally known means may also be used. The same applies to the embodiments described below. The armature 26 shown in FIG.
1, 26-2, . . . , 26-7 are arranged as shown in FIG. 7d and are integrally molded. That is, each armature winding is arranged at an equal pitch of approximately 51.4 degrees (6/7 of the magnetic pole width), with parts of the armature windings overlapping each other. The conductor part that contributes to the generated torque of the armature winding (26 in the case of armature winding 26-1)
-1-a and 26-1-b) have an opening angle of 60 degrees, which is equal to the magnetic pole width. Armature 24, 26
corresponds to the armature 14 shown in the third figure. 5th, 6th
Returning to the illustration, one end of the armature windings 24-1, 26-1 is connected to the commutator piece 25-2, and the other end is connected to the commutator piece 25-2.
3, and the others are similarly connected to armature winding 24.
Both ends of -2 and 26-2 are each commutator piece 25-
5, 25-6, armature winding 24-3, 26-3
Both ends are commutator pieces 25-8 and 25-9, respectively.
Both ends of the armature windings 24-4, 26-4 are connected to commutator pieces 25-11, 25-12, respectively, and both ends of the armature windings 24-5, 26-5 are connected to commutator pieces 25-14, respectively. , 25-15, the armature winding 24-
Both ends of 6 and 26-6 are each commutator piece 25-1.
7, 25-18, armature winding 24-7, 26-
Both ends of 7 are commutator pieces 25-20, 25-
21. Brush 22-1, 22-2
The opening angle and the like are the same as those explained in the fourth drawing. At the related positions shown, electricity is applied in the direction of the arrow, torque is generated in each armature winding, and the armature 2
4, 26 and commutator 25 rotate in the directions of arrows A and B, respectively. In this way, the armature current is switched at a rate of 2m x n (2n + 1) = 42 times (excluding singular points) during one rotation, and a continuous torque is generated, resulting in a rotating commutator motor. be.

第8図に示したものはm=1,n=4の場合、
即ち、界磁磁極が2mn=8磁極、電機子巻線の数
がm(2n−1)=7個、整流子片の数がmn×(2n
−1)=28個よりなる実施例の展開式巻線図であ
る。界磁磁極27は第11図aに示すように45度
の開角でN,S極に回転軸方向に磁化された磁極
27−1,27−2,……,27−8よりなり、
第3図示の界磁磁極13に相当する。整流子29
は約12.9度の開角(磁極幅の2/7)の整流子片2
9−1,29,−2,……,29−28より構成
され360/mn=90度の開角(磁極幅の2/1)だけ
離れたmn=4個ずつの整流子片同士を短絡部材
となる導線等により電気的に短絡している。即
ち、整流子片29−1と29−8と29−15と
29−22、及び整流子片29−2と29−9と
29−16と29−23、及び整流子片29−3
と29−10と29−17と29−24、及び整
流子片29−4と29−11と29−18と92
9−25、及び整流子片29−5と29−12と
29−19と29−26、及び整流子片29−6
と29−13と29−20と29−27、及び整
流子片29−7と29−14と29−21と29
−28をそれぞれ短絡しており、第3図示の整流
子15に相当する。電機子20は電機子巻線28
−1,28−2,……,28−7が第7図cにお
いて説明したものと全く同一の開角で配設され、
一体にモールドされて構成している。即ち、各電
機子巻線はそれぞれ約51.4度の開角(磁極幅の8/
7)の等しいピツチで互いに隣接して重畳せずに
配設されている。かかる配設によると電機子巻線
の発生トルクに寄与する導体部(電機子巻線28
−1の場合は28−1−a,28−1−b部であ
る)の開角は図示の如く磁極幅よりやや狭くなつ
ている。電機子巻線28−1の一端は整流子片2
9−2に、他端は整流子片29−3に接続されて
おり、他も同様に電機子巻線28−2の両端はそ
れぞれ整流子片29−6,29−7に、電機子巻
線28−3の両端はそれぞれ整流子片29−1
0,29−11に、電機子巻線28−4の両端は
それぞれ整流子片29−14,29−15に、電
機子巻線28−5の両端はそれぞれ整流子片29
−18,29−19に、電機子巻線28−6の両
端はそれぞれ整流子片29−22,29−23
に、電機子巻線28−7の両端はそれぞれ整流子
片29−26,29−27に接続されている。記
号22−1,22−2は直流電源正負極23−
1,23−2よりそれぞれ給電される刷子を示
し、開角は135度(磁極幅の3/1)となつている
が、360/2mn=45度の開角(磁極幅)、或いは225
度の開角(磁極幅の2/1)、或いは315度の開角
(磁極幅の7/1)でも等価となり実施できるもので
ある。図示の関係位置では矢印方向に通電され、
それぞれの電機子巻線にトルクが発生して電機子
28及び整流子29はそれぞれ矢印A,B方向に
回転する。かくして1回転中における電機子電流
の切り換わりが2mn(2n−1)=56回(特異点は
除く)の割合で行なわれ、引続いたトルクが発生
して回転する整流子電動機となるものである。
What is shown in Fig. 8 is when m=1, n=4,
That is, the field magnetic poles are 2mn = 8 magnetic poles, the number of armature windings is m (2n - 1) = 7, and the number of commutator pieces is mn x (2n
-1) is an expanded winding diagram of an embodiment consisting of 28 windings. As shown in FIG. 11a, the field magnetic pole 27 consists of magnetic poles 27-1, 27-2, .
This corresponds to the field magnetic pole 13 shown in FIG. Commutator 29
is commutator piece 2 with an opening angle of approximately 12.9 degrees (2/7 of the magnetic pole width)
9-1, 29, -2, ..., 29-28, 360/mn = 4 commutator pieces separated by an opening angle of 90 degrees (2/1 of the magnetic pole width) are short-circuited. It is electrically short-circuited by a conductor wire or the like. That is, commutator pieces 29-1, 29-8, 29-15, and 29-22, commutator pieces 29-2, 29-9, 29-16, and 29-23, and commutator pieces 29-3.
and 29-10, 29-17 and 29-24, and commutator pieces 29-4, 29-11, 29-18 and 92
9-25, and commutator pieces 29-5, 29-12, 29-19, and 29-26, and commutator pieces 29-6.
and 29-13, 29-20 and 29-27, and commutator pieces 29-7, 29-14, 29-21 and 29
-28 are short-circuited, and correspond to the commutator 15 shown in the third figure. The armature 20 has an armature winding 28
-1, 28-2, ..., 28-7 are arranged at exactly the same opening angle as explained in Fig. 7c,
It is molded as one piece. That is, each armature winding has an opening angle of approximately 51.4 degrees (8/8 of the magnetic pole width).
7) are arranged adjacent to each other at equal pitches without overlapping. According to this arrangement, the conductor portion (armature winding 28) that contributes to the generated torque of the armature winding
In the case of -1, the opening angle of the portions 28-1-a and 28-1-b is slightly narrower than the magnetic pole width as shown in the figure. One end of the armature winding 28-1 is connected to the commutator piece 2
9-2, the other end is connected to the commutator piece 29-3, and similarly, both ends of the armature winding 28-2 are connected to the commutator pieces 29-6 and 29-7, respectively. Both ends of the wire 28-3 are connected to commutator pieces 29-1, respectively.
0, 29-11, both ends of the armature winding 28-4 are connected to commutator pieces 29-14, 29-15, respectively, and both ends of the armature winding 28-5 are connected to commutator pieces 29, respectively.
-18, 29-19, both ends of the armature winding 28-6 are connected to commutator pieces 29-22, 29-23, respectively.
Both ends of the armature winding 28-7 are connected to commutator pieces 29-26 and 29-27, respectively. Symbols 22-1, 22-2 are DC power supply positive and negative poles 23-
1 and 23-2 are shown, and the opening angle is 135 degrees (3/1 of the magnetic pole width), but the opening angle of 360/2mn = 45 degrees (magnetic pole width), or 225
An opening angle of 315 degrees (2/1 of the magnetic pole width) or an opening angle of 315 degrees (7/1 of the magnetic pole width) is also equivalent and can be implemented. At the related positions shown, electricity is applied in the direction of the arrow;
Torque is generated in each armature winding, and the armature 28 and commutator 29 rotate in the directions of arrows A and B, respectively. In this way, the armature current is switched at a rate of 2mn (2n - 1) = 56 times (excluding singular points) during one rotation, and a continuous torque is generated, resulting in a rotating commutator motor. be.

第9、第10図に示したものはm=1,n=4
の場合、即ち、界磁磁極が2mn=8磁極、電機子
巻線の数がm(2n+1)=9個、整流子片の数が
mn(2n+1)=36個よりなる実施例の展開式巻線
図である。界磁磁極27は第8図示において説明
したものと同様である。整流子31は10度の開角
(磁極幅の2/9)の整流子片31−1,31−2,
……,31−36より構成され、360/mn=90度
の開角(磁極幅の2/1)だけ離れたmn=4個ずつ
の整流子片同士を短絡部材となる導線等により電
気的に短絡している。即ち、整流子片31−1と
31−10と31−19と31−28、及び整流
子片31−2と31−11と31−20と31−
29、及び整流子片31−3と31−12と31
−21と31−30、及び整流子片31−4と3
1−13と31−22と31−31、及び整流子
片31−5と31−14と31−23と31−3
2、及び整流子片31−6と31−15と31−
24と31−33、及び整流子片31−7と31
−16と31−25と31−34、及び整流子片
31−8と31−17と31−26と31−3
5、及び整流子片31−9と31−18と31−
27と31−36をそれぞれ短絡しており、第3
図示の整流子15に相当する。第9図示の電機子
30は電機子巻線30−1,30−2,……,3
0−9が第11図bに示すように配設され、一体
にモールドされて構成している。即ち、各電機子
巻線はそれぞれ40度の開角(磁極幅の8/9)の等
しいピツチで互いに隣接して重畳せずに配設され
ている。かかる配設によると電機子巻線の発生ト
ルクに寄与する導体部(電機子巻線30−1の場
合は30−1−a,30−1−b部である)の開
角は図示の如く磁極幅よりやや狭くなつている。
第10図示の電機子32は電機子巻線32−1,
32−2,……,32−9が第11図cに示すよ
うに配設され、一体にモールドされて構成してい
る。即ち、各電機子巻線はそれぞれ40度(磁極幅
の8/9)の等しいピツチで一部分が重畳して配設
されている。電機子巻線の発生トルクに寄与する
導体部(電機子巻線32−1の場合は32−1−
a,32−1−b部である)の開角は45度で磁極
幅と等しくされている。電機子30,32は第3
図示の電機子14に相当する。第9、第10図示
に戻り、電機子巻線30−1,32−1の一端は
整流子片31−2に、他端は整流子片31−3に
接続されており、他の同様に電機子巻線30−
2,32−2の両端はそれぞれ整流子片31−
6,31−7に、電機子巻線30−3,32−3
の両端はそれぞれ整流子片31−10,31−1
1に、電機子巻線30−4,32−4の両端はそ
れぞれ整流子片31−14,31−15に、電機
子巻線30−5,32−5の両端はそれぞれ整流
子片31−18,31−19に、電機子巻線30
−6,32−6の両端はそれぞれ整流子片31−
22,31−23に、電機子巻線30−7,32
−7の両端はそれぞれ整流子片31−26,31
−27に、電機子巻線30−8,32−8の両端
はそれぞれ整流子片31−30,31−31に、
電機子巻線30−9,32−9の両端はそれぞれ
整流子片31−34,31−35に接続されてい
る。刷子22−1,22−2の開角等は第8図示
において説明したものと同様である。図示の関係
位置では矢印方向に通電され、各電機子巻線にト
ルクが発生して電機子30,32及び整流子31
はそれぞれ矢印A,B方向に回転する。かくして
1回転中における電機子電流の切り換わりが2mn
(2n+1)=72回(特異点は除く)の割合で行な
われ、引続いたトルクが発生して回転する整流子
電動機となるものである。
The ones shown in Figures 9 and 10 are m=1, n=4
In the case of , the field magnetic poles are 2mn = 8 magnetic poles, the number of armature windings is m (2n + 1) = 9, and the number of commutator pieces is
It is an expanded type winding diagram of an embodiment consisting of mn (2n+1)=36 pieces. The field magnetic pole 27 is similar to that described in FIG. The commutator 31 has commutator pieces 31-1, 31-2 with an opening angle of 10 degrees (2/9 of the magnetic pole width).
......, 31-36, each mn = 4 commutator pieces separated by an opening angle of 360/mn = 90 degrees (2/1 of the magnetic pole width) are connected electrically by a conductive wire, etc. that serves as a short-circuiting member. There is a short circuit. That is, commutator pieces 31-1, 31-10, 31-19, and 31-28, and commutator pieces 31-2, 31-11, 31-20, and 31-
29, and commutator pieces 31-3, 31-12, and 31
-21 and 31-30, and commutator pieces 31-4 and 3
1-13, 31-22, and 31-31, and commutator pieces 31-5, 31-14, 31-23, and 31-3.
2, and commutator pieces 31-6, 31-15, and 31-
24 and 31-33, and commutator pieces 31-7 and 31
-16, 31-25 and 31-34, and commutator pieces 31-8, 31-17, 31-26 and 31-3
5, and commutator pieces 31-9, 31-18, and 31-
27 and 31-36 are shorted, respectively, and the third
This corresponds to the commutator 15 shown in the figure. The armature 30 shown in FIG. 9 has armature windings 30-1, 30-2, ..., 3.
0-9 are arranged as shown in FIG. 11b and are integrally molded. That is, the armature windings are arranged adjacent to each other at equal pitches with an opening angle of 40 degrees (8/9 of the magnetic pole width) without overlapping. According to this arrangement, the opening angle of the conductor portions (30-1-a and 30-1-b portions in the case of the armature winding 30-1) that contribute to the generated torque of the armature winding is as shown in the figure. It is slightly narrower than the magnetic pole width.
The armature 32 shown in FIG. 10 has an armature winding 32-1,
32-2, . . . , 32-9 are arranged as shown in FIG. 11c and are integrally molded. That is, each armature winding is arranged at an equal pitch of 40 degrees (8/9 of the magnetic pole width), with parts of the windings overlapping each other. The conductor part that contributes to the generated torque of the armature winding (32-1- in the case of armature winding 32-1)
The opening angle of portions a and 32-1-b is 45 degrees, which is equal to the magnetic pole width. Armatures 30 and 32 are the third
This corresponds to the armature 14 shown in the figure. Returning to the ninth and tenth illustrations, one end of the armature windings 30-1, 32-1 is connected to the commutator piece 31-2, the other end is connected to the commutator piece 31-3, and the other ends are connected to the commutator piece 31-3. Armature winding 30-
Both ends of 2 and 32-2 are connected to commutator pieces 31-
6, 31-7, armature winding 30-3, 32-3
Both ends of commutator pieces 31-10 and 31-1 respectively
1, both ends of the armature windings 30-4, 32-4 are connected to commutator pieces 31-14, 31-15, respectively, and both ends of the armature windings 30-5, 32-5 are connected to commutator pieces 31-1, respectively. 18, 31-19, armature winding 30
Both ends of -6, 32-6 are each commutator piece 31-
22, 31-23, armature winding 30-7, 32
Both ends of -7 are commutator pieces 31-26, 31, respectively.
-27, both ends of the armature windings 30-8, 32-8 are connected to commutator pieces 31-30, 31-31, respectively,
Both ends of the armature windings 30-9, 32-9 are connected to commutator pieces 31-34, 31-35, respectively. The opening angles of the brushes 22-1 and 22-2 are the same as those explained in the eighth figure. At the related positions shown in the figure, electricity is applied in the direction of the arrow, and torque is generated in each armature winding, resulting in armatures 30, 32 and commutator 31.
rotate in the directions of arrows A and B, respectively. Thus, the switching of armature current during one rotation is 2 mn.
This is done at a rate of (2n+1) = 72 times (excluding singular points), and a continuous torque is generated, resulting in a rotating commutator motor.

第12図に示したものはm=1,n=5の場
合、即ち、界磁磁極が2mn=10磁極、電機子巻線
の数がm(2n−1)=9個、整流子片の数がmn
(2n−1)=45個よりなる実施例の展開式巻線図
である。界磁磁極33は第15図aに示すように
36度の開角でN,S極に回転軸方向に磁化された
磁極33−1,33−2,……,33−10より
なり、第3図示の界磁磁極13に相当する。整流
子35は8度の開角(磁極幅の2/9)の整流子片
35−1,35−2,……,35−45より構成
され、360/mn=72度の開角(磁極幅の2/1)だ
け離れたmn=5個ずつの整流子片同士を短絡部
材となる導線等により電気的に短絡している。即
ち、整流子片35−1と35−10と35−19
と35−28と35−37、及び整流子片35−
2と35−11と35−20と35−29と35
−38、及び整流子片35−3と35−12と3
5−21と35−30と35−39、及び整流子
片35−4と35−13と35−22と35−3
1と35−40、及び整流子片35−5と35−
14と35−23と35−32と35−41、及
び整流子片35−6と35−15と35−24と
35−33と35−42、及び整流子片35−7
と35−16と35−25と35−34と35−
43、及び整流子片35−8と35−17と35
−26と35−35と35−44、及び整流子片
35−9と35−18と35−27と35−36
と35−45をそれぞれ短絡しており、第3図示
の整流子15に相当する。電機子34は電機子巻
線34−1,34−2,……,34−9が第11
図bにおいて説明したものと全く同一の開角で配
設され、一体にモールドされて構成している。即
ち、各電機子巻線はそれぞれ40度の開角(磁極幅
の10/9)の等しいピツチで互いに隣接して重畳せ
ずに配設されている。かかる配設によると電機子
巻線の発生トルクに寄与する導体部(電機子巻線
34−1の場合は34−1−a,34−1−b部
である)の開角は図示の如く磁極幅よりやや狭く
なつている。電機子巻線34−1の一端は整流子
片35−3に、他端は整流子片35−4に接続さ
れており、他も同様に電機子巻線34−2の両端
はそれぞれ整流子片35−8,35−9に、電機
子巻線34−3の両端はそれぞれ整流子片35−
13,35−14に、電機子巻線34−4の両端
はそれぞれ整流子片35−18,35−19に、
電機子巻線34−5の両端はそれぞれ整流子片3
5−23,35−24に、電機子巻線34−6の
両端はそれぞれ整流子片35−28,35−29
に、電機子巻線34−7の両端はそれぞれ整流子
片35−33,35−34に、電機子巻線34−
8の両端はそれぞれ整流子片35−38,35−
39に、電機子巻線34−9の両端はそれぞれ整
流子片35−43,35−44に接続されてい
る。記号22−1,22−2は直流電源正負極2
3−1,23−2よりそれぞれ給電される刷子を
示し、開角は180度(磁極幅の5/1)となつている
が、360/2mn=36度の開角(磁極幅)、或いは108
度の開角(磁極幅の3/1)、或いは252度の開角
(磁極幅の7/1)、或いは324度の開角(磁極幅の9/
1)でも等価となり実施できるものである。図示
の関係位置では矢印方向に通電され、それぞれの
電機子巻線にトルクが発生して電機子34及び整
流子35はそれぞれ矢印A,B方向に回転する。
かくして1回転中における電機子電流の切り換わ
りが2mn(2n−1)=90回(特異点は除く)の割
合で行なわれ、引続いたトルクが発生して回転す
る整流子電動機となるものである。
The case shown in Fig. 12 is when m = 1, n = 5, that is, the field magnetic pole is 2mn = 10 magnetic poles, the number of armature windings is m (2n - 1) = 9, and the number of commutator pieces is 2mn = 10. number is mn
It is an expanded type winding diagram of an example consisting of (2n-1)=45 pieces. The field magnetic pole 33 is as shown in FIG. 15a.
It consists of magnetic poles 33-1, 33-2, . The commutator 35 is composed of commutator pieces 35-1, 35-2, ..., 35-45 with an opening angle of 8 degrees (2/9 of the magnetic pole width), and an opening angle of 360/mn = 72 degrees (magnetic pole width). The commutator pieces (mn=5) separated by 2/1 of the width are electrically short-circuited using a conductive wire or the like that serves as a short-circuiting member. That is, commutator pieces 35-1, 35-10, and 35-19
and 35-28 and 35-37, and commutator piece 35-
2 and 35-11 and 35-20 and 35-29 and 35
-38, and commutator pieces 35-3, 35-12 and 3
5-21, 35-30 and 35-39, and commutator pieces 35-4, 35-13, 35-22 and 35-3
1 and 35-40, and commutator pieces 35-5 and 35-
14, 35-23, 35-32, and 35-41, and commutator pieces 35-6, 35-15, 35-24, 35-33, and 35-42, and commutator piece 35-7.
and 35-16 and 35-25 and 35-34 and 35-
43, and commutator pieces 35-8, 35-17, and 35
-26 and 35-35 and 35-44, and commutator pieces 35-9 and 35-18 and 35-27 and 35-36
and 35-45 are short-circuited, and correspond to the commutator 15 shown in the third diagram. The armature 34 has armature windings 34-1, 34-2, ..., 34-9 in the 11th
They are arranged at exactly the same opening angle as explained in FIG. b and are integrally molded. That is, the armature windings are arranged adjacent to each other at equal pitches with an opening angle of 40 degrees (10/9 of the magnetic pole width) without overlapping. According to this arrangement, the opening angle of the conductor portions (34-1-a and 34-1-b portions in the case of the armature winding 34-1) that contribute to the generated torque of the armature winding is as shown in the figure. It is slightly narrower than the magnetic pole width. One end of the armature winding 34-1 is connected to a commutator piece 35-3, and the other end is connected to a commutator piece 35-4. Similarly, both ends of the armature winding 34-2 are connected to a commutator piece 35-3, and the other end is connected to a commutator piece 35-4. Both ends of the armature winding 34-3 are connected to the commutator pieces 35-8 and 35-9, respectively.
13, 35-14, both ends of the armature winding 34-4 are connected to commutator pieces 35-18, 35-19, respectively,
Both ends of the armature winding 34-5 are connected to commutator pieces 3, respectively.
5-23, 35-24, both ends of the armature winding 34-6 are connected to commutator pieces 35-28, 35-29, respectively.
, both ends of the armature winding 34-7 are connected to the commutator pieces 35-33, 35-34, respectively, and the armature winding 34-
Both ends of 8 are commutator pieces 35-38, 35-, respectively.
39, both ends of the armature winding 34-9 are connected to commutator pieces 35-43 and 35-44, respectively. Symbols 22-1 and 22-2 are DC power supply positive and negative poles 2
3-1 and 23-2 respectively, the opening angle is 180 degrees (5/1 of the magnetic pole width), but the opening angle (magnetic pole width) is 360/2mn = 36 degrees, or 108
degree opening angle (3/1 of the magnetic pole width), or 252 degree opening angle (7/1 of the magnetic pole width), or 324 degree opening angle (9/1 of the magnetic pole width).
1) is equivalent and can be implemented. At the related positions shown, electricity is applied in the direction of the arrow, torque is generated in each armature winding, and the armature 34 and commutator 35 rotate in the directions of arrows A and B, respectively.
In this way, the armature current is switched at a rate of 2mn (2n - 1) = 90 times (excluding singular points) during one rotation, and a continuous torque is generated, resulting in a rotating commutator motor. be.

第13、第14図に示したものは、m=1、n
=5の場合、即ち、界磁磁極が2mn=10磁極、電
機子巻線の数がm(2n+1)=11個、整流子片の
数がmn(2n+1)=55個よりなる実施例の展開式
巻線図である。界磁磁極33は第12図示におい
て説明したものと同様である。整流子37は約
6.5度の開角(磁極幅の2/11)の整流子片37−
1,37−2,……,37−55より構成され、
360/mn=72度の開角(磁極幅の2/1)だけ離れ
たmn=5個ずつの整流子片同士を短絡部材とな
る導線等により電気的に短絡している。即ち、整
流子片37−1と37−12と37−23と37
−34と37−45、及び整流子片37−2と3
7−13と37−24と37−35と37−4
6、及び整流子片37−3と37−14と37−
25と37−36と37−47、及び整流子片3
7−4と37−15と37−26と37−37と
37−48、及び整流子片37−5と37−16
と37−27と37−38と37−49、及び整
流子片37−6と37−17と37−28と37
−39と37−50、及び整流子片37−7と3
7−18と37−29と37−40と37−5
1、及び整流子片37−8と37−19と37−
30と37−41と37−52、及び整流子片3
7−9と37−20と37−31と37−42と
37−53、及び整流子片37−10と37−2
1と37−32と37−43と37−54、及び
整流子片37−11と37−22と37−33と
37−44と37−55をそれぞれ短絡してお
り、第3図示の整流子15に相当する。第13図
示の電機子36は電機子巻線36−1,36−
2,……,36−11が第15図bに示すように
配設され、一体にモールドされて構成している。
即ち、各電機子巻線はそれぞれ約32.7度の開角
(磁極幅の10/11)の等しいピツチで互いに隣接し
て重畳せずに配設されている。かかる配設による
と電機子巻線の発生トルクに寄与する導体部(電
機子巻線36−1の場合は36−1−a,36−
1−b部である)の開角は図示の如く磁極幅より
やや狭くなつている。第14図示の電機子38は
電機子巻線38−1,38−2,……,38−1
1が第15図cに示すように配設され、一体にモ
ールドされて構成している。即ち、各電機子巻線
はそれぞれ約32.7度の開角(磁極幅の10/11)の
等しいピツチで一部分が重畳して配設されてい
る。電機子巻線の発生トルクに寄与する導体部
(電機子巻線38−1の場合は38−1−a,3
8−1−b部である)の開角は36度で磁極幅と等
しくされている。電機子36,38は第3図示の
電機子14に相当する。第13、第14図示に戻
り、電機子巻線36−1,38−1の一端は整流
子片37−3に、他端は整流子片37−4に接続
されており、他も同様に電機子巻線36−2,3
8−2の両端はそれぞれ整流子片37−8,37
−9に、電機子巻線36−3,38−3の両端は
それぞれ整流子片37−13,37−14に、電
機子巻線36−4,38−4の両端はそれぞれ整
流子片37−18,37−19に、電機子巻線3
6−5,38−5の両端はそれぞれ整流子片37
−23,37−24に、電機子巻線36−6,3
8−6の両端はそれぞれ整流子片37−28,3
7−29に、電機子巻線36−7,38−7の両
端はそれぞれ整流子片37−33,37−34
に、電機子巻線36−8,38−8の両端はそれ
ぞれ整流子片37−38,37−39に、電機子
巻線36−9,38−9の両端はそれぞれ整流子
片37−43,37−44に、電機子巻線36−
10,38−10の両端はそれぞれ整流子片37
−48,37−49に、電機子巻線36−11,
38−11の両端はそれぞれ整流子片37−5
3,37−54に接続されており、第3図示の整
流子15に相当する。刷子22−1,22−2の
開角等は第12図示において説明したものと同様
である。図示の関係位置では矢印方向に通電さ
れ、各電機子巻線にトルクが発生して電機子3
6,38及び整流子37はそれぞれ矢印A,B方
向に回転する。かくして1回転中における電機子
電流の切り換わりが2mn(2n+1)=110回(特異
点は除く)の割合で行なわれ、引続いたトルクが
発生して回転する整流子電動機となるものであ
る。
What is shown in FIGS. 13 and 14 is m=1, n
= 5, that is, development of an embodiment in which the field magnetic poles are 2mn = 10 magnetic poles, the number of armature windings is m (2n + 1) = 11 pieces, and the number of commutator pieces is mn (2n + 1) = 55 pieces. It is a formula winding diagram. The field magnetic pole 33 is similar to that described in the twelfth diagram. The commutator 37 is approximately
Commutator piece 37- with an opening angle of 6.5 degrees (2/11 of the magnetic pole width)
Consisting of 1, 37-2, ..., 37-55,
5 mn commutator pieces separated by an opening angle of 360/mn = 72 degrees (2/1 of the magnetic pole width) are electrically short-circuited using a conductive wire or the like serving as a short-circuiting member. That is, commutator pieces 37-1, 37-12, 37-23, and 37
-34 and 37-45, and commutator pieces 37-2 and 3
7-13 and 37-24 and 37-35 and 37-4
6, and commutator pieces 37-3, 37-14, and 37-
25 and 37-36 and 37-47, and commutator piece 3
7-4, 37-15, 37-26, 37-37, and 37-48, and commutator pieces 37-5 and 37-16
and 37-27, 37-38 and 37-49, and commutator pieces 37-6, 37-17, 37-28 and 37
-39 and 37-50, and commutator pieces 37-7 and 3
7-18 and 37-29 and 37-40 and 37-5
1, and commutator pieces 37-8, 37-19, and 37-
30 and 37-41 and 37-52, and commutator piece 3
7-9, 37-20, 37-31, 37-42, and 37-53, and commutator pieces 37-10 and 37-2
1, 37-32, 37-43, and 37-54, and commutator pieces 37-11, 37-22, 37-33, 37-44, and 37-55 are short-circuited, respectively, and the commutator shown in the third figure It corresponds to 15. The armature 36 shown in FIG. 13 has armature windings 36-1, 36-
2, . . . , 36-11 are arranged as shown in FIG. 15b and are integrally molded.
That is, the armature windings are arranged adjacent to each other at equal pitches with an opening angle of approximately 32.7 degrees (10/11 of the magnetic pole width) without overlapping. According to this arrangement, the conductor portions that contribute to the generated torque of the armature winding (in the case of the armature winding 36-1, 36-1-a, 36-
As shown in the figure, the opening angle of section 1-b is slightly narrower than the magnetic pole width. The armature 38 shown in Fig. 14 has armature windings 38-1, 38-2, ..., 38-1.
1 are arranged as shown in FIG. 15c and are integrally molded. That is, each armature winding is arranged at an equal pitch with an opening angle of approximately 32.7 degrees (10/11 of the magnetic pole width), with parts of the armature windings overlapping each other. Conductor portions that contribute to the generated torque of the armature winding (38-1-a, 3 in the case of armature winding 38-1)
The opening angle of section 8-1-b) is 36 degrees, which is equal to the magnetic pole width. Armatures 36 and 38 correspond to armature 14 shown in the third figure. Returning to the 13th and 14th illustrations, one end of the armature windings 36-1, 38-1 is connected to the commutator piece 37-3, the other end is connected to the commutator piece 37-4, and the other ends are connected in the same way. Armature winding 36-2, 3
Both ends of 8-2 are commutator pieces 37-8, 37, respectively.
-9, both ends of armature windings 36-3, 38-3 are connected to commutator pieces 37-13, 37-14, respectively, and both ends of armature windings 36-4, 38-4 are connected to commutator pieces 37, respectively. -18, 37-19, armature winding 3
Both ends of 6-5 and 38-5 are connected to commutator pieces 37, respectively.
-23, 37-24, armature winding 36-6, 3
Both ends of 8-6 are commutator pieces 37-28, 3, respectively.
7-29, both ends of the armature windings 36-7, 38-7 are connected to commutator pieces 37-33, 37-34, respectively.
Both ends of the armature windings 36-8, 38-8 are connected to commutator pieces 37-38, 37-39, respectively, and both ends of the armature windings 36-9, 38-9 are connected to commutator pieces 37-43, respectively. , 37-44, armature winding 36-
Both ends of 10 and 38-10 are each commutator piece 37
-48, 37-49, armature winding 36-11,
Both ends of 38-11 are each commutator piece 37-5
3, 37-54, and corresponds to the commutator 15 shown in the third diagram. The opening angles of the brushes 22-1 and 22-2 are the same as those explained in the twelfth figure. At the related positions shown in the figure, electricity is applied in the direction of the arrow, torque is generated in each armature winding, and the armature 3
6, 38 and commutator 37 rotate in the directions of arrows A and B, respectively. In this way, the armature current is switched at a rate of 2mn (2n + 1) = 110 times (excluding singular points) during one rotation, and a continuous torque is generated, resulting in a rotating commutator motor.

第16図は、円板状の電機子を設けた半導体電
動機の構成の説明図である。プレス加工された軟
鋼製の筐体42には軸承43が固定され、また、
プレス加工された軟鋼製の筐体41がビス49に
よつて筐体42に固定されている。軸承43には
ターンテーブル40を保持する回転軸39が回転
自在に支承され、回転軸39にはマグネツト回転
子44がマグネツトホルダー44aを介して固定
されている。マグネツト回転子44の外周には被
位置検知帯46がリング状に固定されている。界
磁となるマグネツト回転子44はN,S磁極が回
転軸方向に磁化されて設けられ、上面は磁路とな
る軟鋼製円板45が貼着されている。筐体42の
内面には、電機子48が貼着されており、筐体4
2とマグネツト回転子44との空隙磁界内に介在
するように構成されている。記号47は位置検知
素子の支持体であり、筐体41に設けられた空孔
部に保持されている。軸承43の下部は外周にネ
ジ部を設け雌ネジ43−1に螺着されて回転軸3
9のスラスト方向の調節を可能ならしめている。
FIG. 16 is an explanatory diagram of the configuration of a semiconductor motor provided with a disk-shaped armature. A bearing 43 is fixed to a pressed mild steel casing 42, and
A pressed mild steel casing 41 is fixed to the casing 42 with screws 49. A rotating shaft 39 that holds the turntable 40 is rotatably supported on the bearing 43, and a magnetic rotor 44 is fixed to the rotating shaft 39 via a magnetic holder 44a. A position detection band 46 is fixed to the outer periphery of the magnet rotor 44 in a ring shape. A magnetic rotor 44 serving as a field is provided with N and S magnetic poles magnetized in the direction of the rotation axis, and a mild steel disk 45 serving as a magnetic path is attached to the upper surface. An armature 48 is attached to the inner surface of the casing 42, and the casing 4
2 and the magnet rotor 44 in the air gap magnetic field. Reference numeral 47 indicates a support for the position detection element, which is held in a hole provided in the housing 41. The lower part of the bearing 43 has a threaded part on the outer periphery and is screwed onto the female thread 43-1 to connect the rotating shaft 3.
9 in the thrust direction.

次に第17図において、上述した円板状の電機
子を設けた半導体電動機に本発明を適用したもの
について説明する。m=1,n=3の場合、即
ち、界磁磁極が2mn=6磁極、電機子巻線の数が
m(2n−1)=5個、電機子電流の切れ換わりが
1回転中に2mn(2n−1)=30回(特異点は除
く)の割合で行なわれる整流装置よりなる実施例
の展開式巻線図である。界磁磁極となるマグネツ
ト回転子50は、60度の開角でN,S極に回転軸
方向に磁化された磁極50−1,50−2,…
…,50−6よりなり、矢印C方向に回転し、第
16図示のマグネツト回転子44に相当する。電
機子51は電機子巻線51−1,51−2,51
−3,51−4,51−5が第7図bにおいて、
説明したものと全く同一の開角で配設され、固定
子となつている。即ち、各電機子巻線はそれぞれ
72度の開角(磁極幅の6/5)の等しいピツチで互
いに隣接して重畳せずに配設されている。電機子
巻線の発生トルクに寄与する導体部(電機子巻線
50−1の場合は50−1−a,50−1−b部
である)の開角は60度で、磁極幅と等しくされて
おり、第16図示の電機子48に相当する。各電
機子巻線は直列接続され、電機子巻線51−1と
51−3、51−3と51−5、51−5と51
−2、51−2と51−4、51−4と51−1
の接続部は慣用されている通電制御回路52を介
して直流電源正極55−1、直流電源負極55−
2に接続されている。記号53−1,53−2,
53−3,53−4,53−5は位置検知素子で
例えばホール素子、誘動コイル等が使用されてい
る。それぞれの開角は72度(磁極幅の6/5)とな
つている。位置検知素子53−1,53−2,5
3−3,53−4,53−5は、第16図示の支
持体47に収納され、被位置検知帯46に対向し
ている。位置検知素子がホール素子である場合に
は、マグネツト回転子50の磁極50−1,50
−2,……,50−6の外側への漏洩磁束を利用
することができる。記号54は斜線部54−1,
54−3,54−5をN極とし,打点部54−
2,54−4,54−6をS極とする被位置検知
帯であり、第16図示の被位置検知帯46に相当
する。S極に対向したときのホール素子53−
1,53−2,53−3,53−4,53−5の
出力により通電制御回路52に含まれる第1群の
それぞれ対応するトランジスタ等を導通し、直流
電源正極55−1と対応する電機子巻線は導通と
なる。又、N極に対向したときのホール素子53
−1,53−2,53−3,53−4,53−5
の出力により通電制御回路52に含まれる第2群
のそれぞれ対応するトランジスタ等を導通し、直
流電源負極55−2と対応する電機子巻線は導通
となる。これらの導通により電機子電流が制御さ
れるように構成されている。即ち、図示する関係
位置ではS極に対向しているホール素子53−5
の出力により第1群の対応するトランジスタを導
通し、直流電源正極55−1と電機子巻線51−
4と51−1の接続部は導通となる。またN極に
対向しているホール素子53−1の出力により第
2群の対応するトランジスタを導通し、直流電源
負極55−2と電機子巻線51−5と51−2の
接続部は導通となる。従つて矢印方向に通電され
て各電機子巻線にトルクが発生し、マグネツト回
転子50及び被位置検知帯54はそれぞれ矢印
C,D方向に回転する。かくして1回転中におけ
る電機子電流の切り換わりが2mn(2n−1)=30
回(特異点は除く)の割合で行なわれ、引続いた
トルクが発生して回転するものである。かかる通
電方式は慣用されている半導体電動機の場合と同
じなのでマグネツト回転子50及び被位置検知帯
54は矢印C,D方向に回転する半導体電動機と
なるものである。上述した実施例は、界磁磁極が
6磁極で、電機子巻線の数が5個の場合である
が、他の実施例についても半導体電動機に同様に
適用できるものである。
Next, referring to FIG. 17, a description will be given of an application of the present invention to a semiconductor motor provided with the above-mentioned disk-shaped armature. When m = 1, n = 3, that is, the field magnetic pole is 2mn = 6 magnetic poles, the number of armature windings is m (2n - 1) = 5, and the switching of the armature current is 2mn in one rotation. FIG. 3 is a developed winding diagram of an embodiment comprising a rectifying device that performs rectification at a rate of (2n-1)=30 times (excluding singular points). The magnet rotor 50, which serves as field magnetic poles, has magnetic poles 50-1, 50-2, .
..., 50-6, rotates in the direction of arrow C, and corresponds to the magnet rotor 44 shown in FIG. The armature 51 has armature windings 51-1, 51-2, 51
-3, 51-4, 51-5 in Figure 7b,
It is arranged with exactly the same opening angle as described and serves as a stator. That is, each armature winding is
They are arranged adjacent to each other at equal pitches with an opening angle of 72 degrees (6/5 of the magnetic pole width) without overlapping. The opening angle of the conductor part (50-1-a and 50-1-b parts in the case of armature winding 50-1) that contributes to the generated torque of the armature winding is 60 degrees, which is equal to the magnetic pole width. This corresponds to the armature 48 shown in FIG. Each armature winding is connected in series, armature windings 51-1 and 51-3, 51-3 and 51-5, 51-5 and 51
-2, 51-2 and 51-4, 51-4 and 51-1
The connection portions are connected to a DC power supply positive pole 55-1 and a DC power supply negative pole 55- through a commonly used energization control circuit 52.
Connected to 2. Symbol 53-1, 53-2,
Reference numerals 53-3, 53-4, and 53-5 are position sensing elements, for example, Hall elements, induction coils, and the like. The opening angle of each is 72 degrees (6/5 of the magnetic pole width). Position detection elements 53-1, 53-2, 5
3-3, 53-4, and 53-5 are housed in a support body 47 shown in FIG. 16, and are opposed to the position detection band 46. When the position sensing element is a Hall element, the magnetic poles 50-1, 50 of the magnet rotor 50
-2, . . . , 50-6 leakage magnetic flux to the outside can be utilized. Symbol 54 is the shaded part 54-1,
54-3 and 54-5 are N poles, and the dot part 54-
2, 54-4, and 54-6 are the S poles, and correspond to the position detection band 46 shown in FIG. Hall element 53- when facing the S pole
The outputs of 1, 53-2, 53-3, 53-4, and 53-5 conduct the corresponding transistors, etc. of the first group included in the energization control circuit 52, and connect the DC power supply positive electrode 55-1 and the corresponding electrical machine. The child winding becomes conductive. In addition, the Hall element 53 when facing the N pole
-1, 53-2, 53-3, 53-4, 53-5
The output makes the corresponding transistors of the second group included in the energization control circuit 52 conductive, and the armature winding corresponding to the DC power supply negative electrode 55-2 becomes conductive. The armature current is controlled by these conductions. That is, in the illustrated relative position, the Hall element 53-5 faces the S pole.
The output makes the corresponding transistor of the first group conductive, and connects the DC power supply positive electrode 55-1 and the armature winding 51-.
4 and 51-1 are electrically connected. Further, the output of the Hall element 53-1 facing the N pole makes the corresponding transistor of the second group conductive, and the connection between the DC power supply negative electrode 55-2 and the armature windings 51-5 and 51-2 becomes conductive. becomes. Therefore, current is applied in the direction of the arrow, and torque is generated in each armature winding, and the magnet rotor 50 and the position sensing band 54 rotate in the directions of arrows C and D, respectively. Thus, the switching of armature current during one rotation is 2mn (2n - 1) = 30
rotation (excluding singular points), and the subsequent torque is generated to rotate. Since this energization method is the same as that of a commonly used semiconductor motor, the magnet rotor 50 and position detection band 54 form a semiconductor motor that rotates in the directions of arrows C and D. The above-described embodiment is a case in which the field magnetic poles are six magnetic poles and the number of armature windings is five, but other embodiments can be similarly applied to semiconductor motors.

上述した全ての実施例は、円板状の電機子に本
発明を適用したものであるが円筒状電機子にも適
用でき、更に有鉄心電動機にも同様に適用できる
ことは明らかである。また本発明は冒頭において
述べた通り、2mn個の磁極を備えた界磁磁極に対
して、m(2n±1)個の電機子巻線、及び1回
転中における電機子電流の切り換わりを2mn×
(2n±1)回の割合で行なう整流装置を備えた場
合には全て本発明の目的が達成できるものであ
る。故に上述した実施例の他に、12極の場合には
11,13個の電機子巻線、14極の場合には13,15個
の電機子巻線等々、いずれの場合においても適用
できる。更に上述した実施例は全てm=1の場合
であるが、界磁磁極の磁極数、電機子巻線の数等
をそれぞれ整数m倍としても同様に全て電機子巻
線は等しいピツチで、しかも電機子の厚みを薄く
形成でき、高トルク、高効率で整流特性も良好な
直流電動機を得ることができる特徴がある。
In all of the embodiments described above, the present invention is applied to a disc-shaped armature, but it is obvious that it can also be applied to a cylindrical armature, and furthermore, it can be similarly applied to an iron core electric motor. Furthermore, as stated at the beginning, the present invention has m(2n±1) armature windings and 2mn armature current switching during one rotation for a field magnetic pole having 2mn magnetic poles. ×
The objects of the present invention can be achieved in all cases where a rectifying device that performs rectification at a rate of (2n±1) times is provided. Therefore, in addition to the above embodiment, in the case of 12 poles,
It can be applied in any case, such as 11 or 13 armature windings, 13 or 15 armature windings in the case of 14 poles, etc. Furthermore, although all of the above-mentioned embodiments are for the case where m=1, even if the number of magnetic field poles, the number of armature windings, etc. are each multiplied by an integer m, all the armature windings have the same pitch, and It has the characteristics that the armature can be formed thinly, and a DC motor with high torque, high efficiency, and good rectification characteristics can be obtained.

以上の説明より判るように、本発明によれば冒
頭において述べた目的が達成されて効果著しきも
のである。
As can be seen from the above description, according to the present invention, the objects stated at the beginning are achieved and the effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1、第2図は、従来より公知の界磁磁極及び
波巻電機子の展開式巻線図、第3図は、整流子電
動機の構成の説明図、第4、第5、第6、第8、
第9、第10、第12、第13、第14図は、整
流子電動機に適用したそれぞれ異なる界磁磁極及
び電機子の実施例の展開式巻線図、第7図aは、
第4、第5、第6図示の界磁磁極の実施例の展開
図、第7図b,c,dは、それぞれ第4、第5、
第6図示の電機子の実施例の展開図、第11図a
は、第8、第9、第10図示の界磁磁極の実施例
の展開図、第11図b,cはそれぞれ第9、第1
0図示の電機子の実施例の展開図、第15図a
は、第12、第13、第14図示の界磁磁極の実
施例の展開図、第15図b,cはそれぞれ第1
3、第14図示の電機子の実施例の展開図、第1
6図は、半導体電動機の構成の説明図、第17図
は、半導体電動機に適用した界磁磁極及び電機子
の実施例の展開式巻線図をそれぞれ示す。 1……磁極1−1,1−2,……,1−6を有
する界磁磁極、2……電機子巻線2−1,2−
2,2−3,2−4,2−5を有する電機子、3
……整流子片3−1,3−2,3−3,3−4,
3−5を有する整流子、4−1,4−2,……,
4−6,16,22−1,22−2……刷子、5
−1,5−3,5−5,23−1,55−1……
直流電源正極、5−2,5−4,5−6,23−
2,55−2……直流電源負極、6……電機子巻
線6−1,6−2,……,6−15を有する電機
子、7……整流子片7−1,7−2,……,7−
15を有する整流子、8,39……回転軸、9,
10,41,42……筐体、11,12,43…
…軸承、13……界磁磁極、14,48……電機
子、15……整流子、17……刷子保持具、1
8,49……ビス、19……磁極19−1,19
−2,……,19−6を有する界磁磁極、20…
…電機子巻線20−1,20−2,20−3,2
0−4,20−5を有する電機子、20−1−
a,20−1−b……電機子巻線20−1の発生
トルクに寄与する導体部、21……整流子片21
−1,21−2,……,21−15を有する整流
子、24……電機子巻線24−1,24−2,…
…,24−7を有する電機子、24−1−a,2
4−1−b……電機子巻線24−1の発生トルク
に寄与する導体部、25……整流子片25−1,
25−2,……,25−21を有する整流子、2
6……電機子巻線26−1,26−2,……,2
6−7を有する電機子、27……磁極27−1,
27−2,……,27−8を有する界磁磁極、2
8……電機子巻線28−1,28−2,……,2
8−7を有する電機子、28−1−a,28−1
−b……電機子巻線28−1の発生トルクに寄与
する導体部、29……整流子片29−1,29−
2,……,29−28を有する整流子、30……
電機子巻線30−1,30−2,……,30−9
を有する電機子、30−1−a,30−1−b…
…電機子巻線30−1の発生トルクに寄与する導
体部、31……整流子片31−1,31−2,…
…,31−36を有する整流子、32……電機子
巻線32−1,32−2,……,32−9を有す
る電機子、32−1−a,32−1−b……電機
子巻線32−1の発生トルクに寄与する導体部、
33……磁極33−1,33−2,……,33−
10を有する界磁磁極、34……電機子巻線34
−1,34−2,……,34−9を有する電機
子、34−1−a,34−1−b……電機子巻線
34−1の発生トルクに寄与する導体部、35…
…整流子片35−1,35−2,……,35−4
5を有する整流子、36……電機子巻線36−
1,36−2,……,36−11を有する電機
子、36−1−a,36−1−b……電機子巻線
36−1の発生トルクに寄与する導体部、37…
…整流子片37−1,37−2,……,37−5
5を有する整流子、38……電機子巻線38−
1,38−2,……,38−11を有する電機
子、38−1−a,38−1−b……電機子巻線
38−1の発生トルクに寄与する導体部、40…
…ターンテーブル、44……マグネツト回転子、
44a……マグネツトホルダー、45……軟鋼製
円板、46……被位置検知帯、47……支持体、
50……磁極50−1,50−2,……,50−
6を有するマグネツト回転子、51……電機子巻
線51−1,51−2,51−3,51−4,5
1−5を有する電機子、51−1−a,51−1
−b……電機子巻線51−1の発生トルクに寄与
する導体部、52……通電制御回路、53−1,
53−2,53−3,53−4,53−5……位
置検知素子、54……54−1,54−2,…
…,54−6部を有する被位置検知帯。
1 and 2 are developed winding diagrams of conventionally known field magnetic poles and a wave-wound armature, and FIG. 3 is an explanatory diagram of the configuration of a commutator motor. Eighth,
9, 10, 12, 13, and 14 are exploded winding diagrams of different embodiments of field magnetic poles and armatures applied to a commutator motor, and FIG. 7a is a
The developed views of the embodiments of the field magnetic poles shown in the fourth, fifth and sixth figures, and FIGS. 7b, c and d are respectively the fourth, fifth and sixth
Exploded view of the embodiment of the armature shown in Figure 6, Figure 11a
11b and 11c are developed views of the embodiments of the field magnetic poles shown in the 8th, 9th, and 10th figures, respectively.
FIG. 15a: Developed view of the embodiment of the armature shown in FIG.
15 is a developed view of the embodiment of the field magnetic pole shown in FIGS. 12, 13, and 14, and FIGS.
3. Expanded view of the embodiment of the armature shown in Fig. 14, 1st
FIG. 6 is an explanatory diagram of the configuration of the semiconductor motor, and FIG. 17 is an exploded winding diagram of an embodiment of the field magnetic poles and armature applied to the semiconductor motor. 1... Field magnetic poles having magnetic poles 1-1, 1-2, ..., 1-6, 2... Armature windings 2-1, 2-
armature with 2, 2-3, 2-4, 2-5, 3
... Commutator pieces 3-1, 3-2, 3-3, 3-4,
Commutator with 3-5, 4-1, 4-2,...,
4-6, 16, 22-1, 22-2...brush, 5
-1, 5-3, 5-5, 23-1, 55-1...
DC power supply positive pole, 5-2, 5-4, 5-6, 23-
2,55-2... DC power supply negative electrode, 6... Armature having armature windings 6-1, 6-2,..., 6-15, 7... Commutator pieces 7-1, 7-2 ,...,7-
commutator having 15, 8, 39... rotating shaft, 9,
10, 41, 42... Housing, 11, 12, 43...
... Bearing, 13 ... Field magnetic pole, 14, 48 ... Armature, 15 ... Commutator, 17 ... Brush holder, 1
8, 49... screw, 19... magnetic pole 19-1, 19
-2,..., 19-6 field poles, 20...
...armature winding 20-1, 20-2, 20-3, 2
Armature with 0-4, 20-5, 20-1-
a, 20-1-b...Conductor portion contributing to the generated torque of the armature winding 20-1, 21...Commutator piece 21
-1, 21-2, ..., 21-15 commutator, 24 ... armature windings 24-1, 24-2, ...
..., 24-7 armature, 24-1-a, 2
4-1-b...Conductor portion contributing to the generated torque of the armature winding 24-1, 25...Commutator piece 25-1,
Commutator with 25-2, ..., 25-21, 2
6... Armature winding 26-1, 26-2,..., 2
Armature having 6-7, 27...magnetic pole 27-1,
27-2, ..., 27-8 field magnetic poles, 2
8... Armature winding 28-1, 28-2,..., 2
Armature with 8-7, 28-1-a, 28-1
-b... Conductor portion contributing to the generated torque of armature winding 28-1, 29... Commutator pieces 29-1, 29-
2,..., 29-28 commutator, 30...
Armature winding 30-1, 30-2, ..., 30-9
armatures, 30-1-a, 30-1-b...
...Conductor portion contributing to the generated torque of the armature winding 30-1, 31...Commutator pieces 31-1, 31-2,...
Commutator having ..., 31-36, 32... Armature having armature windings 32-1, 32-2, ..., 32-9, 32-1-a, 32-1-b... Electric machine a conductor portion that contributes to the generated torque of the child winding 32-1;
33... Magnetic poles 33-1, 33-2,..., 33-
field pole having 10, 34... armature winding 34;
-1, 34-2, ..., 34-9, 34-1-a, 34-1-b ... conductor portion contributing to the generated torque of armature winding 34-1, 35 ...
... Commutator pieces 35-1, 35-2, ..., 35-4
Commutator having 5, 36...armature winding 36-
1, 36-2, ..., 36-11, 36-1-a, 36-1-b... conductor portion contributing to the generated torque of the armature winding 36-1, 37...
... Commutator pieces 37-1, 37-2, ..., 37-5
Commutator having 5, 38...armature winding 38-
1, 38-2, ..., 38-11, 38-1-a, 38-1-b... conductor portion contributing to the generated torque of armature winding 38-1, 40...
...turntable, 44...magnetic rotor,
44a... Magnetic holder, 45... Mild steel disc, 46... Position detection band, 47... Support body,
50...Magnetic poles 50-1, 50-2,..., 50-
6, 51...armature windings 51-1, 51-2, 51-3, 51-4, 5
Armature with 1-5, 51-1-a, 51-1
-b...Conductor portion contributing to the generated torque of the armature winding 51-1, 52...Electrification control circuit, 53-1,
53-2, 53-3, 53-4, 53-5... position detection element, 54... 54-1, 54-2,...
..., 54-6 parts.

Claims (1)

【特許請求の範囲】 1 N,S極に等しい開角で磁化された2mn個
(mは1以上の整数、nは3以上の整数)の磁極
を備えた界磁磁極と、該界磁磁極の磁路を閉じる
為の磁性体と、m(2n±1)個の電機子巻線が
互いに等しいピツチで配設されると共に前記した
磁路内で前記した界磁磁極に対向して設けられた
電機子と、該電機子の1回転中における電機子電
流の切り換わりを2mn(2n±1)回(特異点は除
く)の割合で行なう整流装置と、前記した電機子
若しくは前記した界磁磁極を回転自在に支持する
と共に外筐に設けた軸承に支承された回転軸とよ
り構成されたことを特徴とする直流電動機。 2 第1項記載の特許請求の範囲において、整流
子を形成するmn(2n±1)個の整流子片と、所
定の該整流子片にそれぞれ対応する前記した電機
子巻線の端子を接続すると共に前記した界磁磁極
の磁極幅の2倍の開角(360/mn度)だけ離れた
mn個ずつの前記した整流子片同士を電気的に短
絡する短絡部材とを備え、前記した電機子巻線に
直流電源正負極より前記した整流子片上を摺動す
る刷子を介して給電し、該刷子の前記した整流子
片上における開度を前記した界磁磁極の磁極幅の
開角(360/2mn度)と同一、又はそれらの整流
子片と共通に接続された整流子片上における間の
開角としたことを特徴とする直流電動機。
[Claims] 1 A field magnetic pole comprising 2mn magnetic poles (m is an integer of 1 or more, n is an integer of 3 or more) magnetized with an opening angle equal to the N and S poles, and the field magnetic pole A magnetic body for closing the magnetic path and m (2n±1) armature windings are arranged at equal pitches and are provided opposite the field magnetic poles in the magnetic path. a rectifying device that switches the armature current at a rate of 2mn (2n±1) times (excluding singular points) during one rotation of the armature; and the above-mentioned armature or the above-mentioned field. A direct current motor comprising a rotating shaft rotatably supporting magnetic poles and supported by a bearing provided in an outer casing. 2. In the claim set forth in item 1, mn (2n±1) commutator pieces forming a commutator are connected to terminals of the above-mentioned armature winding that respectively correspond to predetermined commutator pieces. At the same time, the field magnetic poles are separated by an opening angle (360/mn degree) twice the magnetic pole width.
and a short-circuiting member that electrically shorts each of the mn pieces of the commutator pieces, and supplies power to the armature winding from the positive and negative poles of the DC power supply through the brushes that slide on the commutator pieces, The opening degree of the brush on the above-mentioned commutator pieces is the same as the opening angle of the magnetic pole width of the above-mentioned field magnetic poles (360/2 mn degree), or the distance between the brushes on the commutator pieces commonly connected to those commutator pieces. A DC motor characterized by an open angle.
JP5525379A 1979-05-08 1979-05-08 Dc motor Granted JPS55147964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5525379A JPS55147964A (en) 1979-05-08 1979-05-08 Dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5525379A JPS55147964A (en) 1979-05-08 1979-05-08 Dc motor

Publications (2)

Publication Number Publication Date
JPS55147964A JPS55147964A (en) 1980-11-18
JPS6147062B2 true JPS6147062B2 (en) 1986-10-17

Family

ID=12993423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5525379A Granted JPS55147964A (en) 1979-05-08 1979-05-08 Dc motor

Country Status (1)

Country Link
JP (1) JPS55147964A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6819025B2 (en) 2001-03-02 2004-11-16 Asmo Co., Ltd. Core of rotation apparatus, method for manufacturing core, and rotation apparatus

Also Published As

Publication number Publication date
JPS55147964A (en) 1980-11-18

Similar Documents

Publication Publication Date Title
US4437029A (en) Direct current motor
JP3167986B2 (en) Flat type two-phase vibration motor
US7482718B2 (en) Enhanced internal electrical generator powered by hand-crank
US5270602A (en) Corless motor
JPS6147062B2 (en)
FR2392526A1 (en) ROTARY ELECTRIC MACHINE WINDING
US5270597A (en) Four phase stepping motor and art of driving same
FR2430690A1 (en) DIRECT CURRENT ELECTRIC MOTOR COMPRISING AT LEAST TWO STATORIC WINDINGS SUPPLIED BY ALTERNATING CURRENT
US6448677B1 (en) Flat-type vibration motor
JPH0670521A (en) Small four-pole dc motor
US2477424A (en) Synchronous electric motor construction
US4344007A (en) Direct current motor and generator
JPH04168950A (en) Vibration motor having no output shaft
CN2288546Y (en) Mechanical reluctance communator electric machine
US527776A (en) Electric motor or dynamo
JP2000253634A (en) Generator
JPH06117874A (en) Pulse generator
US428454A (en) Electric motor
US635276A (en) Magneto-electric machine.
KR100593164B1 (en) Flat type vibration motor
KR100454660B1 (en) Coin type vivrating motor and method of connecting commutator and coil
JP2535153Y2 (en) AC motor
KR100432608B1 (en) Coin type vivrating motor and method of connecting commutator and coil
SU1396157A1 (en) Device for demonstrating the operation of d.c. motor
US382280A (en) Electrical Transmission Of Power