JPS6146803B2 - - Google Patents

Info

Publication number
JPS6146803B2
JPS6146803B2 JP18339181A JP18339181A JPS6146803B2 JP S6146803 B2 JPS6146803 B2 JP S6146803B2 JP 18339181 A JP18339181 A JP 18339181A JP 18339181 A JP18339181 A JP 18339181A JP S6146803 B2 JPS6146803 B2 JP S6146803B2
Authority
JP
Japan
Prior art keywords
optical fiber
hollow tube
optical
hollow
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18339181A
Other languages
Japanese (ja)
Other versions
JPS5885413A (en
Inventor
Akira Okamoto
Shigefumi Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18339181A priority Critical patent/JPS5885413A/en
Publication of JPS5885413A publication Critical patent/JPS5885413A/en
Publication of JPS6146803B2 publication Critical patent/JPS6146803B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers

Description

【発明の詳細な説明】 本発明は光通信用光フアイバの多端末の光結合
の成形方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming optical connections between multiple terminals of an optical fiber for optical communications.

複数の光波を合成し、光強度を強化したい場
合、又は光多重通信としてWDM(wave length
division multipex)を用いる時に、1入力、多
出力又は多入力、1出力の光の空間的分波、合成
を要する。同一波長の時は合成器が用いられ、異
なる波長の場合は合波器が使用される。特に通常
の搬送波によるFDM方式との結合にはWDMは経
済的に有利と言われ、この接続構成が求められ
る。
When you want to combine multiple light waves and strengthen the light intensity, or use WDM (wave length
When using 1-input, multiple-output, or multiple-input, 1-output light, it is necessary to spatially demultiplex and combine light. A combiner is used when the wavelengths are the same, and a multiplexer is used when the wavelengths are different. In particular, WDM is said to be economically advantageous when combined with FDM systems using ordinary carrier waves, and this connection configuration is required.

一般にはこのために、光干渉フイルタ又は回折
格子を用いた分波器、又は合波器を利用するが、
空間伝播による損失を減ずるため、直接結合が求
められている。
Generally, for this purpose, a demultiplexer or multiplexer using an optical interference filter or a diffraction grating is used.
Direct coupling is required to reduce losses due to spatial propagation.

第1図は従来のシングルモードの光フアイバの
加工法の説明図である。光フアイバ1の、コアー
部(約50μm)4に近い所迄クラツド部3を弗化
水素(HF)を用いて溶解除去する。この溶解後
の軸2の外径dはコアー部4の直径よりやや太
い。
FIG. 1 is an explanatory diagram of a conventional single mode optical fiber processing method. The cladding portion 3 of the optical fiber 1 close to the core portion (approximately 50 μm) 4 is dissolved and removed using hydrogen fluoride (HF). The outer diameter d of the shaft 2 after this melting is slightly larger than the diameter of the core portion 4.

第2図は第1図の光フアイバを溶解した軸部2
で接合した状態を示す側面図である。夫々の光フ
アイバ1軸部2の接触部分を相互に軸芯を平行に
保ちつつ正確に融着、又は接着する。この方法は
高度の技巧を要する。特に軸部2の近接が不足す
ると、2本のコアー部4から出射した光波が対向
する1本の光フアイバのコアー部(図省略)に入
射した場合に速度差を生じ、モード変換が起り易
い。更に露出した軸部2には反射層のクラツド部
3が少ないため、損失が増加する欠点がある。
Figure 2 shows the shaft part 2 in which the optical fiber in Figure 1 is melted.
FIG. The contact portions of the respective optical fiber shaft portions 2 are accurately fused or bonded while keeping the axes parallel to each other. This method requires a high degree of skill. In particular, if the shaft parts 2 are not close enough, a speed difference will occur when the light waves emitted from the two core parts 4 enter the core part (not shown) of one opposing optical fiber, and mode conversion is likely to occur. . Furthermore, since there is less cladding part 3 of the reflective layer in the exposed shaft part 2, there is a drawback that loss increases.

第3図は従来の他のシングルモードの光フアイ
バの加工法の斜視図である。
FIG. 3 is a perspective view of another conventional single mode optical fiber processing method.

イ図は接続前を示し、ロ図は接続後を示す。 Figure A shows before connection, and figure B shows after connection.

イ図において2本の光フアイバ5を軸芯を対向
させ、アーク放電融解(スプライス)し、先端部
を相互に結合した後、高温の状態のまま引き離す
とアメ状に延びて長い緩やかなテーパ部6が付け
られる。ロ図のごとくこの2本の光フアイバ5′
のテーパ部6を相互に融解接合する。
In Figure A, two optical fibers 5 are placed with their axes facing each other, arc-discharge melted (spliced), and their tips mutually bonded, and then pulled apart while still in a high-temperature state. 6 is given. As shown in Figure B, these two optical fibers 5'
The tapered portions 6 of are fused and bonded to each other.

この方法も又手工芸的技能を要し、テーパ部の
精度、真直性、特にコアー部の位置、径を正確に
定める事が容易でなく、大量に均一に製造するこ
とは困難である。
This method also requires handicraft skills, and it is difficult to accurately determine the precision and straightness of the tapered portion, especially the position and diameter of the core portion, and it is difficult to uniformly manufacture in large quantities.

本発明は前述の熟練技巧的作業を除くようにし
たものである。即ち光多重通信の光フアイバ結合
部において、光フアイバを中空管に挿通接着し、
該光フアイバのコアー部を残し、光フアイバと中
空管を共に、軸線方向に所定の角度に斜めに加工
し、更に該光フアイバと中空管の端面を共に軸線
方向に対し所定の角度に斜めに加工したものを複
数個接着結合してなることを特徴とする光フアイ
バ多端末成形法により再現性の良い量産的方法を
確立するものである。
The present invention eliminates the above-mentioned skilled craftsmanship. That is, in the optical fiber coupling part of optical multiplex communication, an optical fiber is inserted into a hollow tube and glued.
Leaving the core part of the optical fiber, both the optical fiber and the hollow tube are processed obliquely at a predetermined angle in the axial direction, and the end surfaces of the optical fiber and the hollow tube are both made at a predetermined angle with respect to the axial direction. The objective is to establish a mass production method with good reproducibility using an optical fiber multi-terminal molding method, which is characterized by adhesively bonding a plurality of diagonally processed fibers.

以下本発明による実施例について詳細説明す
る。尚第4図より第9図迄図中同一符号は同一物
を示す。
Examples according to the present invention will be described in detail below. Note that the same reference numerals in the figures from FIG. 4 to FIG. 9 indicate the same parts.

第4図は本発明に係るシングルモードの光フア
イバの加工法の断面図である。
FIG. 4 is a cross-sectional view of a single mode optical fiber processing method according to the present invention.

イ図は接合前の光フアイバの斜視図である。 Figure A is a perspective view of the optical fiber before bonding.

ロ図は接合後の光フアイバの断面図である。 Figure B is a cross-sectional view of the optical fiber after bonding.

イ図において、セラミツク製の中空管11に光
フアイバ10を挿通し、光フアイバ10のコアー
部14を残し、所定の角度θa〔ロ図図示〕に斜
めに研削してそいだ形状を示す。光フアイバの外
径は一般には約125μmであるが、ほぼ同一の外
径のワイヤーを心金としてセラミツクを中空管状
に焼結成形することが現在可能であり、精度の点
においても十分なものが得られるため、本発明に
おいてこの中空管11を利用している。中空管1
1に光フアイバ10を挿通させることも比較的容
易に実施可能である。本発明では光フアイバ10
を中空管11に挿通接着させた状態で治具で保持
して光フアイバ10の光軸線と平行して所定の角
度θaに研摩加工を行う。次に同一状態のまま光
フアイバ10と中空管12の端面を前述の斜面1
2aの直角面に対し、所定の角度θb〔ロ図図
示〕に斜めに研摩加工する。この状態のものを説
明上今仮に光フアイバ中空管12と名付ける。
The figure shows the shape obtained by inserting an optical fiber 10 into a ceramic hollow tube 11 and grinding it obliquely to a predetermined angle θa (shown in the figure), leaving the core portion 14 of the optical fiber 10 intact. The outer diameter of an optical fiber is generally about 125 μm, but it is currently possible to sinter and form ceramic into a hollow tube shape using a wire with almost the same outer diameter as a core metal, and it is also possible to form a hollow tube with sufficient accuracy. Therefore, this hollow tube 11 is utilized in the present invention. hollow tube 1
It is also relatively easy to insert the optical fiber 10 through 1. In the present invention, the optical fiber 10
is inserted into the hollow tube 11 and held with a jig in a state where it is adhered, and polished at a predetermined angle θa parallel to the optical axis of the optical fiber 10. Next, while keeping the same state, the end faces of the optical fiber 10 and the hollow tube 12 are aligned with the aforementioned slope 1.
Grinding is performed obliquely to a predetermined angle θb (shown in the figure) with respect to the right-angled surface of 2a. For the purpose of explanation, this state will be tentatively named optical fiber hollow tube 12.

ロ図においては、光フアイバ中空管12を2本
対称形に斜めに研摩加工した面12aを接着材で
接合している。この状態のものを説明上今仮に接
合光フアイバ中空管13と名付ける。
In the figure, the surfaces 12a of two hollow optical fiber tubes 12 are symmetrically polished obliquely and joined together with an adhesive. For the sake of explanation, this state will be temporarily named a spliced optical fiber hollow tube 13.

夫々の光フアイバ中空管12の接合中心線A―
Aに対し、夫々の光フアイバ中空管12の光軸は
角度θaだけ傾斜し、又光フアイバ中空管12の
端面12bは光フアイバ中空管12の斜面12a
の直角の面に対して角度θbだけ傾斜している。
この理由は2本の光フアイバ中空管12の出射光
軸C―Cを平行にし、対向する光フアイバの基本
光軸と一致させるためである。即ち光フアイバ中
空管12の光軸D―Dに沿つて伝播してきた光は
端面12bにおいて屈折し、接合中心線A―Aの
線と平行に出射する。従つてθaとθbとの間に
は光フアイバの屈折率をnとすると、 θb=θa/(n−1) の間係が与えられている。本実施例においてθa
は5°を選択した。
Joint center line A of each optical fiber hollow tube 12
With respect to A, the optical axis of each optical fiber hollow tube 12 is inclined by an angle θa, and the end surface 12b of the optical fiber hollow tube 12 is inclined by the slope 12a of the optical fiber hollow tube 12.
It is inclined by an angle θb with respect to a plane perpendicular to the plane.
The reason for this is to make the output optical axes CC of the two optical fiber hollow tubes 12 parallel and coincide with the basic optical axes of the opposing optical fibers. That is, the light propagating along the optical axis DD of the optical fiber hollow tube 12 is refracted at the end face 12b and exits parallel to the joining center line AA. Therefore, the relationship between θa and θb is given as θb=θa/(n-1), where n is the refractive index of the optical fiber. In this example, θa
selected 5°.

第5図は接合光フアイバ中空管13を第4図の
矢印B方向より見た端面を示す。光フアイバ10
のコアー部14は相互に近接している。
FIG. 5 shows an end face of the spliced optical fiber hollow tube 13 viewed from the direction of arrow B in FIG. optical fiber 10
The core portions 14 of are close to each other.

第6図は入力光を複数にした場合の接合光フア
イバ端面の断面図である。イ図は3本の入力光の
場合であり、ロ図は4本の入力光の場合である。
何れの例もコアー部からの出力光は合波され、対
向する光フアイバに入力される。
FIG. 6 is a sectional view of the end face of a spliced optical fiber when a plurality of input lights are input. Figure A shows the case with three input lights, and Figure B shows the case with four input lights.
In either example, the output light from the core section is multiplexed and input into the opposing optical fiber.

第7図は光フアイバ中空管を用いた2入力、1
出力の結合の他の実施例の構成図を示す。光フア
イバ中空管12の出射光軸は接合中心線A―A対
しやや開く方向に角度θbが加工形成されてい
る。2条の光波はレンズ13に入り、平行光線と
なり、空間伝播後再びレンズ15により集光し、
光フアイバ16に入る。
Figure 7 shows two inputs and one input using optical fiber hollow tubes.
FIG. 6 shows a block diagram of another embodiment of output combination. The output optical axis of the optical fiber hollow tube 12 is formed at an angle θb in a direction slightly open from the joint center line AA. The two light waves enter the lens 13, become parallel light beams, propagate through space, and are again focused by the lens 15.
It enters the optical fiber 16.

第8図は光フアイバ中空管を用いた分波器の実
施例の構成図である。光フアイバ中空管21をシ
ングルモードの入力光とし、光フアイバ中空管2
1′をマルチモードの出力光とする。本実施例で
は結合光フアイバ中空管23の端面23aは接合
中心線A―Aに対し垂直の面を構成している。
FIG. 8 is a block diagram of an embodiment of a duplexer using a hollow optical fiber tube. The optical fiber hollow tube 21 is used as a single mode input light, and the optical fiber hollow tube 2
Let 1' be the multimode output light. In this embodiment, the end surface 23a of the coupling optical fiber hollow tube 23 constitutes a plane perpendicular to the joint center line AA.

光干渉フイルタ22も接合中心線A―A線に対
し垂直に設けられている。光干渉フイタ22の図
の左側に光フアイバ中空管21の光軸延長繊維上
に集光レンズ23が中心軸を一致させて設けら
れ、更に集光レンズ23に近接して光フアイバ2
4が更に光フアイバ中空管21の光軸延長上に配
置されている。
The optical interference filter 22 is also provided perpendicularly to the joining centerline AA line. A condensing lens 23 is provided on the optical axis extension fiber of the optical fiber hollow tube 21 on the left side of the optical interference filter 22 in the figure, and the optical fiber 2 is provided in close proximity to the condensing lens 23 .
4 is further arranged on the optical axis extension of the optical fiber hollow tube 21.

光フアイバ中空管21からの波長λ1とλ2の
2条の光波は光干渉フイルタ22により反射光
(仮にλ1とする)と透過光(仮にλ2とする)
に分波される。反射光λ1はマルチモードとな
り、光フアイバ中空管21′で伝播される。一方
透過光λ2は集光レンズ23により集光され、光
フアイバ24の端面から入力され伝播される。
Two light waves with wavelengths λ1 and λ2 from the optical fiber hollow tube 21 are separated by an optical interference filter 22 into reflected light (temporarily assumed to be λ1) and transmitted light (temporarily assumed to be λ2).
It is split into two waves. The reflected light λ1 becomes multimode and is propagated through the optical fiber hollow tube 21'. On the other hand, the transmitted light λ2 is condensed by the condenser lens 23, inputted from the end face of the optical fiber 24, and propagated.

第9図は光フアイバ中空管を用いた分波器の他
の実施例の構成図である。光フアイバ中空管3
1,31′及び34の配置については第7図と同
様であるが角度θcは角度θaと等しい。しかし
いずれの光フアイバも干渉フイルター32に密着
し空間伝播はない。
FIG. 9 is a block diagram of another embodiment of a duplexer using a hollow optical fiber tube. Optical fiber hollow tube 3
The arrangement of 1, 31' and 34 is the same as in FIG. 7, but the angle .theta.c is equal to the angle .theta.a. However, both optical fibers are in close contact with the interference filter 32 and there is no spatial propagation.

尚本実施例においては、中空管にセラミツクを
使用したが、金属、ガラス等も孔加工技術の開発
により応用可能なものと推察する。
In this embodiment, ceramic is used for the hollow tube, but it is assumed that metal, glass, etc. can also be used with the development of hole processing technology.

以上本発明によれば複数の光フアイバからの入
力光を単数の光フアイバに合波し伝播させる構造
の製作は熟練的技能を要せず、確実に機械的に製
作することが可能になり、量産化が容易である。
更に品質画におつても安定し、信頼度も高い。
As described above, according to the present invention, a structure for multiplexing input light from a plurality of optical fibers into a single optical fiber and propagating the same does not require skilled skills and can be reliably manufactured mechanically. Mass production is easy.
Furthermore, the image quality is stable and highly reliable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のシングルモードの光フアイバの
加工法の説明図、第2図は第1図の光フアイバを
2本をコアー部で接合した状態を示す側面図、第
3図は従来の他のシングルモードの光フアイバの
加工法の斜視図、イ図は接続前を示し、ロ図は接
続後を示す。第4図は本発明に係るシングルモー
ドの光フアイバの加工法の断面図、イ図は接合前
の光フアイバの斜視図、ロ図は接合後の光フアイ
バの断面図である。第5図は接合光フアイバ中空
管13を第4図の矢印B方向より見た端面、第6
図は入力光を複数にした場合の光フアイバ端面の
断面図、イ図は3本の入力光の場合、ロ図は4本
の入力光の場合である。第7図は光フアイバ中空
管を用いた2入力、1出力の結合の他の実施例の
構成図、第8図は光フアイバ中空管を用いた分波
器の実施例の構成図、第9図は光フアイバ中空管
を用いた分波器の他の実施例の構成図である。 図において10は光フアイバ、11は中空管で
ある。
Fig. 1 is an explanatory diagram of a conventional single mode optical fiber processing method, Fig. 2 is a side view showing a state in which two optical fibers of Fig. 1 are joined at the core, and Fig. 3 is an explanatory diagram of a conventional single mode optical fiber processing method. A perspective view of the single mode optical fiber processing method, Figure A shows the state before connection, and Figure B shows the state after connection. FIG. 4 is a sectional view of the single mode optical fiber processing method according to the present invention, FIG. 4 is a perspective view of the optical fiber before bonding, and FIG. 4 is a sectional view of the optical fiber after bonding. FIG. 5 shows the end face of the spliced optical fiber hollow tube 13 viewed from the direction of arrow B in FIG.
The figure is a cross-sectional view of the end face of an optical fiber when a plurality of input lights are used, Figure A is for three input lights, and Figure B is for four input lights. Fig. 7 is a block diagram of another embodiment of a 2-input, 1-output coupling using a hollow optical fiber tube, and Fig. 8 is a block diagram of an embodiment of a duplexer using a hollow optical fiber tube. FIG. 9 is a block diagram of another embodiment of a duplexer using a hollow optical fiber tube. In the figure, 10 is an optical fiber and 11 is a hollow tube.

Claims (1)

【特許請求の範囲】[Claims] 1 光多重通信の光フアイバ結合部において、光
フアイバを中空管に挿通接着し、該光フアイバの
コアー部を残し光フアイバと中空管を共に、軸線
方向に所定の角度に斜めに加工し、更に該光フア
イバと中空管の端面を共に軸線方向に対し所定の
角度に斜めに加工したものを複数個接着結合して
なることを特徴とする光フアイバ多端末成形法。
1. In an optical fiber coupling part for optical multiplex communication, an optical fiber is inserted into a hollow tube and glued, and the optical fiber and hollow tube are both processed diagonally at a predetermined angle in the axial direction, leaving the core part of the optical fiber. Furthermore, a method for forming multiple terminals of an optical fiber is formed by adhesively bonding a plurality of optical fibers and hollow tubes whose end surfaces are both processed obliquely at a predetermined angle with respect to the axial direction.
JP18339181A 1981-11-16 1981-11-16 Forming method for optical fiber multiterminal Granted JPS5885413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18339181A JPS5885413A (en) 1981-11-16 1981-11-16 Forming method for optical fiber multiterminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18339181A JPS5885413A (en) 1981-11-16 1981-11-16 Forming method for optical fiber multiterminal

Publications (2)

Publication Number Publication Date
JPS5885413A JPS5885413A (en) 1983-05-21
JPS6146803B2 true JPS6146803B2 (en) 1986-10-16

Family

ID=16134948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18339181A Granted JPS5885413A (en) 1981-11-16 1981-11-16 Forming method for optical fiber multiterminal

Country Status (1)

Country Link
JP (1) JPS5885413A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140302A (en) * 1983-12-28 1985-07-25 Fujitsu Ltd Polarization maintaining optical fiber
JPS60154216A (en) * 1984-01-25 1985-08-13 Hitachi Ltd Wavelength selection type optical demultiplexing and distributing device
JPS6151111A (en) * 1984-08-20 1986-03-13 Fujitsu Ltd Optical directional coupler
JP2579024B2 (en) * 1990-04-02 1997-02-05 松下電器産業株式会社 Cordless answering machine
JPH0497106A (en) * 1990-08-10 1992-03-30 Nippon Telegr & Teleph Corp <Ntt> Optical fiber terminal and optical connector with low reflection and manufacture of optical fiber terminal with low reflection
JPH0733201Y2 (en) * 1990-08-24 1995-07-31 住友電気工業株式会社 Reinforcement structure of optical fiber coupler
JP2006018036A (en) * 2004-07-01 2006-01-19 Ntt Electornics Corp Optical fiber module
JP2006064771A (en) * 2004-08-24 2006-03-09 Japan Aviation Electronics Industry Ltd Optical multiplexer/demultiplexer
JP6779070B2 (en) * 2016-08-30 2020-11-04 株式会社フジクラ Fiber optic bundles, combiners, and laser devices
JP2018036361A (en) * 2016-08-30 2018-03-08 株式会社フジクラ Optical fiber bundle, combiner, laser device, and method of manufacturing optical fiber bundle

Also Published As

Publication number Publication date
JPS5885413A (en) 1983-05-21

Similar Documents

Publication Publication Date Title
US5100219A (en) Optical fiber multiplexing/demultiplexing device for multiple-fiber ribbon of optical fibers and their fabrication method
JPS6146803B2 (en)
JP2003043270A (en) End structure of optical fiber, and method for manufacturing the same
JPH0394208A (en) Optical fiber coupler
JP2624328B2 (en) Optical multiplexer / demultiplexer
JPS63163308A (en) Optical element and its manufacture
JPH01227108A (en) Optical branching circuit
JPS6212481B2 (en)
GB2199423A (en) Fibre optic transfer devices
JP2946434B2 (en) Multi-branch or multi-branch structure of optical fiber and optical waveguide
JPS59143119A (en) Light branching device
JPH027009A (en) Optical fiber coupler and its package
JPH1123884A (en) Photocoupler
JPS613107A (en) Optical multiplexer and demultiplexer
JPS6139364Y2 (en)
JPS58156917A (en) Directional coupler for single mode optical fiber
JPS6217766Y2 (en)
JPS60221709A (en) Optical demultiplexer and multiplexer
JPH04157404A (en) Optical fiber coupler
JPS62245206A (en) Optical element
JPS62116903A (en) Polarized wave separation type single mode optical fiber coupler
JPS63124008A (en) Optical branching coupling device
JPH07128543A (en) Juncture structure for optical fiber and optical waveguide
JPS6156308A (en) Manufacture of optical branching device
JPS6366514A (en) Optical multiplexer/demultiplexer