JPS5885413A - Forming method for optical fiber multiterminal - Google Patents

Forming method for optical fiber multiterminal

Info

Publication number
JPS5885413A
JPS5885413A JP18339181A JP18339181A JPS5885413A JP S5885413 A JPS5885413 A JP S5885413A JP 18339181 A JP18339181 A JP 18339181A JP 18339181 A JP18339181 A JP 18339181A JP S5885413 A JPS5885413 A JP S5885413A
Authority
JP
Japan
Prior art keywords
optical fiber
hollow tube
optical
hollow
obliquely
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18339181A
Other languages
Japanese (ja)
Other versions
JPS6146803B2 (en
Inventor
Akira Okamoto
明 岡本
Shigefumi Masuda
増田 重史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18339181A priority Critical patent/JPS5885413A/en
Publication of JPS5885413A publication Critical patent/JPS5885413A/en
Publication of JPS6146803B2 publication Critical patent/JPS6146803B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To eliminate the technically skilled work, by working an optical fiber and a hollow tube obliquely at a prescribed angle and working end faces of the optical fiber and the hollow tube obliquely at a prescribed angle and connecting plural optical fibers and hollow tubes, which are worked in this manner, by adhesion. CONSTITUTION:An optial fiber 10 is inserted into a ceramic hollow tube 11, and they are ground obliquely at a prescribed angle thetaa while leaving a core part 14 of the optical fiber 10 as it is. In this state, end faces of the optical fiber 10 and the hollow tube 12 are polished obliquely at a prescribed angle thetab to a plane vertical to a slope 12a. Slopes 12a of two optical fiber hollow tubes 12 which are polished obliquely symmetrically in this manner are connected by an adhesive. The light transmitted along an optical axis D-D of the hollow tube 12 is refracted on an end face 12b and is emitted in parallel with a center line A-A of connection.

Description

【発明の詳細な説明】 本発明は光通信用光ファイバの多端末の光結合の成形方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming optical coupling of multiple terminals of an optical fiber for optical communication.

複数の光波を合成し、光強度を強化したい場合、又は光
多重通信としてWDM (wave  l ength
  division  multipex)を用いる
時に、1人力、多出力又は多入力、1出力の光の空間的
分波、合成を要する。同一波長の時は合成器が用いられ
、異なる波長の場合は合波器が使用される。特に通常の
搬送波によるFDM方式との結合にはWDMは経済的に
有利と言われ、この接続構成が求められる。
When you want to combine multiple light waves and strengthen the light intensity, or use WDM (wave length
When using a multipex (division multipex) method, it requires one person's effort, multiple outputs or multiple inputs, and spatial demultiplexing and synthesis of light with one output. A combiner is used when the wavelengths are the same, and a multiplexer is used when the wavelengths are different. In particular, WDM is said to be economically advantageous when combined with an FDM system using a normal carrier wave, and this connection configuration is required.

一般にはこのために、光干渉フィルタ又は回折格子を用
いた分波器、又は合波器を利用するが、空間伝播による
損失を減するため、直接結合が求められている。
Generally, a demultiplexer or multiplexer using an optical interference filter or a diffraction grating is used for this purpose, but direct coupling is required to reduce loss due to spatial propagation.

第1図は従来のシングルモードの光ファイバの加工法の
説明図である。光ファイバ1の コア一部(約50μm
)2に近い所迄クラッド部3を弗化水素(HF)を用い
て溶解除去する。この溶解後の軸2の外IMdはコア一
部4の直径よりやや太い。
FIG. 1 is an explanatory diagram of a conventional single mode optical fiber processing method. Part of the core of optical fiber 1 (approximately 50μm
) The cladding portion 3 close to 2 is dissolved and removed using hydrogen fluoride (HF). The outer IMd of the shaft 2 after this melting is slightly thicker than the diameter of the core part 4.

第2図は第1図の光ファイバを溶解した軸部2で接合し
た状態を示す側面図である。夫々の光ファイバ1軸部2
の接触部分を相互に軸芯を平行に保ちつつ正確に融着、
又は接着する。この方法は高度の技巧を要する。特に軸
部2の近接が不足すると、2本のコア一部4から出射し
た光波が対向する1本の光ファイバのコア一部(図省略
)に入射した場合に速度差を生じ、モード変換が起り易
い。更に露出した軸部2には反射層のクラッド部3が少
ないため、損失が増加する欠点がある。
FIG. 2 is a side view showing a state in which the optical fibers of FIG. 1 are joined by a melted shaft portion 2. FIG. Each optical fiber single axis section 2
Accurately fuse the contacting parts of each other while keeping their axes parallel to each other,
Or glue. This method requires a high degree of skill. In particular, if the shaft parts 2 are not close enough, a speed difference will occur when the light waves emitted from the two core parts 4 enter the core part (not shown) of one opposing optical fiber, and mode conversion will occur. It happens easily. Furthermore, since the exposed shaft portion 2 has less cladding portion 3 of the reflective layer, there is a drawback that loss increases.

第3図は従来の他のシングルモードの光ファイバの加工
法の斜視図である。
FIG. 3 is a perspective view of another conventional single mode optical fiber processing method.

(イ)図は接続前を示し、(ロ)図は接続後を示す。(A) Figure shows before connection, (B) Figure shows after connection.

(イ)図において2本の光ファイバ5を軸芯を゛  対
向させ、アーク放電融解(スプライス)し、先端部を相
互に結合した後、高温の状態のまま引き離すとアメ状に
延びて長い緩やかなテーパ部6が付けられる6  (ロ
)図のごとくこの2本の光ファイバ5°のテーパ部6を
相互に融解接合する。
(a) In the figure, two optical fibers 5 are placed with their axes facing each other, arc-discharge melted (spliced), and their tips mutually bonded. If they are pulled apart while still hot, they will extend into a candy-like shape and become long and loose. (b) As shown in the figure, the 5° taper portions 6 of these two optical fibers are fused and bonded to each other.

この方法も又手工芸的技能を要し、テーパ部の精度、真
直性、特にコア一部の位置、径を正確に定める事が容易
でなく、大量に均一に製造することは困難である。
This method also requires handicraft skills, and it is not easy to accurately determine the precision and straightness of the tapered portion, especially the position and diameter of the core portion, and it is difficult to manufacture uniformly in large quantities.

本発明は前述の熟練技巧的作業を除(ようにしたもので
ある。即ち光多重通信の光フアイバ結合部において、光
ファイバを中空管に挿通接着し、該光ファイバのコア一
部を残し、光ファイバと中空管を共に、軸線方向に所定
の角度に斜めに加工し、更に該光ファイバと中空管の端
面を共に軸線方向に対し所定の角度に斜めに加工したも
のを複数個接着結合してなることを特徴とする光フアイ
バ多端末成形法により再現性の良い量産的方法を確立す
るものである。
The present invention eliminates the above-mentioned skilled and technical work. That is, in an optical fiber coupling section for optical multiplex communication, an optical fiber is inserted into a hollow tube and bonded, leaving a part of the core of the optical fiber. , an optical fiber and a hollow tube are both processed diagonally at a predetermined angle in the axial direction, and the end surfaces of the optical fiber and the hollow tube are both processed diagonally at a predetermined angle with respect to the axial direction. The objective is to establish a mass production method with good reproducibility using an optical fiber multi-terminal molding method characterized by adhesive bonding.

以下本発明による実施例について詳細説明する。Examples according to the present invention will be described in detail below.

尚第4図より第9図迄図中同−符号は同一物を示す。Note that the same reference numerals in the figures from FIG. 4 to FIG. 9 indicate the same parts.

第4図は本発明に係るシングルモードの光ファイバの加
工法の断面図である。
FIG. 4 is a cross-sectional view of a single mode optical fiber processing method according to the present invention.

くイ)図は接合前の光ファイバの斜視図である。B) The figure is a perspective view of the optical fiber before being joined.

(ロ)図は接合後の光ファイバの断面図である。Figure (b) is a cross-sectional view of the optical fiber after bonding.

イ)図において、セラミック製の中空管11に光ファイ
バ10を挿通し、光ファイバ10のコア一部14を残し
、所定の角度θa((ロ)図図示〕に斜めに研削してそ
いだ形状を示す。光ファイバの外径は一般には約125
μmであるが、はぼ同一の外径のワイヤーを心金として
セラミックを中空管状に焼結成形することが現在可能で
あり、精度の点においても十分なものが得られるため、
本考案においてこの中空管11を利用している。
b) In the figure, the optical fiber 10 is inserted into the ceramic hollow tube 11, and the optical fiber 10 is ground diagonally to a predetermined angle θa ((b) shown in the figure), leaving a part of the core 14 of the optical fiber 10. The outer diameter of the optical fiber is generally approximately 125 mm.
μm, but it is currently possible to sinter and form ceramic into a hollow tube using a wire with the same outer diameter as the mandrel, and sufficient accuracy can be obtained.
This hollow tube 11 is utilized in the present invention.

中空管11に光ファイバIOを挿通させることも比較的
容易に実施可能である。本発明では光ファイバ10を中
空管IJに挿通接着させた状態で治具で保持して光ファ
イバ10の光軸線と平行して所定の角度θaに研摩加工
を行う。次に同一状態のまま光ファイバ10と中空管1
2の端面を前述の斜面12aの直角面に対し、所定の角
度θb〔口)図図示〕に斜めに研摩加工する。この状態
のものを説明上今仮に光フアイバ中空管12と名付ける
It is also relatively easy to insert the optical fiber IO through the hollow tube 11. In the present invention, the optical fiber 10 is inserted into the hollow tube IJ and held with a jig in a state where it is bonded, and polished at a predetermined angle θa parallel to the optical axis of the optical fiber 10. Next, keep the same state as the optical fiber 10 and the hollow tube 1.
The end face of 2 is polished obliquely to a predetermined angle θb (as shown) with respect to the perpendicular surface of the slope 12a. For the sake of explanation, this state will be tentatively named optical fiber hollow tube 12.

(ロ)図においては、光フアイバ中空管12を2本対称
形に斜めに研摩加工した面12aを接着材で接合してい
る。この状態のものを説明上今仮に接合光ファイバ中空
管13と名付ける。
(B) In the figure, the surfaces 12a of two hollow optical fiber tubes 12 are symmetrically polished obliquely and joined together with an adhesive. For the sake of explanation, this state will be temporarily named a spliced optical fiber hollow tube 13.

夫々の光フアイバ中空管12の接合中心線A −八 に
対し、夫々の光フアイバ中空管12の光軸は角度θaだ
け傾斜し、又光フアイバ中空管12の端面12bは光フ
アイバ中空管12の斜面12aの直角の面に対して角度
θbだけ傾斜している。
The optical axis of each hollow optical fiber tube 12 is inclined by an angle θa with respect to the joining center line A-8 of each hollow optical fiber tube 12, and the end surface 12b of the hollow optical fiber tube 12 is It is inclined at an angle θb with respect to a surface perpendicular to the slope 12a of the empty tube 12.

この理由は2本の光フアイバ中空管12の出射光軸C−
Cを平行にし、対向する光ファイバの基本光軸と一致さ
せるためである。即ち光フアイバ中空管12の光軸D−
Dに沿って伝播してきた光は端面12bにおいて屈折し
、接合中心線A−Aの線と平行に出射する。従ってθa
とθbとの間には光ファイバの屈折率をnとすると、 θb−θa/(n−1) の関係が与えられている。本実施例においてθaは5′
を選択した。
The reason for this is that the output optical axis C- of the two optical fiber hollow tubes 12
This is to make C parallel and coincide with the basic optical axis of the opposing optical fiber. That is, the optical axis D- of the optical fiber hollow tube 12
The light propagating along D is refracted at the end face 12b and exits parallel to the bonding center line AA. Therefore θa
The relationship between and θb is θb−θa/(n−1), where n is the refractive index of the optical fiber. In this example, θa is 5'
selected.

第5図は接合光ファイバ中空管13を第4図の矢印B方
向より見た端面を示す。光ファイバ10のコア一部14
は相互に近接している。
FIG. 5 shows an end face of the spliced optical fiber hollow tube 13 viewed from the direction of arrow B in FIG. Core part 14 of optical fiber 10
are close to each other.

第6図は入力光を複数にした場合の接合光ファイバ端面
の断面図である。(イ)図は3本の入力光の場合であり
、(ロ)図は4本の入力光の場合である。何れの例もコ
ア一部からの出力光は合波され、対向する光ファイバに
入力される。
FIG. 6 is a sectional view of the end face of a spliced optical fiber when a plurality of input lights are input. The figure (a) shows the case of three input lights, and the figure (b) shows the case of four input lights. In either example, the output light from a part of the core is multiplexed and input into the opposing optical fiber.

第7図は光フアイバ中空管を用いた2人力、■出力の結
合の他の実施例の構成図を示す。光フアイバ中空管12
の出射光軸は接合中心線A−A対しやや開く方向に角度
θbが加工形成されている。
FIG. 7 shows a configuration diagram of another embodiment of two-man power, (1) output coupling using an optical fiber hollow tube. Optical fiber hollow tube 12
The output optical axis of is processed and formed at an angle θb in a direction that is slightly open from the welding center line A-A.

2条の光波はレンズ13に入り、平行光線となり、空間
伝播後再びレンズ15により集光し、光ファイバ16に
入る。
The two light waves enter the lens 13, become parallel light beams, and after spatial propagation are condensed again by the lens 15 and enter the optical fiber 16.

第8図は光フアイバ中空管を用いた分波器の実施例の構
成図である。光フアイバ中空管21をシングルモードの
入力光とし、光フアイバ中空管21“をマルチモードの
出力光とする。本実施例では結合光ファイバ中空管23
の端面23aは接合中心線A −Aに対し垂直の面を構
成している。
FIG. 8 is a block diagram of an embodiment of a duplexer using a hollow optical fiber tube. The optical fiber hollow tube 21 is used for single-mode input light, and the optical fiber hollow tube 21'' is used for multi-mode output light. In this embodiment, the coupled optical fiber hollow tube 23
The end surface 23a constitutes a surface perpendicular to the joint center line A-A.

光干渉フィルタ22も接合中心線A−A線に対し垂直に
設けられている。光干渉フィルタ23の図の左側に光フ
アイバ中空管21の光軸延長繊維上に集光レンズ23が
中心軸を一致させて設けられ、更に集光レンズ23に近
接して光ファイバ24が更に光フアイバ中空管21の光
軸延長上に配置されている。
The optical interference filter 22 is also provided perpendicularly to the joining center line AA line. A condensing lens 23 is provided on the optical axis extension fiber of the optical fiber hollow tube 21 on the left side of the optical interference filter 23 in the figure, and an optical fiber 24 is further provided close to the condensing lens 23. It is arranged on the optical axis extension of the optical fiber hollow tube 21.

光フアイバ中空管21からの波長λ1とλ2の2条の光
波は光干渉フィルタ22により反射光(仮にλ1とする
)と透過光(仮にλ2とする)に分波される。反射光λ
1はマルチモードとなり、光フアイバ中空管21゛ で
伝播される。一方透過光λ2は集光レンズ23により集
光され、光ファイバ24の端面から入力され伝播される
Two light waves with wavelengths λ1 and λ2 from the optical fiber hollow tube 21 are split by an optical interference filter 22 into reflected light (temporarily assumed to be λ1) and transmitted light (temporarily assumed to be λ2). reflected light λ
1 becomes multi-mode and is propagated through the optical fiber hollow tube 21'. On the other hand, the transmitted light λ2 is condensed by the condenser lens 23, inputted from the end face of the optical fiber 24, and propagated.

第9図は光フアイバ中空管を用いた分波器の他の実施例
の構成図である。光フアイバ中空管31.31′及び3
4の配置については第7図と同様であるが角度θbは角
度θaと等しい。しかしいずれの光ファイバも干渉フィ
ルター32に密着し空間伝播はない。
FIG. 9 is a block diagram of another embodiment of a duplexer using a hollow optical fiber tube. Fiber optic hollow tubes 31, 31' and 3
4 is the same as in FIG. 7, but the angle θb is equal to the angle θa. However, both optical fibers are in close contact with the interference filter 32 and there is no spatial propagation.

尚本実施例においては、中空管にセラミックを使用した
が、金属、ガラス等も孔加工技術の開発により応用可能
なものと推察する。
In this example, ceramic is used for the hollow tube, but it is assumed that metal, glass, etc. can also be used with the development of hole processing technology.

以上本発明によれば複数の光ファイバからの入力光を単
数の光ファイバに合波し伝播させる構造の製作は熟練的
技能を要せず、確実に機械的に製作することが可能にな
り、量産化が容易である。
As described above, according to the present invention, the structure that multiplexes input light from a plurality of optical fibers into a single optical fiber and propagates the structure does not require skilled skills and can be reliably manufactured mechanically. Mass production is easy.

更に品質面におっても安定し、信頼度も高い。Furthermore, it is stable in terms of quality and highly reliable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のシングルモードの光ファイバの加工法の
説明図、第2図は第1図の光ファイバを2本をコア一部
で接合した状態を示す側面図、第3図は従来の他のシン
グルモードの光ファイバの加工法の斜視図、(イ)図は
接続前を示し、(ロ)図は接続後を示す。第4図は本発
明に係るシングルモードの光ファイバの加工法の断面図
、(イ)図は接合前の光ファイバの斜視図、(ロ)図は
接合後の光ファイバの断面図である。第5図は接合光フ
ァイバ中空管13を第4図の矢印B方向より見た端面、
第6図は入力光を複数にした場合の光フアイバ端面の断
面図、(イ)図は3本の人力光の場合、(ロ)図は4本
の入力光の場合である。 第7図は光フアイバ中空管を用いた2人力、1出力の結
合の他の実施例の構成図、第8図は光フアイバ中空管を
用いた分波器の実施例の構成図、第9図は光フアイバ中
空管を用いた分波器の他の実施例の構成図である。 ? 図において10は光ファイバ、11は中空管である。 /θ 第 1 図 斗 第2図 /2b     15 / 第6図 ’f38c   、。 第 9 図 ・□
Figure 1 is an explanatory diagram of the conventional single-mode optical fiber processing method, Figure 2 is a side view showing the state in which two optical fibers in Figure 1 are joined at a part of the core, and Figure 3 is an explanatory diagram of the conventional single-mode optical fiber processing method. A perspective view of another single mode optical fiber processing method, (a) shows the state before connection, and (b) shows the state after connection. FIG. 4 is a cross-sectional view of the single-mode optical fiber processing method according to the present invention, (a) is a perspective view of the optical fiber before bonding, and (b) is a cross-sectional view of the optical fiber after bonding. FIG. 5 shows an end face of the spliced optical fiber hollow tube 13 viewed from the direction of arrow B in FIG.
FIG. 6 is a cross-sectional view of the end face of an optical fiber when a plurality of input lights are used, FIG. 6A shows a case where three human-powered lights are used, and FIG. FIG. 7 is a block diagram of another embodiment of a two-manpower, one-output coupling using a hollow optical fiber tube, and FIG. 8 is a block diagram of an embodiment of a duplexer using a hollow optical fiber tube. FIG. 9 is a block diagram of another embodiment of a duplexer using a hollow optical fiber tube. ? In the figure, 10 is an optical fiber and 11 is a hollow tube. /θ 1st Figure 2/2b 15 / Figure 6'f38c,. Figure 9・□

Claims (1)

【特許請求の範囲】[Claims] 光多重通信の光フアイバ結合部において、光ファイバを
中空管に挿通接着し、該光ファイバのコア一部を残し光
ファイバと中空管を共に、軸線方向に所定の角度に斜め
に加工し、更に該光ファイバと中空管の端面を共に軸線
方向に対し所定の角度に斜めに加工したものを複数個接
着結合してなることを特徴とする光フアイバ多端末成形
法。
In the optical fiber coupling part of optical multiplex communication, an optical fiber is inserted into a hollow tube and glued, and both the optical fiber and the hollow tube are processed diagonally at a predetermined angle in the axial direction, leaving a part of the core of the optical fiber. . A method for forming multiple terminals of optical fibers, further comprising adhesively bonding a plurality of optical fibers and hollow tubes whose end surfaces are both processed obliquely at a predetermined angle with respect to the axial direction.
JP18339181A 1981-11-16 1981-11-16 Forming method for optical fiber multiterminal Granted JPS5885413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18339181A JPS5885413A (en) 1981-11-16 1981-11-16 Forming method for optical fiber multiterminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18339181A JPS5885413A (en) 1981-11-16 1981-11-16 Forming method for optical fiber multiterminal

Publications (2)

Publication Number Publication Date
JPS5885413A true JPS5885413A (en) 1983-05-21
JPS6146803B2 JPS6146803B2 (en) 1986-10-16

Family

ID=16134948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18339181A Granted JPS5885413A (en) 1981-11-16 1981-11-16 Forming method for optical fiber multiterminal

Country Status (1)

Country Link
JP (1) JPS5885413A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140302A (en) * 1983-12-28 1985-07-25 Fujitsu Ltd Polarization maintaining optical fiber
JPS60154216A (en) * 1984-01-25 1985-08-13 Hitachi Ltd Wavelength selection type optical demultiplexing and distributing device
JPS6151111A (en) * 1984-08-20 1986-03-13 Fujitsu Ltd Optical directional coupler
JPH03286657A (en) * 1990-04-02 1991-12-17 Matsushita Electric Ind Co Ltd Cordless automatic answering telephone set
JPH0497106A (en) * 1990-08-10 1992-03-30 Nippon Telegr & Teleph Corp <Ntt> Optical fiber terminal and optical connector with low reflection and manufacture of optical fiber terminal with low reflection
JPH0446409U (en) * 1990-08-24 1992-04-20
JP2006018036A (en) * 2004-07-01 2006-01-19 Ntt Electornics Corp Optical fiber module
JP2006064771A (en) * 2004-08-24 2006-03-09 Japan Aviation Electronics Industry Ltd Optical multiplexer/demultiplexer
JP2018036362A (en) * 2016-08-30 2018-03-08 株式会社フジクラ Optical fiber bundle, combiner, and laser device
JP2018036361A (en) * 2016-08-30 2018-03-08 株式会社フジクラ Optical fiber bundle, combiner, laser device, and method of manufacturing optical fiber bundle

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140302A (en) * 1983-12-28 1985-07-25 Fujitsu Ltd Polarization maintaining optical fiber
JPS60154216A (en) * 1984-01-25 1985-08-13 Hitachi Ltd Wavelength selection type optical demultiplexing and distributing device
JPH0574046B2 (en) * 1984-01-25 1993-10-15 Hitachi Ltd
JPS6151111A (en) * 1984-08-20 1986-03-13 Fujitsu Ltd Optical directional coupler
JPS6348321B2 (en) * 1984-08-20 1988-09-28 Fujitsu Ltd
JPH03286657A (en) * 1990-04-02 1991-12-17 Matsushita Electric Ind Co Ltd Cordless automatic answering telephone set
JPH0497106A (en) * 1990-08-10 1992-03-30 Nippon Telegr & Teleph Corp <Ntt> Optical fiber terminal and optical connector with low reflection and manufacture of optical fiber terminal with low reflection
JPH0446409U (en) * 1990-08-24 1992-04-20
JP2006018036A (en) * 2004-07-01 2006-01-19 Ntt Electornics Corp Optical fiber module
JP2006064771A (en) * 2004-08-24 2006-03-09 Japan Aviation Electronics Industry Ltd Optical multiplexer/demultiplexer
JP2018036362A (en) * 2016-08-30 2018-03-08 株式会社フジクラ Optical fiber bundle, combiner, and laser device
JP2018036361A (en) * 2016-08-30 2018-03-08 株式会社フジクラ Optical fiber bundle, combiner, laser device, and method of manufacturing optical fiber bundle

Also Published As

Publication number Publication date
JPS6146803B2 (en) 1986-10-16

Similar Documents

Publication Publication Date Title
JP3124465B2 (en) Optical coupler
US5100219A (en) Optical fiber multiplexing/demultiplexing device for multiple-fiber ribbon of optical fibers and their fabrication method
JPS5885413A (en) Forming method for optical fiber multiterminal
JP3866585B2 (en) Manufacturing method of filter module
JPS61279808A (en) Manufacture of lightwave guiding coupler
JPH03220509A (en) Multi-division optical branching/synthesizing device
JPS63163308A (en) Optical element and its manufacture
JPS63289509A (en) Multi-cored optical parts and its production
JPH01227108A (en) Optical branching circuit
WO2003098290A1 (en) Fibre optic connector
JP2946434B2 (en) Multi-branch or multi-branch structure of optical fiber and optical waveguide
JP2763298B2 (en) Optical fiber coupler and its mounting body
JPH04180004A (en) Connector for optical circuit
JPH0377483B2 (en)
JPS6019483B2 (en) How to connect optical fiber
JPS6365412A (en) Connector for optical fiber
JPS58156917A (en) Directional coupler for single mode optical fiber
JPS61148408A (en) Multicore optical multiplexer demultiplexer
JPS5927882B2 (en) Optical fiber multi-core connection method
JPS61232405A (en) Optical demultiplexer and multiplexer
JPS6338908A (en) Hybrid optical multiplexer/demultiplexer
JPS6240402A (en) Manufacture of optical multiplexer and demultiplexer
JPH0320805Y2 (en)
JPS613107A (en) Optical multiplexer and demultiplexer
JPS6156308A (en) Manufacture of optical branching device