JPS6338908A - Hybrid optical multiplexer/demultiplexer - Google Patents

Hybrid optical multiplexer/demultiplexer

Info

Publication number
JPS6338908A
JPS6338908A JP61182031A JP18203186A JPS6338908A JP S6338908 A JPS6338908 A JP S6338908A JP 61182031 A JP61182031 A JP 61182031A JP 18203186 A JP18203186 A JP 18203186A JP S6338908 A JPS6338908 A JP S6338908A
Authority
JP
Japan
Prior art keywords
lens
optical
sleeve
fixed
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61182031A
Other languages
Japanese (ja)
Inventor
Takayuki Kakinuma
柿沼 孝之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP61182031A priority Critical patent/JPS6338908A/en
Publication of JPS6338908A publication Critical patent/JPS6338908A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To reduce the man-hour of optical axis adjustment and assembling by using a substrate provided with plural V grooves and using a cylindrical sleeve to fix an optical semiconductor element and a lens, which should be combined with this element, in each V groove and assembling a hybrid optical multiplexer/demultiplexer. CONSTITUTION:A collimator 5 is arranged in the axial direction of a first groove 14a and is fixed in this groove 14a provided on a substrate 13, and a first interference film 9 and a second interference film 10 are fixed to attaching faces set in end parts of a second V groove 14b and a third V groove 14c respectively. Meanwhile, a light emitting element 6 and a lens 7 are inserted into a sleeve 15 and are so adjusted that the axis of the sleeve 15 coincides with the optical axis of the light emitting element 6, and the light emitting element 6 and the lens 7 are fixed, and a light receiving element 6 and the lens 7 are fixed, and a light receiving element 11 and a lens 12 are inserted into a sleeve 16 and are fixed after being so adjusted that the axis of the sleeve 16 and the optical axis of the light receiving element 11 coincide with each other. The sleeve 15 is arranged in the axial direction of the second V groove 14b and is fixed in this groove 14b, and the sleeve 16 is arranged in the axial direction of the third V groove 14c and is fixed in this groove 14c.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光通信装置等に使用される混成型光合分波器に
関するもので、特にコリメータ、光半導体素子、レンズ
、及び干渉膜等の光学部品を一体化することによシ構成
される混成型光合分波器に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a hybrid optical multiplexer/demultiplexer used in optical communication devices, etc., and particularly to optical devices such as collimators, optical semiconductor elements, lenses, and interference films. This invention relates to a hybrid optical multiplexer/demultiplexer constructed by integrating parts.

〔従来の技術〕[Conventional technology]

第4図は従来のこの種の混成型光合分波器を示す正面図
、第5図はその断面図である。
FIG. 4 is a front view showing a conventional hybrid optical multiplexer/demultiplexer of this type, and FIG. 5 is a sectional view thereof.

図において1は中空の基板で、この基板1の一側部には
第1の取付部2aが設けられ、また他側部には第1の取
付部2aと同1抽上に位置する第2の取付部2bが設け
られており、更にこの第2の取付部2bに対して斜めに
向けた第3の取付部2Cが所定の位置に設けられている
In the figure, reference numeral 1 denotes a hollow board, and one side of this board 1 is provided with a first mounting part 2a, and the other side is provided with a second mounting part 2a located on the same level as the first mounting part 2a. A mounting portion 2b is provided, and a third mounting portion 2C that is diagonally oriented with respect to the second mounting portion 2b is provided at a predetermined position.

3は光ファイバ、4は集束性ロンドレンス、5は外部と
の光信号の授受を行うコリメータで、このコリメータ5
は前記光ファイバ3の端部と集束性ロンドレンズ4を一
体化することにより構成されており、前記基板1の第1
の取付部2aに挿入固定されている。
3 is an optical fiber, 4 is a focusing lens, and 5 is a collimator that transmits and receives optical signals to and from the outside.
is constructed by integrating the end of the optical fiber 3 and the focusing Rondo lens 4, and the first
It is inserted and fixed into the mounting part 2a of the.

6はλ1の波長を持つ光信号を発光する発光素子、1は
この発光素子6と前記コリメータ5とを光学的に結合さ
せるレンズで、この両者はコリメータ5に対して光軸調
整した後、高分子樹脂による接着剤8によシ前記基板1
の第2の取付部2bに固定されている。
6 is a light emitting element that emits an optical signal having a wavelength of λ1, 1 is a lens that optically couples this light emitting element 6 and the collimator 5, and after adjusting the optical axis with respect to the collimator 5, The substrate 1 is coated with an adhesive 8 made of molecular resin.
It is fixed to the second attachment part 2b of.

9はλ1の波長の光のみを通過させかつ他の波長の光を
反射する第1の干渉膜(フィルタ)で、この第1の干渉
膜9は前記第2の取付部2bの一端に位置する取付面に
固定されておシ、この取付面は第2の取付部2bに対し
て予じめ斜めに形成さnている。
Reference numeral 9 denotes a first interference film (filter) that allows only light of wavelength λ1 to pass through and reflects light of other wavelengths, and this first interference film 9 is located at one end of the second mounting portion 2b. It is fixed to a mounting surface, and this mounting surface is formed in advance at an angle with respect to the second mounting portion 2b.

10はλ2の波長の光のみを通過させかつ他の波長の光
は反射する第2の干渉膜(フィルタ)で、この第2の干
渉膜10は第1の干渉膜9を取付けた取付面に平行とな
るように第3の取付部2Cの一端に設けられた取付面に
固定さnている。
Reference numeral 10 denotes a second interference film (filter) that allows only light of wavelength λ2 to pass through and reflects light of other wavelengths.This second interference film 10 is attached to the mounting surface on which the first interference film 9 is attached. They are fixed to a mounting surface provided at one end of the third mounting portion 2C so as to be parallel to each other.

11はλ2の波長の光を受光する受光素子、12はこの
受光素子11と前記コリメータ5とを光学的に結合させ
るレンズで、この両者はコリメータ5に対して光軸調整
した後、前記と同様の高分子樹脂による接着剤8によシ
基板1の第3の取付部2cに固定さnている。
Reference numeral 11 denotes a light-receiving element that receives light with a wavelength of λ2, and 12 a lens that optically couples the light-receiving element 11 and the collimator 5. After the optical axis of both is adjusted with respect to the collimator 5, the same as described above is used. It is fixed to the third mounting portion 2c of the substrate 1 with an adhesive 8 made of polymer resin.

この構成において光−電気信号の変換は以下のように行
われる。
In this configuration, optical-electrical signal conversion is performed as follows.

まず、発光素子6に入力された電気信号は、この発光素
子6により光電変換さn1波長λ1の光信号として発光
される。そしてこの光信号はレンズ7によって平行ビー
ム光となり、第4図に実線で示したように第1の干渉膜
9を通過した後、基板1内の空間を直進し、コリメータ
5の集束性ロッドレンズ4によシ光ファイバ3に入射し
て、この光ファイバ3によシ外部へ伝送さnる。
First, an electrical signal input to the light emitting element 6 is photoelectrically converted by the light emitting element 6 and is emitted as an optical signal having a wavelength λ1 of n1. This optical signal is turned into a parallel beam by the lens 7, passes through the first interference film 9 as shown by the solid line in FIG. 4 enters the optical fiber 3 and is transmitted to the outside through the optical fiber 3.

一方、光ファイバ3により外部からλ2の波長を持つ光
信号が伝送さnてきた場合、その光信号はコリメータ5
の集束性ロッドレンズ4によシ平行ビーム光となる。そ
して、この平行ビーム光は点線で示したように基板1内
の空間を直進して第1の干渉膜9によシ反射され、再び
基板1内の空間を直進した後、第2の干渉膜10を通過
し、レンズ12によシ集束されて受光素子11で受光さ
れることによシミ気信号に変換されて出力される。
On the other hand, when an optical signal with a wavelength of λ2 is transmitted from the outside through the optical fiber 3, the optical signal is transmitted to the collimator 5.
The convergent rod lens 4 converts the light into a collimated beam. Then, as shown by the dotted line, this parallel beam light travels straight through the space inside the substrate 1, is reflected by the first interference film 9, and after traveling straight through the space inside the substrate 1 again, passes through the second interference film. 10, is focused by a lens 12, is received by a light receiving element 11, is converted into a stain signal, and is output.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上述した従来の混成型光合分波器は、コリ
メータと、光半導体素子つまシ発光素子、受光素子と、
レンズとのそれぞれの光軸を一致させるための調整を基
板上で行っており、その調整は前記各部品の相互の位置
に依存することから、調整及び組立に多大な工数がかか
り、量産性に欠けると共に、前記各部品の固定を高分子
樹脂による接着で行っているため、組立後の温度変化や
外力に対して影響を受は易いという問題があった。
However, the conventional hybrid optical multiplexer/demultiplexer described above includes a collimator, an optical semiconductor element, a light emitting element, a light receiving element,
Adjustments are made on the board to align the optical axes of the lenses with each other, and since the adjustments depend on the mutual positions of each of the above components, a large amount of man-hours are required for adjustment and assembly, which hinders mass production. In addition to chipping, since each of the above-mentioned parts is fixed by adhesion using a polymer resin, there is a problem that it is easily affected by temperature changes and external forces after assembly.

本発明はこのような問題を解決するためになさCたもの
で、光軸調整及び組立工数を削減できると共に、1産性
に優れ、かつ組立後の温度変化や外力による影響を受け
にくい混成型光合分波器を実現することを目的とするも
のである。
The present invention was made to solve these problems, and it is a hybrid type that can reduce the number of optical axis adjustment and assembly steps, has excellent single-product productivity, and is less susceptible to temperature changes and external forces after assembly. The purpose is to realize an optical multiplexer/demultiplexer.

〔問題点を解決するための手段〕[Means for solving problems]

上述した目的を達成するため、本発明は従来の基板に代
えて複数のV溝を形成した基板を用いると共に、各V溝
に光半導体素子と、この光半導体素子に組合わせるレン
ズを固定するために円筒状のスリーブを使用して組立て
を行うようにしたものである。
In order to achieve the above-mentioned object, the present invention uses a substrate in which a plurality of V grooves are formed in place of a conventional substrate, and also fixes an optical semiconductor element and a lens to be combined with this optical semiconductor element in each V groove. It is designed to be assembled using a cylindrical sleeve.

〔作用〕[Effect]

上述した構成を有する本発明は、基板のV溝にコリメー
タを配置固定すると共に所定の取付面に干渉膜を取付け
る。そして光半導体素子とレンズとを円筒状のスリーブ
内に挿入すると共に、光半導体素子の光軸とスリーブの
中心軸が一致するように調整した後、この光半導体素子
とレンズeスリーブに固定し、そしてこのスリーブを基
板の他のV溝に配置固定することで、前記コリメータの
光軸と光半導体素子の光軸が一致するように組立てるこ
とができる。
In the present invention having the above-described configuration, a collimator is arranged and fixed in a V-groove of a substrate, and an interference film is attached to a predetermined mounting surface. Then, the optical semiconductor element and the lens are inserted into the cylindrical sleeve, and after adjusting so that the optical axis of the optical semiconductor element and the central axis of the sleeve coincide, the optical semiconductor element and the lens are fixed to the sleeve, By arranging and fixing this sleeve in another V-groove of the substrate, it is possible to assemble the optical semiconductor element so that the optical axis of the collimator and the optical axis of the optical semiconductor element coincide with each other.

従ってこnによnば、従来のように基板上で光軸調整を
行うことなく組立てることができるので、組立時の光軸
調整及び組立工数を削減することができると共に、光半
導体素子とそのレンズとをスリープにより予じめ=本化
しておくことができるので量産性も優れるものとなり、
しかも従来のように高分子樹脂による接着を用いること
なく組立を行うことができるので、組立後の温度変化や
外力による影響を受けにくい混成型光合分波器の実現が
可能となる。
Therefore, since it can be assembled without adjusting the optical axis on the board as in the conventional case, it is possible to reduce the optical axis adjustment and assembly man-hours during assembly, and also to Since the lens and lens can be prepared in advance by sleeping, mass production is also excellent.
Moreover, since assembly can be performed without using adhesives using polymeric resin as in the past, it is possible to realize a hybrid optical multiplexer/demultiplexer that is less susceptible to temperature changes and external forces after assembly.

〔実施例〕〔Example〕

以下図面を参照して実施例を説明する。 Examples will be described below with reference to the drawings.

第1図は本発明による混成型・光合分波器の一実施例を
示す正面図、第2図はその左側面図、第3図は同じく右
側面図で、図において3は光ファイバ、4は集束性ロッ
ドレンズ、5はフリメータ、6は発光素子、1はレンズ
、9は第1の干渉膜、10は第2の干渉膜、11は受光
素子、12はレンズであり、これらは第4図及び第5図
のものと同一である。
Fig. 1 is a front view showing an embodiment of a hybrid type optical multiplexer/demultiplexer according to the present invention, Fig. 2 is a left side view thereof, and Fig. 3 is a right side view thereof. 5 is a focusing rod lens, 5 is a frimeter, 6 is a light emitting element, 1 is a lens, 9 is a first interference film, 10 is a second interference film, 11 is a light receiving element, 12 is a lens, and these are the fourth It is the same as that in FIG.

13は本実施例で使用する中空の基板で、この基板13
の一側部(右側)には第1のV溝14aが形成され、ま
た他側部(左(#)にはこの第1のV溝14aに対して
中心線を一致させた第20V溝14bが形成されていて
、更にこの第2の■溝14bに対して互いの中心線が交
わるように斜めに向けた第3のV溝14cが所定の位笛
に形成されている。
13 is a hollow substrate used in this example, and this substrate 13
A first V-groove 14a is formed on one side (right side), and a 20th V-groove 14b whose center line coincides with the first V-groove 14a is formed on the other side (left (#)). Furthermore, a third V-groove 14c is formed at a predetermined position so that the center lines thereof intersect with each other with respect to the second V-groove 14b.

尚、こtらのV溝14a〜14cは後述するスリーブを
介してコリメータ51発光素子6.レンズ7、受光素子
11、及びレンズ12を取付けたとき、これらの光学部
品の光軸が一致するように高精度に仕上げられている。
Incidentally, these V grooves 14a to 14c are connected to the collimator 51, the light emitting element 6. The lens 7, the light receiving element 11, and the lens 12 are finished with high precision so that the optical axes of these optical components coincide when they are attached.

15と16は円筒状とした金属製のスリーブで、このス
リーブ15116は各々外周面と中心軸とが正確に平行
となるように精度良く加工されておシ、かつ前記発光素
子6とレンズ7、及び受光素子11とレンズ12のそれ
ぞれの外径とほぼ同一の内径を有していて、これらを挿
入固定できるようになっている。
Reference numerals 15 and 16 denote cylindrical metal sleeves, and each sleeve 15116 is machined with high precision so that the outer peripheral surface and the central axis are exactly parallel to each other, and the light emitting element 6 and the lens 7, It has an inner diameter that is approximately the same as the outer diameter of each of the light receiving element 11 and the lens 12, so that these can be inserted and fixed.

次に、本実施例の作用として上述した各部品の組立てに
ついて説明する。
Next, assembling the above-mentioned parts will be explained as an operation of this embodiment.

まず、光ファイバ3の一端と集束性ロンドレンズ4とを
一体化すると共に、その外周軸とコリメートされた光軸
とが一致するように調整して構成したコリメータ5を基
板13に設けられた第1のV溝り4a内にその軸方向に
沿って配置固定し、また第1の干渉膜9と第2の干渉膜
10を第2のV溝14bと第3のV溝14cの端部に設
定された取付面にそれぞれ固定する。ここで両取付面は
平行に形成されており、従って第1の干渉膜9と第2の
干渉膜10は斜めに向き合うように固定さnる。
First, a collimator 5 configured by integrating one end of the optical fiber 3 and a focusing Rondo lens 4 and adjusting the outer circumferential axis of the optical fiber 3 so that the collimated optical axis coincides with the collimator 5 is attached to the collimator 5 provided on the substrate 13. The first interference film 9 and the second interference film 10 are arranged and fixed in the V-groove 14a along the axial direction thereof, and the first interference film 9 and the second interference film 10 are placed at the ends of the second V-groove 14b and the third V-groove 14c. Fix each to the set mounting surface. Here, both mounting surfaces are formed parallel to each other, and therefore, the first interference film 9 and the second interference film 10 are fixed so as to face each other obliquely.

一方、発光素子6とレンズ1はスリーブ15内に挿入す
ると共に、このスリーブ15の中心軸と発光素子6から
発光する光の光軸とが一致するように調整した後、スリ
ーブ15内に発光素子6とレンズ7を固定し、また受光
素子11とレンズ12はスリーブ16内に挿入すると共
に、このスリーブ16の中心軸と受光素子11が受光す
る平行ビーム光の光軸とが一致するように調整した後、
スリーブ15内に受光素子11とレンズ12を固定して
おく。
On the other hand, the light emitting element 6 and the lens 1 are inserted into the sleeve 15, and after adjusting so that the central axis of the sleeve 15 and the optical axis of the light emitted from the light emitting element 6 coincide, the light emitting element 6 is inserted into the sleeve 15. 6 and lens 7 are fixed, and the light receiving element 11 and lens 12 are inserted into the sleeve 16, and adjusted so that the center axis of this sleeve 16 and the optical axis of the parallel beam light received by the light receiving element 11 coincide. After that,
A light receiving element 11 and a lens 12 are fixed in a sleeve 15.

そして、前記発光素子6とレンズ7とを固定したスリー
ブ15を基板13に設けられた第2のV溝14b内にそ
の軸方向に沿って配置固定し、更に受光素子11とレン
ズ12とを固定したスリーブ16を同じく基板13に設
けらnた第3のV溝14c内にその軸方向に沿って配置
固定する。
Then, the sleeve 15 to which the light emitting element 6 and lens 7 are fixed is arranged and fixed in the second V groove 14b provided in the substrate 13 along its axial direction, and the light receiving element 11 and lens 12 are further fixed. The sleeve 16 thus prepared is arranged and fixed in the third V-groove 14c similarly provided on the substrate 13 along its axial direction.

尚、これらコリメータ5.スリーブ15.16を第1〜
第3のV溝14a〜14c内にそnぞれ固定する方法と
しては、図示しない押え部材等によシコリメータ5、ス
リーブ15 j 1 Bfa板1板側3側々にあるいは
まとめて押付ける方法が考えられるが、他の方法で固定
することも可能である。
In addition, these collimators 5. Sleeve 15.16 from 1st to
As a method of fixing them respectively in the third V grooves 14a to 14c, there is a method of pressing the collimator 5, the sleeve 15 j 1 Bfa plate 1 plate side 3 side by side or all at once using a holding member (not shown) or the like. However, other methods of fixing are also possible.

以上のように組立てることにより、コリメータ5の光軸
と発光素子6の光軸とを一致させることができると共に
、コリメータ5の光軸と受光素子11の光軸とを一致さ
せることができ、これにょシ従来と同様に光−電気信号
の変換を行うことができる。
By assembling as described above, the optical axis of the collimator 5 and the optical axis of the light emitting element 6 can be made to match, and the optical axis of the collimator 5 and the optical axis of the light receiving element 11 can be made to match. It is possible to perform optical-to-electrical signal conversion in the same way as before.

すなわち発光素子6に入力された電気信号は、この発光
素子6によシ光電変換されて波長λ1の光信号とて発光
さnる。そしてこの光信号はレンズ7によって平行ビー
ム光となシ、第1図に実線で示したように第1の干渉膜
9を通過した後、基板1内の空間を直進し、コリメータ
5の集束性ロンドレンズ4を介して光ファイバ3に入射
して、この光ファイバ3によシ外部へ伝送される。
That is, the electrical signal input to the light emitting element 6 is photoelectrically converted by the light emitting element 6 and is emitted as an optical signal of wavelength λ1. This optical signal is converted into a parallel beam by the lens 7, passes through the first interference film 9 as shown by the solid line in FIG. The light enters the optical fiber 3 via the Rondo lens 4 and is transmitted to the outside of the optical fiber 3.

一方、光ファイバ3によシ外部からλ2の波長を持つ光
信号が伝送されてきた場合、その光信号はコリメータ5
の集束性ロッドレンズ4によシ平行ビーム光となる。そ
してこの平行ビーム光は点線で示したように基板1内の
空間を直進して第1の干渉膜9によシ反射され、再び基
板1内の空間を直進した後、第2の干渉膜10を通過し
、レンズ12より集束されて受光素子11で受光される
ことによシミ気信号に変換されて出力さnる。
On the other hand, when an optical signal with a wavelength of λ2 is transmitted from the outside through the optical fiber 3, the optical signal is transmitted to the collimator 5.
The convergent rod lens 4 converts the light into a collimated beam. Then, as shown by the dotted line, this parallel beam light travels straight through the space inside the substrate 1, is reflected by the first interference film 9, and after traveling straight through the space inside the substrate 1 again, passes through the second interference film 10. The light passes through the lens 12, is focused by the lens 12, is received by the light receiving element 11, is converted into a stain signal, and is output.

以上一実施例について説明したが本発明はこれに限定さ
nるものではなく、例えば発光素子6と受光素子11の
取付位#を逆にしても全く差しつかえはない。
Although one embodiment has been described above, the present invention is not limited to this. For example, the mounting positions # of the light emitting element 6 and the light receiving element 11 may be reversed.

また、上述した実施例では2種類の光半導体素子つまシ
発光素子6と受光素子11とを1個ずつ使用してコリメ
ータ5等と一本化する場合について説明したが、複数の
発光素子6と受光素子11を複数のコリメータ5等と組
合わせて一本化することも可能であり、更に光半導体素
子として発光素子6または受光素子11のみを用い、こ
れをコリメータ5等と組合わせて一本化することも任意
である。
In addition, in the above-mentioned embodiment, a case was explained in which two types of optical semiconductor elements, one light emitting element 6 and one light receiving element 11, were used and integrated with the collimator 5, etc., but when multiple light emitting elements 6 and It is also possible to combine the light-receiving element 11 with a plurality of collimators 5, etc. to form a single piece, and furthermore, it is possible to use only the light-emitting element 6 or the light-receiving element 11 as an optical semiconductor element and combine it with the collimator 5, etc. to form a single piece. It is also optional.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、予じめ円筒状のスリーブ
の中心軸と光半導体素子との光軸が一致するように調整
して、光半導体素子をレンズと共にスリーブ内に固定す
ると共に、基板に複数のV溝を設けて、これらのV溝に
コリメータと前記スリーブとを配置固定することで、コ
リメータと光半導体素子との光軸を一致させて一体に組
立てることができるようにしているため、従来のように
組立時に光軸調整する必要がなくなシ、組立時の調整及
び工数を大幅に削減できると共に、光半導体素子とレン
ズとをスリーブにより予じめ一本化しておくことができ
るので、量産性にも優れるという効果が得られる。
As explained above, the present invention adjusts in advance so that the central axis of the cylindrical sleeve and the optical axis of the optical semiconductor element coincide with each other, fixes the optical semiconductor element together with the lens in the sleeve, and By providing a plurality of V-grooves in the V-grooves and arranging and fixing the collimator and the sleeve in these V-grooves, the optical axes of the collimator and the optical semiconductor element can be aligned and they can be assembled together. , there is no need to adjust the optical axis during assembly as in the past, greatly reducing adjustment and man-hours during assembly, and the optical semiconductor element and lens can be integrated in advance using a sleeve. Therefore, the effect of being excellent in mass productivity can be obtained.

また、従来のように高分子樹脂による接着剤を用いるこ
となく、■溝を利用してコリメータや光半導体素子の固
定を行うため、機械的に安定した構造となシ、組立後の
温度変化や外力による影響も受けにくくなるという効果
も得られる。
In addition, because the collimator and optical semiconductor elements are fixed using grooves without using conventional polymer resin adhesives, the structure is mechanically stable, and temperature changes after assembly are avoided. It also has the effect of becoming less susceptible to external forces.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による混成型光合分波器の一実施例を示
す正面図、第2図はその左側面図、第3図は同じく右側
面図、第4図は従来例を示す正面図、第5図はその断面
図である。 3:光ファイバ 4:集束性ロッドレンズ5:コリメー
タ 6:発光素子 1:レンズ9:第1の干渉膜 10
:第2の干渉膜 11:受光素子 12:レンズ 13
:基板 14a〜14c:V溝 ts、teニスリーブ 特許出 、願人  沖電気工業株式会社代理人  弁理
士  金 倉 喬 二 イ芝釆づ列の迷汀面区 閣 5 図
Fig. 1 is a front view showing an embodiment of a hybrid optical multiplexer/demultiplexer according to the present invention, Fig. 2 is a left side view thereof, Fig. 3 is a right side view thereof, and Fig. 4 is a front view showing a conventional example. , FIG. 5 is a sectional view thereof. 3: Optical fiber 4: Focusing rod lens 5: Collimator 6: Light emitting element 1: Lens 9: First interference film 10
: Second interference film 11: Light receiving element 12: Lens 13
: Substrate 14a to 14c: V groove TS, TE Nisleeve patent issued, applicant: Oki Electric Industry Co., Ltd., patent attorney, Takashi Kanakura.

Claims (1)

【特許請求の範囲】 1、外部との光信号の授受を行うコリメータと、複数の
光半導体素子と、 前記コリメータと光半導体素子とを光学的に結合させる
レンズと、 各光半導体素子に対応して特定波長の光の通過及び反射
を行う干渉膜とを具備し、 これらを基板上に配置固定して一体化する混成型光合分
波器において、 前記基板に複数のV溝を設け、 かつ前記光半導体素子とこれに組合わされるレンズとを
その光軸が円筒状のスリーブの中心軸と一致するようス
リーブ内に固定すると共に、このスリーブと前記コリメ
ータとを基板に設けられたV溝にそれぞれ固定したこと
を特徴とする混成型光合分波器。
[Claims] 1. A collimator that transmits and receives optical signals to and from the outside, a plurality of optical semiconductor elements, a lens that optically couples the collimator and the optical semiconductor elements, and a lens that corresponds to each optical semiconductor element. A hybrid optical multiplexer/demultiplexer comprising an interference film that transmits and reflects light of a specific wavelength, and in which these are placed and fixed on a substrate and integrated, the substrate is provided with a plurality of V-grooves, and the The optical semiconductor element and the lens combined therewith are fixed in the sleeve so that their optical axes coincide with the central axis of the cylindrical sleeve, and the sleeve and the collimator are respectively placed in the V-groove provided on the substrate. A hybrid optical multiplexer/demultiplexer characterized by being fixed.
JP61182031A 1986-08-04 1986-08-04 Hybrid optical multiplexer/demultiplexer Pending JPS6338908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61182031A JPS6338908A (en) 1986-08-04 1986-08-04 Hybrid optical multiplexer/demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61182031A JPS6338908A (en) 1986-08-04 1986-08-04 Hybrid optical multiplexer/demultiplexer

Publications (1)

Publication Number Publication Date
JPS6338908A true JPS6338908A (en) 1988-02-19

Family

ID=16111123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61182031A Pending JPS6338908A (en) 1986-08-04 1986-08-04 Hybrid optical multiplexer/demultiplexer

Country Status (1)

Country Link
JP (1) JPS6338908A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560937A (en) * 1991-09-02 1993-03-12 Nec Corp Optical semiconductor module
JPH0560938A (en) * 1991-09-02 1993-03-12 Nec Corp Optical semiconductor module
CN100394248C (en) * 2003-10-30 2008-06-11 Tdk株式会社 Photosynthetic channel-splitting filter and making method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560937A (en) * 1991-09-02 1993-03-12 Nec Corp Optical semiconductor module
JPH0560938A (en) * 1991-09-02 1993-03-12 Nec Corp Optical semiconductor module
CN100394248C (en) * 2003-10-30 2008-06-11 Tdk株式会社 Photosynthetic channel-splitting filter and making method thereof

Similar Documents

Publication Publication Date Title
JP4215635B2 (en) Method for adjusting the components of an optical fiber collimator having an array structure
US4867521A (en) Microlens manufacture
US20040101247A1 (en) Filter based multiplexer/demultiplexer component
JP2001242339A (en) Optical fiber lens array
KR20090101246A (en) Dual-lensed unitary optical receiver assembly
JP3287773B2 (en) Method for manufacturing optical waveguide device
JPH08292342A (en) Optical fiber ferrule and optical coupler
US6360041B1 (en) Optical demultiplexer and method of assembling optical demultiplexer in optical axis alignment
US4732452A (en) Optical connectors
JP2004133038A (en) Filter module
JP3866585B2 (en) Manufacturing method of filter module
US10182275B1 (en) Passive optical subassembly with a signal pitch router
US6535668B2 (en) Retro-reflective multi-port filter device with triple-fiber ferrule
JPS6338908A (en) Hybrid optical multiplexer/demultiplexer
US6532325B2 (en) V-groove dual fiber collimator for DWDM multiplexor/demultiplexor
JP2554629B2 (en) Optical fiber collimator
US6853770B2 (en) Method for aligning and assembling optical demultiplexer module, and automatic aligning mechanism for optical demultiplexer module
JPS6338907A (en) Optical multiplexing/demultiplexing module
CN220650942U (en) Multichannel integrated beam split optical component, optical device and optical module
KR0170329B1 (en) Optical wavelength division multiplexer for optical communication
JP2019139147A (en) Optical module
JPH01128013A (en) Fiber collimator for optical module
JPS6320964Y2 (en)
JPS62226108A (en) Hybrid type optical multiplexer and demultiplexer
JP2000187131A (en) Production of optical waveguide module