JPS6146780B2 - - Google Patents

Info

Publication number
JPS6146780B2
JPS6146780B2 JP55040048A JP4004880A JPS6146780B2 JP S6146780 B2 JPS6146780 B2 JP S6146780B2 JP 55040048 A JP55040048 A JP 55040048A JP 4004880 A JP4004880 A JP 4004880A JP S6146780 B2 JPS6146780 B2 JP S6146780B2
Authority
JP
Japan
Prior art keywords
electrophoresis
tube
layer
electrode
electrophoresis tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55040048A
Other languages
Japanese (ja)
Other versions
JPS56137143A (en
Inventor
Kunihiko Ookubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP4004880A priority Critical patent/JPS56137143A/en
Publication of JPS56137143A publication Critical patent/JPS56137143A/en
Publication of JPS6146780B2 publication Critical patent/JPS6146780B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/44721Arrangements for investigating the separated zones, e.g. localising zones by optical means

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は可視的な浮遊粒子の電気泳動速度を測
定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring the electrophoretic velocity of visible suspended particles.

細胞の浮遊液に電界を作用させると細胞は電界
の作用で移動する。この移動速度を測定すると例
えば医療診断上の情報が得られる。このため可視
的浮遊粒子の電気泳動を測定する装置が既に提案
されている。
When an electric field is applied to a suspension of cells, the cells move due to the action of the electric field. Measuring this moving speed provides information for medical diagnosis, for example. For this reason, devices for measuring the electrophoresis of visible suspended particles have already been proposed.

所で浮遊粒子の電気泳動を測定する場合次のよ
うな問題がある。第1図において1は電気泳動
管、2,3は電極で管1内に充たした溶液に粒子
を浮遊させ電極2,3間に電圧を印加して粒子に
電気泳動を行わせ、粒子の移動を光学的に観測す
る。電気泳動管はガラスで溶液は水溶液である。
2種の透電体が接触すると接触面には誘電率の大
なる方に正、反対側に負の電荷が現われる。今の
場合水の方がガラスより誘電率が大であるから電
気泳動管1の内面には負電荷が、水溶液の電気泳
動管1に接している面には正の電荷が現われる。
この正の電荷は水が一部解離して生じたH+イオ
ン(正確にはH+がH2O分子と結合したH3O+)が
溶液の電気泳動管1内面に接している付近に集る
ことによつて現われる。こゝで電極2,3間に電
圧をかけると上記した正イオンは負電極2の方に
引かれ、それに伴つて溶液の電気泳動管1内面に
接している層内の溶液は左方に流動する。電気泳
動管1の任意断面において溶液の総移動量は0で
なければならぬから管1の中心付近では右方への
流れが形成され、管1内の溶液は図示矢印のよう
な対流を行う。この対流を電気浸透流と云う。浮
遊粒子はこの対流に乗つて流れながら電気泳動を
行うので、正しい電気泳動速度を測定するには光
学系のピントを管1内で電気浸透流の流速0の層
に合せて電気泳動を観測する必要がある。しかし
この層は具体的に見えるわけではないので、その
層の位置を適当な仮定のもとに計算で推定し、そ
の位置に光学系のピントを合せている。この計算
は例えば管1の断面が円のとき電気浸透流の左向
きの流れと右向きの流れの部分の断面等が等しい
と云うような仮定で行う。しかしこのような仮定
によつて定めた層が真に電気浸透流の流速0であ
るかどうかは不詳であり、管の断面が円形でない
ときは計算のための適当な仮定を設けることも容
易でない。
When measuring the electrophoresis of suspended particles in places, there are the following problems. In Figure 1, 1 is an electrophoresis tube, 2 and 3 are electrodes, and particles are suspended in a solution filled in the tube 1, and a voltage is applied between the electrodes 2 and 3 to cause the particles to undergo electrophoresis, causing the particles to move. is observed optically. The electrophoresis tube is glass and the solution is aqueous.
When two types of conductive materials come into contact, a positive charge appears on the contact surface on the side with a larger dielectric constant, and a negative charge appears on the opposite side. In this case, since water has a higher dielectric constant than glass, negative charges appear on the inner surface of the electrophoresis tube 1, and positive charges appear on the surface of the aqueous solution in contact with the electrophoresis tube 1.
This positive charge occurs near the area where the H + ions (more precisely, H 3 O + in which H + combines with H 2 O molecules) generated by the dissociation of water are in contact with the inner surface of the electrophoresis tube 1 in the solution. It appears by coming together. When a voltage is applied between the electrodes 2 and 3, the positive ions described above are drawn toward the negative electrode 2, and the solution in the layer that is in contact with the inner surface of the electrophoresis tube 1 flows to the left. do. Since the total amount of movement of the solution in any cross section of the electrophoresis tube 1 must be 0, a flow to the right is formed near the center of the tube 1, and the solution in the tube 1 performs convection as shown by the arrows in the figure. . This convection is called electroosmotic flow. Floating particles perform electrophoresis while flowing along with this convection current, so to measure the correct electrophoresis speed, focus the optical system on the layer in tube 1 where the electroosmotic flow has a flow rate of 0 and observe electrophoresis. There is a need. However, since this layer cannot be seen concretely, the position of the layer is estimated by calculation based on appropriate assumptions, and the optical system is focused on that position. This calculation is performed on the assumption that, for example, when the tube 1 has a circular cross section, the cross sections of the leftward flow and rightward flow of the electroosmotic flow are equal. However, it is unclear whether the layer defined by this assumption truly has an electroosmotic flow velocity of 0, and it is not easy to make appropriate assumptions for calculations when the cross section of the pipe is not circular. .

本発明は上述した電気浸透流の問題を解決する
方法を提供することを目的としてなされた。
The present invention has been made with the object of providing a method for solving the above-mentioned problem of electroosmotic flow.

本発明は電気泳動管の外面に電極層を形成し、
この電極層に印加する電圧を変えることにより管
内面、溶液との接触面に現れる電荷量を変えて電
気浸透流の強さを変化させ、この変化の前後に
夫々電気泳動管内の色々な層において浮遊粒子の
移動速度を測定し、上記電極層の電圧を変える前
後における同じ層の粒子移動速度の比を計算し、
この比が1になる層の移動速度を求めるものであ
る。電気浸透流の流速分布の形は電気浸透流の強
さには無関係に一定なので、電気浸透流の速さを
変える前後の粒子移動速度の比が1になる層は電
極層印加電圧を変える前後で電気浸透流の流速が
変らない層であり、電気浸透流の流速が変らない
のは電気浸透流0の層であるから、この層におけ
る移動速度は真の電気泳動速度である。以下実施
例によつて本発明を説明する。
The present invention forms an electrode layer on the outer surface of an electrophoresis tube,
By changing the voltage applied to this electrode layer, the amount of charge appearing on the inner surface of the tube and the surface in contact with the solution is changed, thereby changing the strength of the electroosmotic flow. Measuring the moving speed of suspended particles, calculating the ratio of the particle moving speed of the same layer before and after changing the voltage of the electrode layer,
The moving speed of the layer where this ratio becomes 1 is determined. The shape of the flow velocity distribution of the electroosmotic flow is constant regardless of the strength of the electroosmotic flow, so the layer where the ratio of the particle movement velocity before and after changing the speed of the electroosmotic flow is 1 is between before and after changing the voltage applied to the electrode layer. This is the layer where the flow rate of the electroosmotic flow does not change, and the layer where the electroosmotic flow does not change is the layer where the electroosmotic flow is 0, so the moving speed in this layer is the true electrophoretic speed. The present invention will be explained below with reference to Examples.

第2図は本発明の一実施例装置を示す。1は電
気泳動管、2,3は浮遊粒子に電気泳動を起させ
るための電極、4は電気泳動管1の外面に形成し
た透明電極層で管1の外面を覆つている。5はレ
ーザ光源、6は集光レンズで管1内にレーザ光束
を管軸方向に長い線状に収束させる。7は投影レ
ンズで上記レーザ光束の収束線にピントを合せて
その点の像を格子8上に結像する。レーザ光源5
から格子8までの各部は一つの架台上9上に取付
けられ、レーザ光束の収束線が電気泳動管1内で
一つの半径方向に移動できるようになつている。
電極4に印加する電圧はスイツチSによつて0と
一定値の2種に切換えられる。格子8の後方には
受光素子10が置かれ、その出力は周波数分析回
路11に送られ、受光素子10の出力のスペクト
ル分布が求められる。このスペクトル分布はメモ
リMに記憶せられる。
FIG. 2 shows an embodiment of the present invention. Reference numeral 1 denotes an electrophoresis tube, 2 and 3 electrodes for causing electrophoresis in suspended particles, and 4 a transparent electrode layer formed on the outer surface of the electrophoresis tube 1 to cover the outer surface of the tube 1. 5 is a laser light source, and 6 is a condensing lens that converges a laser beam into the tube 1 in a long line in the tube axis direction. A projection lens 7 focuses on the convergence line of the laser beam and forms an image of that point on the grating 8. Laser light source 5
The parts from to the grating 8 are mounted on one pedestal 9 so that the convergence line of the laser beam can move in one radial direction within the electrophoresis tube 1.
The voltage applied to the electrode 4 can be switched between two types, 0 and a constant value, by a switch S. A light-receiving element 10 is placed behind the grating 8, and its output is sent to a frequency analysis circuit 11, where the spectral distribution of the output of the light-receiving element 10 is determined. This spectral distribution is stored in memory M.

格子8上にはレーザ光束の収束線にあつて照明
されている浮遊粒子の像が輝いた点として形成さ
れており、粒子の移動に従つて格子上を移動して
いる。このため格子8を透過する光の量は粒子像
が格子線にかくされたり格子線間に現れることに
より周期的に変化する。浮遊粒子像は一つでなく
多数あり、かつ移動速度は若干のばらつきを持つ
ているから受光素子10の出力は単一周期の波形
ではなく、色々の周期の波形が重なつた不規則な
形をしているから、周波数分析回路で周波数分布
のスペクトルを求めると、それが浮遊粒子の移動
速度分布を表わしている。
Images of floating particles illuminated by the convergence line of the laser beam are formed as bright spots on the grid 8, and move on the grid as the particles move. Therefore, the amount of light transmitted through the grating 8 changes periodically as particle images are hidden by the grating lines or appear between the grating lines. Since there are many floating particle images, and their moving speeds vary slightly, the output of the light-receiving element 10 is not a single-cycle waveform, but an irregular waveform in which waveforms with various cycles overlap. Therefore, when the frequency distribution spectrum is obtained using a frequency analysis circuit, it represents the moving velocity distribution of the suspended particles.

架台9を移動させながら一定移動量毎に上の測
定動作を行い、そのときの観測されたスペクトル
をメモリMに記憶させ、同じ操作をスイツチSを
開閉させて2回行い同じ架台位置に対応する前後
2回のスペクトルをメモリから読出しその形を比
較し、最も良く一致するものを見出せば、それが
浮遊粒子の真の電気泳動速度分布を示すものであ
る。
While moving the pedestal 9, perform the above measurement operation every fixed amount of movement, store the spectrum observed at that time in the memory M, and repeat the same operation twice by opening and closing the switch S to correspond to the same pedestal position. If the two spectra before and after are read out from memory and their shapes are compared, and the one that most closely matches is found, that represents the true electrophoretic velocity distribution of suspended particles.

上述装置における測定結果処理の別の方法とし
て、浮遊粒子の移動速度を求める位置を電気泳動
管1内の半径方向の3位置のみとし、電極4に電
圧をかける前後夫々の上記3位置における粒子移
動速度から内挿又は外挿によつて両方の場合にお
ける粒子移動速度の一致する点における移動速度
を求める。第3図はその操作を図式に行う場合の
要領を示す。p1,p2,p3は電極4に電圧を
かける前の3位置の浮遊粒子移動速度(平均)、
q1,q2,q3は同じく電極4に電圧をかけた
ときの同位置における移動速度である。p1〜p
3を連ねる一本のカーブとq1〜q3を連ねる一
本のカーブとの交点fを求めると、fに対する速
度vが真の電気泳動速度である。この操作は計算
によつても行える。p1〜p3及びq1〜q3を
連ねる線は夫々2次曲線であるから、各々は3点
によつて決定できる。点数をもう一つ増せば最小
2乗法を適用できるから更に精度が上り、これら
の演算はコンピユータで行えばよい。
Another method for processing measurement results in the above-mentioned apparatus is to determine the movement velocity of suspended particles at only three positions in the radial direction within the electrophoresis tube 1, and to measure the movement of particles at the three positions before and after applying a voltage to the electrode 4. By interpolation or extrapolation from the velocity, find the moving speed at a point where the particle moving speeds in both cases match. FIG. 3 shows the procedure for carrying out the operation diagrammatically. p1, p2, p3 are floating particle movement speeds (average) at three positions before applying voltage to electrode 4;
q1, q2, and q3 are the moving speeds at the same position when a voltage is similarly applied to the electrode 4. p1~p
When the intersection point f of one curve connecting 3 and one curve connecting q1 to q3 is found, the velocity v with respect to f is the true electrophoretic velocity. This operation can also be performed by calculation. Since the lines connecting p1 to p3 and q1 to q3 are each quadratic curve, each can be determined by three points. If the number of points is increased by one more, the method of least squares can be applied, which further improves accuracy, and these calculations can be performed by a computer.

上述実施例では電気泳動管1の外面の電極4は
透明電極であるが、これをメツキによる金属電極
とするときは照明及び観測のための小窓を設けて
おけばよい。
In the above embodiment, the electrode 4 on the outer surface of the electrophoresis tube 1 is a transparent electrode, but when it is a plated metal electrode, a small window for illumination and observation may be provided.

本発明電気泳動測定装置は上述したような構成
で単なる推定でなく真に電気浸透流0の層におけ
る浮遊粒子の移動速度が求められるので、正確な
電気泳動速度を知ることができる。
With the electrophoresis measuring device of the present invention having the above-described configuration, the moving speed of suspended particles in a layer with zero electroosmotic flow can be determined not simply by mere estimation, so that accurate electrophoretic speed can be determined.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電気泳動管の側面図、第2図は本発明
の一実施例装置を示す斜視図、第3図は測定結果
処理法を説明するグラフである。 1……電気泳動管、2,3……電極、4……電
気泳動管外面の電極層、5……レーザ光源、6…
…集光レンズ、7……投影レンズ、8……格子、
9……架台、10……受光素子、11……周波数
分析回路、M……メモリ。
FIG. 1 is a side view of an electrophoresis tube, FIG. 2 is a perspective view of an apparatus according to an embodiment of the present invention, and FIG. 3 is a graph illustrating a measurement result processing method. DESCRIPTION OF SYMBOLS 1... Electrophoresis tube, 2, 3... Electrode, 4... Electrode layer on the outer surface of the electrophoresis tube, 5... Laser light source, 6...
... Condensing lens, 7... Projection lens, 8... Grid,
9... Mount, 10... Light receiving element, 11... Frequency analysis circuit, M... Memory.

Claims (1)

【特許請求の範囲】[Claims] 1 電気泳動管の外面を電極層で覆い、この電極
層に印加される電圧を変えられるようにし、電気
泳動管内の浮遊粒子観測光学装置の電気泳動管内
の視点位置を電気泳動管の管軸に直角の方向に移
動可能とした電気泳動測定装置。
1 Cover the outer surface of the electrophoresis tube with an electrode layer, make it possible to change the voltage applied to this electrode layer, and align the viewing position inside the electrophoresis tube of the optical device for observing suspended particles inside the electrophoresis tube with the tube axis of the electrophoresis tube. Electrophoresis measurement device that can be moved in the right angle direction.
JP4004880A 1980-03-27 1980-03-27 Measuring device for electrophoresis Granted JPS56137143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4004880A JPS56137143A (en) 1980-03-27 1980-03-27 Measuring device for electrophoresis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4004880A JPS56137143A (en) 1980-03-27 1980-03-27 Measuring device for electrophoresis

Publications (2)

Publication Number Publication Date
JPS56137143A JPS56137143A (en) 1981-10-26
JPS6146780B2 true JPS6146780B2 (en) 1986-10-16

Family

ID=12570023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4004880A Granted JPS56137143A (en) 1980-03-27 1980-03-27 Measuring device for electrophoresis

Country Status (1)

Country Link
JP (1) JPS56137143A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844340A (en) * 1981-09-10 1983-03-15 Kureha Chem Ind Co Ltd Method and apparatus for measuring electrophoretic mobility
US5151164A (en) * 1990-02-09 1992-09-29 The University Of Maryland Enhanced capillary zone electrophoresis and apparatus for performance thereof
US5092972A (en) * 1990-07-12 1992-03-03 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Field-effect electroosmosis
US5322607A (en) * 1992-07-14 1994-06-21 Hewlett-Packard Company Electrical potential configuration for an electrophoresis system

Also Published As

Publication number Publication date
JPS56137143A (en) 1981-10-26

Similar Documents

Publication Publication Date Title
US3764512A (en) Laser scanning electrophoresis instrument and system
US4456513A (en) Method of and apparatus for measuring electrophoretic mobility
JP4727064B2 (en) Mobility and effects due to surface charge
US11079420B2 (en) Surface charge measurement
JP6661198B2 (en) Particle analyzer
JPH0225133B2 (en)
CN105651656A (en) Particle shape analyzing device based on laser holography imaging method and working mechanism of particle shape analyzing device
Smith et al. Apparatus and methods for laser Doppler electrophoresis
JPS6146780B2 (en)
US3663395A (en) Cross-section illuminator for a continuous particle electrophoresis cell
US8451434B2 (en) Method and apparatus for measuring zeta potential of suspended particles
US4661225A (en) Method and apparatus for measuring the electrophoretic mobility of migrating particles
US4239612A (en) Automatic electrophoresis apparatus
JPS625297B2 (en)
JPH0758167B2 (en) Laser pin outer diameter measurement method
SU1109621A1 (en) Method of measuring electrophoretic mobility of suspension particles
Wada et al. Electric charge measurement on a single microparticle using thermodynamic analysis of electrostatic forces
RU2086945C1 (en) Method of measurement of divergence angle of collimated bundle of rays
Delatour et al. Apparatus for alternating fields microelectrophoresis
JPS6222004A (en) Detecting method for optical axis position
SU913171A1 (en) Particle dispersive analysis method
SU1421989A1 (en) Method of determining deviation of object dimensions from nominal value
Covington Determination of the focal points of an electronic lens by a graphical method
JPH02309235A (en) Electrophoresis apparatus
JPS6321858B2 (en)