JPS6146431A - Electronic control type fuel injector - Google Patents
Electronic control type fuel injectorInfo
- Publication number
- JPS6146431A JPS6146431A JP16762784A JP16762784A JPS6146431A JP S6146431 A JPS6146431 A JP S6146431A JP 16762784 A JP16762784 A JP 16762784A JP 16762784 A JP16762784 A JP 16762784A JP S6146431 A JPS6146431 A JP S6146431A
- Authority
- JP
- Japan
- Prior art keywords
- load
- catalytic converter
- load value
- value
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1446—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/10—Introducing corrections for particular operating conditions for acceleration
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は内燃機関(以下、エンジンともいう。)の電子
制御式燃料噴射装置において、排気エミッション対策用
触媒コンバータの過熱を防止すると同時に燃費の向上を
達成できるようにした電子制御式燃料噴射装置に関する
。[Detailed Description of the Invention] [Industrial Application Field] The present invention is an electronically controlled fuel injection device for an internal combustion engine (hereinafter also referred to as an engine), which prevents overheating of a catalytic converter for exhaust emissions and at the same time reduces fuel consumption. The present invention relates to an electronically controlled fuel injection device that can achieve improvements.
[従来の技術1
従来、電子制御式燃料噴射装置であって、自動車に搭載
される内燃機関の排気エミッション対策用触媒コンバー
タの過熱を防止するための機能を有するものとして、例
えば特開昭56−81235号公報に示されるものが挙
げられる。[Prior Art 1] Conventionally, an electronically controlled fuel injection device having a function of preventing overheating of a catalytic converter for exhaust emission countermeasures of an internal combustion engine installed in an automobile has been disclosed, for example, in Japanese Patent Application Laid-Open No. 1986- Examples include those shown in Japanese Patent No. 81235.
また、上記過熱防止策の別の一例を採用する電子制御式
燃料@胴装置として、自動車の実使用範囲内で、エンジ
ンの排気温度の上昇に伴ない触媒コンバータ7が許容温
度を超えるような危険温度域を予め実験により確認して
おき、触媒コンバータ温度を推定するエンジン負荷、例
えばエンジンの吸入空気量またはエンジンスロットル開
度などの値が上記危険温度域を示す設定値を超えると、
直ちに燃料増量機構を作動させる電子制御式燃料噴射装
置が考えられる。In addition, as an electronically controlled fuel @body system that adopts another example of the above-mentioned overheat prevention measures, there is a risk that the catalytic converter 7 will exceed the permissible temperature as the engine exhaust temperature increases within the actual use range of the automobile. The temperature range is confirmed in advance through experiments, and if the engine load for estimating the catalytic converter temperature, such as the engine intake air amount or engine throttle opening, exceeds the set value indicating the above-mentioned dangerous temperature range,
An electronically controlled fuel injection device that immediately activates the fuel increase mechanism is conceivable.
このように燃料増量を行なう理由を第6図を参照して説
明する。The reason for increasing the amount of fuel in this way will be explained with reference to FIG.
第6図に示す如く、−触媒コンバータの内部温度T(’
C)は一定の空燃比(A/F)下において定常運転をし
たときには吸入空気ff1Q (rI?/hr)にほぼ
比例して吸入空気量Qが多い程高い温度で飽和温度に達
する。これは吸入空気IQが多い運転条件程、エンジン
の排気ガス温度が高いためである。A/Fが理論空燃比
14.6付近では、A/Fがリーン側にずれると排気ガ
ス温度が上昇し、反対にリッチ側になる程、排気ガス温
度が低下する。また、触媒コンバータの内部でのガス反
応は、A/Fが14.6付近7mも活発であり、A/F
が14.6付近をはずれると、リーンおよびリッチ側の
両方とも低下し、反応による熱発生量が低下する。従っ
てA/Fをリッチ化すると排気ガス温度の低下と触媒コ
ンバータ自体の発熱反応の低下という2つの効果がある
ため、上記の如き燃料増量機構を作動せしめて触媒コン
バータの過熱を防止しようとしている。As shown in FIG. 6, - the internal temperature T('
C) reaches the saturation temperature at a higher temperature as the intake air amount Q increases, which is approximately proportional to the intake air ff1Q (rI?/hr) during steady operation under a constant air-fuel ratio (A/F). This is because the engine exhaust gas temperature is higher under operating conditions where the intake air IQ is higher. When the A/F is near the stoichiometric air-fuel ratio of 14.6, the exhaust gas temperature increases as the A/F shifts toward the lean side, and conversely, the exhaust gas temperature decreases as the A/F shifts toward the rich side. In addition, the gas reaction inside the catalytic converter is active as far as 7m near A/F 14.6.
When deviates from around 14.6, both the lean and rich sides decrease, and the amount of heat generated by the reaction decreases. Therefore, since enriching the A/F has two effects: lowering the exhaust gas temperature and lowering the exothermic reaction of the catalytic converter itself, the fuel increase mechanism as described above is operated to prevent the catalytic converter from overheating.
[発明が解決しようとする問題点]
しかし、自動車の実使用時におけるエンジン負荷の変化
の仕方によっては、エンジン負荷が上記設定値を超えて
いる状態であっても触媒コンバータの熱容量により触媒
コンバータの温度が危険温度域に入らない場合がある。[Problems to be solved by the invention] However, depending on how the engine load changes during actual use of a car, the heat capacity of the catalytic converter may cause the catalytic converter to change even when the engine load exceeds the above set value. The temperature may not be within the dangerous range.
上記の如き燃料増量機構をエンジン負荷が設定値を超え
ると直ちに作動させるような電子制御式燃料噴射装置に
よると、上記のような場合にも燃料増量が行なわれるこ
とから燃費が悪化するという問題がある。According to an electronically controlled fuel injection device that operates the fuel increase mechanism as described above immediately when the engine load exceeds a set value, there is a problem that fuel efficiency deteriorates because the fuel increase is performed even in the above cases. be.
本発明は上記問題点を解決することを目的とする。即ち
、本発明の目的は、触媒コンバータの温度をより正確に
推定できるようにすることにより、上記の如き非所望な
燃料増量が行なわれず、結果として触媒コンバータの過
熱を防止すると同時に燃費の向上を図ることができる電
子制御式燃料噴射装置を提供することにある。The present invention aims to solve the above problems. That is, an object of the present invention is to make it possible to more accurately estimate the temperature of the catalytic converter, thereby preventing the undesired increase in fuel amount as described above, thereby preventing overheating of the catalytic converter, and at the same time improving fuel efficiency. An object of the present invention is to provide an electronically controlled fuel injection device that can achieve the following objectives.
[問題点を解決するための手段]
このため、本発明の電子制御式燃料噴射装置は、第1図
に示ず如く、
排気通路Aに触媒コンバータBを備えた内燃機関Cにお
いて、
機関負荷に対応する信号を発生する負荷信号発生手段り
と、
該負荷信号発生手段りからの信号に基づく検出負荷値か
ら、上記機関負荷の増大に伴なう上記触媒コンバータB
の温度上昇の時間的変化に近似する負荷値を得るべく、
上記検出負荷値に対しなまし処理を行なうなまし処理手
段Eと、
咳なまし処理手段Eによるなまし後の負荷値と予め定め
た設定負荷値であって触媒コンバータBの許容温度に対
応する値とを大小比較する比較手段Fと、
該比較手段Fにより上記なまし後の負荷値が上記設定値
以上にあるとき実行される燃料増量手段Gと、
を備えることを特徴とする。なお、第1図における他の
符号1」は吸気通路、■はインジェクタを表わしている
。[Means for Solving the Problems] Therefore, as shown in FIG. a load signal generating means that generates a corresponding signal; and from a detected load value based on the signal from the load signal generating means, the catalytic converter B increases as the engine load increases.
In order to obtain a load value that approximates the temporal change in temperature rise,
A smoothing processing means E performs smoothing processing on the detected load value, and a load value after smoothing by the cough smoothing processing means E and a predetermined set load value corresponding to the allowable temperature of the catalytic converter B. The present invention is characterized by comprising a comparison means F for comparing the magnitudes of the values, and a fuel increase means G that is executed when the load value after the rounding is equal to or higher than the set value by the comparison means F. Note that the other reference numeral 1'' in FIG. 1 represents an intake passage, and the symbol ■ represents an injector.
[実施例] 図面を参照して本発明の詳細な説明する。[Example] The present invention will be described in detail with reference to the drawings.
第2図は本発明が適用される電子制御燃料噴射機関のシ
ステム図である。エアクリーナ1がら吸入された空気は
エア70メータ2(本発明にいう負荷信号発生手段に対
応する。)、絞り弁3、サージタンク4、吸気ボート5
、および吸気弁6を含む吸気通路12を介して機関本体
7の燃焼室8へ送られる。絞り弁3は運転席の加速ペダ
ル13に連動する。燃焼室らはシリンダヘッド9、シリ
ンダブロック10Sおよびピストン11によって区画さ
れ、混合気の燃焼によって生成された排気ガスは排気弁
15、排気ポート16、排気多岐管17、オにび排気通
路の一部である排気管18であって触媒コンバータ18
aを備えたものを順に介して大気へ放出される。バイパ
ス通路21は絞り弁3の上流とサージタンク4とを接続
し、バイパス流量制御弁22はバイパス通FB 21の
流通所面積を制御してアイドリンク時の(層間回転速度
を一定に維持する。窒素酸化物の発生を抑制するために
排気ガスを吸気量へ導く排気ガス再循環(EGR)通路
23は、排気多岐管17とサージタンク4とを接続し、
オンオフ弁形式の排気ガス再循環(EGR)制御弁24
は電気パルスに応動してEGR通路23を開閉する。吸
気温センサ28はエアフロメータ2内に設けられて吸気
温を検出し、スロットル位置センサ29は、絞り弁3の
開度を検出する。水温センサ30はシリンダブロック1
0に取付けられて冷却水温、すなわち機関温度を検出し
、酸素濃度センサとしての周知の空燃比センサ31は排
気多岐管17の集合部分に取付けられて集合部分におけ
る酸素濃度を検出し、クランク角センサ32は、機関本
体7のクランク軸(図示せず)に結合する配電器33の
軸34の回転からクランク軸のクランク角を検出し、車
速センサ35は自動変速1J36の出力軸の回転速度を
検出する。これらのセンサ2.28.29.30.31
.32.35の出力、および蓄電池37の電圧は電子制
御部40へ送られる。燃料噴射弁41は各気筒に対応し
て各吸気ポート5の近傍にそれぞれ設けられ、ポンプ4
2は燃料タンク43からの燃料通路44を介して燃料噴
射弁41へ送る。電子制御部40は各センサからの入力
信号をパラメータとして燃料噴射量を計算し、計算した
燃料噴射量に対応したパルス幅の電気パルスを燃料噴射
弁41へ送る。電子制御部40はまた、バイパス流量制
御弁22、EGR制御弁24、自動変速機の油圧制御回
路のソレノイド弁45(第3図)、および点火コイル4
6を制御する。点火コイル46の二次側は配電器35へ
接続されている。チャコールキャニスタ48は、吸着剤
としての活性炭49を収容し、通路50を介して入口側
のポートを燃料タンク43の上部空間へ接続され、通路
51を介しt出口側のポートをパージポート52へ接続
されている。パージボート52は、絞り弁3が所定開度
より小さい開度にあるとき、絞り弁3より上流に位置し
、他方、絞り弁3が所定開度以上にあるとき、絞り弁3
より下流に位置して吸気管負圧を受ける。開閉弁53は
、バイメタル円板を有し、機関が所定温度より低い低温
状態にあるとき、通路49を閉じて吸気系への燃料蒸発
ガスの放出を中止する。FIG. 2 is a system diagram of an electronically controlled fuel injection engine to which the present invention is applied. The air sucked through the air cleaner 1 is connected to an air 70 meter 2 (corresponding to the load signal generating means according to the present invention), a throttle valve 3, a surge tank 4, and an intake boat 5.
, and is sent to the combustion chamber 8 of the engine body 7 via an intake passage 12 that includes the intake valve 6 . The throttle valve 3 is linked to an accelerator pedal 13 on the driver's seat. The combustion chambers are divided by the cylinder head 9, the cylinder block 10S, and the piston 11, and the exhaust gas generated by combustion of the air-fuel mixture passes through the exhaust valve 15, the exhaust port 16, the exhaust manifold 17, and part of the exhaust passage. An exhaust pipe 18 which is a catalytic converter 18
a and then released into the atmosphere. The bypass passage 21 connects the upstream of the throttle valve 3 and the surge tank 4, and the bypass flow control valve 22 controls the area of the bypass passage FB 21 to maintain a constant interlayer rotational speed during idle linking. An exhaust gas recirculation (EGR) passage 23 that directs exhaust gas to the intake air volume to suppress the generation of nitrogen oxides connects the exhaust manifold 17 and the surge tank 4;
On-off valve type exhaust gas recirculation (EGR) control valve 24
opens and closes the EGR passage 23 in response to electric pulses. An intake temperature sensor 28 is provided in the air flow meter 2 to detect the intake temperature, and a throttle position sensor 29 detects the opening degree of the throttle valve 3. The water temperature sensor 30 is located in the cylinder block 1
A well-known air-fuel ratio sensor 31 as an oxygen concentration sensor is attached to the collecting part of the exhaust manifold 17 to detect the oxygen concentration in the collecting part, and a crank angle sensor 32 detects the crank angle of the crankshaft from the rotation of the shaft 34 of the power distributor 33 coupled to the crankshaft (not shown) of the engine body 7, and the vehicle speed sensor 35 detects the rotational speed of the output shaft of the automatic transmission 1J36. do. These sensors 2.28.29.30.31
.. The output of 32.35 and the voltage of the storage battery 37 are sent to the electronic control unit 40. A fuel injection valve 41 is provided near each intake port 5 corresponding to each cylinder, and a fuel injection valve 41 is provided near each intake port 5, corresponding to each cylinder.
2 is sent from the fuel tank 43 to the fuel injection valve 41 via the fuel passage 44. The electronic control unit 40 calculates the fuel injection amount using input signals from each sensor as parameters, and sends an electric pulse having a pulse width corresponding to the calculated fuel injection amount to the fuel injection valve 41. The electronic control unit 40 also controls the bypass flow control valve 22, the EGR control valve 24, the solenoid valve 45 (FIG. 3) of the hydraulic control circuit of the automatic transmission, and the ignition coil 4.
Control 6. The secondary side of the ignition coil 46 is connected to the power distributor 35. The charcoal canister 48 accommodates activated carbon 49 as an adsorbent, has an inlet port connected to the upper space of the fuel tank 43 via a passage 50, and an outlet side port connected to a purge port 52 via a passage 51. has been done. The purge boat 52 is located upstream of the throttle valve 3 when the throttle valve 3 is at an opening smaller than a predetermined opening, and on the other hand, the purge boat 52 is located upstream of the throttle valve 3 when the throttle valve 3 is at a predetermined opening or more.
It is located further downstream and receives negative pressure in the intake pipe. The on-off valve 53 has a bimetal disc, and closes the passage 49 to stop releasing fuel evaporative gas into the intake system when the engine is at a low temperature lower than a predetermined temperature.
第3図は電子制御部40の詳細を示している。FIG. 3 shows details of the electronic control section 40.
マイクロプロセッサからなるCPLJ (中央処理装置
)56、ROM(リードオンリメモリ)57、RAM
(ランダムアクセスメモリ)58、機関停止時にも補助
電源から給電されて記憶を保持できる不揮発性記憶素子
としての別のRAM59、マルチプレクサ付ぎA/D
(アナログ/デジタル)変換器60、およびバッファ付
きl10(入力/出力)器61はバス62を介して互い
に接続されている。エアフロメータ2、吸気温センサ2
8、水温センサ30.空燃比センサ31、および蓄電池
37の出力はA/Dコンバータ60へ送られる。CPLJ (Central Processing Unit) 56 consisting of a microprocessor, ROM (Read Only Memory) 57, and RAM
(Random access memory) 58, another RAM 59 as a non-volatile memory element that can be supplied with power from the auxiliary power supply and retain memory even when the engine is stopped, A/D with multiplexer
The (analog/digital) converter 60 and the buffered l10 (input/output) device 61 are connected to each other via a bus 62. Air flow meter 2, intake temperature sensor 2
8. Water temperature sensor 30. The outputs of the air-fuel ratio sensor 31 and the storage battery 37 are sent to the A/D converter 60.
また、スロットル位置センサ29およびクランク角セン
サ32の出力はr10561へ送られ、バイパス流量制
御弁22、EGR制御弁24、燃料° 噴射弁41、ソ
レノイド弁45、および点火コイル46はI10器61
を介してCPU56から入力を受ける。Further, the outputs of the throttle position sensor 29 and crank angle sensor 32 are sent to the r10561, and the bypass flow control valve 22, EGR control valve 24, fuel injection valve 41, solenoid valve 45, and ignition coil 46 are sent to the I10 device 61.
It receives input from the CPU 56 via.
電子制御部40は、ROM57内に予め格納された制御
プログラムに従い、本発明に係る処理として、第4図の
フローチャートに示す如き触媒コンバータ過熱防止燃料
増m処理を実行する。以下この処理内容を説明する。The electronic control unit 40 executes a catalytic converter overheat prevention fuel increase process as shown in the flowchart of FIG. 4 as a process according to the present invention in accordance with a control program stored in the ROM 57 in advance. The details of this process will be explained below.
まず、ステップ101において、エアフロメータ2から
の信号に基づく吸入空気ff1Q (rrf/hr)即
ち検出負荷値をCPU56に読み込む。First, in step 101, the intake air ff1Q (rrf/hr) based on the signal from the air flow meter 2, that is, the detected load value is read into the CPU 56.
次にステップ102において、この読み込んだ吸入空気
11Qに対しなまし処理を行ない、なまし後の吸入空気
ff1Q丁、l即ちなまし後の負荷値を1与る。この処
理内容が本発明にいうなまじ処理手段に対応する。ここ
で、なまし処理は、*り図にTす如く、吸入空気ff1
Qが時点toまで一定値Qoをとり、ご9時点to直俊
から時点t1直前までの間、図示の如き上昇曲線を描き
、時点t1以後、触媒コンバータ18aが危険温度TL
になるときの吸入空気ff1Qの一定値QLをとる
ような変化をした場合に、触媒コンバータ18aの内部
温度下がその熱容量のため図示一点鎖線で示す変化をし
たとすると、゛時間に対するこの触媒コンバータ18a
の温度下の変化曲線と同様な吸入空気ff1QTの変化
曲線が得られるよう吸入空気mQに対して行なわれる。Next, in step 102, the read intake air 11Q is smoothed, and the smoothed intake air ff1Q,l, that is, the smoothed load value is given as 1. This processing content corresponds to the sluggish processing means of the present invention. Here, the smoothing process is as shown in the diagram, the intake air ff1
Q takes a constant value Qo until time to, and from time 9 to Naotoshi until just before time t1, it draws an increasing curve as shown in the figure, and after time t1, the catalytic converter 18a reaches the dangerous temperature TL.
When the intake air ff1Q changes to take a constant value QL when 18a
This is performed for the intake air mQ so as to obtain a change curve for the intake air ff1QT similar to the change curve under the temperature of .
そしてこのなまし処理においては、今回の触媒コンバー
タ過熱防止燃料増量ルーチン実行時の吸入空気mQ@Q
l 、前回実行時になまし処理された後の吸入空気ff
1QTをQ、L−、とすると、今回の実行時のなまし処
理後の吸入空気ff1Q をΔQ朴−Q丁t−++
(Qi−Q丁+−+)/nなる計算式から求める。In this smoothing process, the intake air mQ@Q when the catalytic converter overheating prevention fuel increase routine is executed this time is
l, intake air ff after being annealed during the previous execution
Letting 1QT be Q, L-, the intake air ff1Q after the annealing process during this execution is ΔQpak-Qdingt-++
It is calculated from the formula (Qi-Q+-+)/n.
次にステップ103で、このステップ102で得られた
なまし後の吸入空気10丁 と予め定めた設定値Aとの
大小比較を行なう。この比較処理が本発明にいう比較手
段に対応する。ここで設定値Aは触媒コンバータ18a
の危険温度T、 に対応する吸入空気JuQの値、即
ち第5図におけるIIIQLである。Next, in step 103, a comparison is made between the 10 annealed intake air obtained in step 102 and a predetermined set value A. This comparison process corresponds to the comparison means according to the present invention. Here, the set value A is the catalytic converter 18a.
This is the value of the intake air JuQ corresponding to the critical temperature T, , that is, IIIQL in FIG.
なまし後の吸入空気IQTが設定値Aよりも大きい場合
は、次にステップ104により、増量値FOTPを計算
する。この増量値FOTPは吸入空気ff1Qによって
要求饋が異なることから、予め実験により求められた必
要最小限の値が格納されたROM57内のマツプ又はテ
ーブルを索引し、更に補間計算を行なって得る。次にス
テップ105により、この増量値FOTPを燃vl増量
レジスタに取り込む。If the smoothed intake air IQT is larger than the set value A, then in step 104, an increase value FOTP is calculated. Since this increase value FOTP differs depending on the intake air ff1Q, it is obtained by indexing a map or table in the ROM 57, which stores the minimum necessary values determined in advance through experiments, and then performing interpolation calculations. Next, in step 105, this increase value FOTP is taken into the fuel vl increase register.
そしてステップ106により、別のルーチンで求められ
た通常の噴射量に上記増量値FOTPを加算し、得られ
た噴射量に基づいてインジェクタ41を駆動する。Then, in step 106, the increase value FOTP is added to the normal injection amount determined in another routine, and the injector 41 is driven based on the obtained injection amount.
一方、上記ステップ103によりなまし後の吸入空気量
QTが設定値A以下であると判断された場合には、ステ
ップ104.105を実行しないで直接ステップ106
に処理が移り、増量補正の行なわれない通常のrQ射同
で燃N@射が行なわれる。On the other hand, if it is determined in step 103 that the intake air amount QT after smoothing is less than the set value A, step 104 and step 105 are not executed and step 106 is directly performed.
The process moves to , and the fuel N@ injection is performed using normal rQ injection without the increase correction.
なお、上記ステップ104から上記ステップ106まで
の処理が本発明にいう燃料増量手段に対応する。Note that the processing from step 104 to step 106 above corresponds to the fuel increase means according to the present invention.
以上の説明から明らかなように、吸入空気ff1Qが例
えば第5図に示す如く変化した場合、本発明の前提とな
る考え方によると、触媒コンバータ内部温度が危険温度
下し に達していないにもかかわらず吸入空気mQが設
定1i11Qしに達した時点t1から燃料増量が開始さ
れ、その結果としてオーバリッチを招くが、本実施例に
よると、なまし後の吸入空気ff1Q丁が上記設定II
IIQL に達した時点【2で始めて燃料増量が開始
されるようになり、従って(t2−j+)の時間、非所
望な燃料増量を行なわなくて済むため触媒コンバータの
過熱を防止すると同時に燃費の向上が達成できるように
なる。As is clear from the above explanation, when the intake air ff1Q changes as shown in FIG. The fuel increase starts from the time t1 when the intake air mQ reaches the setting 1i11Q, which results in over-richness, but according to this embodiment, the smoothed intake air ff1Q reaches the setting II.
When IIQL is reached, the fuel increase starts at 2, and therefore, there is no need to undesirably increase the fuel amount for the time (t2-j+), which prevents overheating of the catalytic converter and improves fuel efficiency. becomes achievable.
〔発明の効果J
以上説明した如く、本発明は、検出負荷値から、機関負
荷の増大に伴なう触媒コンバータの温度上昇の時間的変
化に近似する負荷値を得るべく、上記検出負荷値に対し
なまし処理を行ない、このなまし後の負荷値と触媒コン
バータの危険温度に対応する設定負荷値とを大小比較し
、上記なまし後の負荷値が上記設定負荷値を超えている
ときにのみ燃料増量を行なうようにした。このlcめ触
媒コンバータの内部温度が危険温度に比べて充分低い温
度に・あるにもかかわらず燃料増量が開始される本発明
の前提による考え方に比べ、燃料増量開始時点を遅らす
ことができ、従って燃費を向上させることができる。[Effects of the Invention J As explained above, the present invention provides a method for adjusting the detected load value to obtain a load value that approximates the temporal change in the temperature rise of the catalytic converter due to an increase in engine load. The load value after the annealing is compared in magnitude with the set load value corresponding to the critical temperature of the catalytic converter, and when the load value after the annealing exceeds the set load value, Increased fuel amount only. Compared to the idea based on the premise of the present invention, in which fuel increase is started even though the internal temperature of the LC catalytic converter is sufficiently lower than the dangerous temperature, the time to start fuel increase can be delayed. Fuel efficiency can be improved.
上記実施例では負荷信号発生手段としてエアフロメータ
2を用いた例を示したが、他にスロットル位置センサ2
9を代用させてもよく、この場合においても上述した実
施例と同様の効果が得られる。In the above embodiment, the air flow meter 2 is used as the load signal generating means, but the throttle position sensor 2 is also used as the load signal generating means.
9 may be substituted, and in this case as well, the same effect as in the above-mentioned embodiment can be obtained.
第1図は本発明を明示するためのちが成因である。
第2図ないし第5図は本発明の一実施例を示し、第2図
は°全体構成図、第3図は電子制御部の内部構成図、第
4図は該電子制御部による処理を表わすフローチャート
、第5図はこの処理を説明するための説明図である。M
6図は本発明の前提とな第3図
第4図
第5図
前 藺
第6図FIG. 1 serves only to clarify the invention. Figures 2 to 5 show an embodiment of the present invention, where Figure 2 is an overall configuration diagram, Figure 3 is an internal configuration diagram of an electronic control unit, and Figure 4 shows processing by the electronic control unit. The flowchart in FIG. 5 is an explanatory diagram for explaining this process. M
Figure 6 is the premise of the present invention.Figure 3, Figure 4, Figure 5, front.
Claims (1)
、 該負荷信号発生手段からの信号に基づく検出負荷値から
、上記機関負荷の増大に伴なう上記触媒コンバータの温
度上昇の時間的変化に近似する負荷値を得るべく、上記
検出負荷値に対しなまし処理を行なうなまし処理手段と
、 該なまし処理手段によるなまし後の負荷値と予め定めた
設定負荷値であつて触媒コンバータの許容温度に対応す
る値とを大小比較する比較手段と、該比較手段により上
記なまし後の負荷値が上記設定値以上にあるとき実行さ
れる燃料増量手段と、を備えることを特徴とする電子制
御式燃料噴射装置。[Scope of Claims] An internal combustion engine equipped with a catalytic converter in an exhaust passage, comprising: load signal generating means for generating a signal corresponding to engine load; and a detected load value based on the signal from the load signal generating means, smoothing processing means for performing smoothing processing on the detected load value in order to obtain a load value that approximates a temporal change in temperature rise of the catalytic converter accompanying an increase in load; a comparison means for comparing the load value after the smoothing with a predetermined set load value corresponding to the permissible temperature of the catalytic converter; An electronically controlled fuel injection device comprising: fuel increasing means that is executed at a certain time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16762784A JPS6146431A (en) | 1984-08-09 | 1984-08-09 | Electronic control type fuel injector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16762784A JPS6146431A (en) | 1984-08-09 | 1984-08-09 | Electronic control type fuel injector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6146431A true JPS6146431A (en) | 1986-03-06 |
JPH0559258B2 JPH0559258B2 (en) | 1993-08-30 |
Family
ID=15853290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16762784A Granted JPS6146431A (en) | 1984-08-09 | 1984-08-09 | Electronic control type fuel injector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6146431A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH045454A (en) * | 1990-04-24 | 1992-01-09 | Japan Electron Control Syst Co Ltd | Cooling device for internal combustion engine |
JPH045455A (en) * | 1990-04-24 | 1992-01-09 | Japan Electron Control Syst Co Ltd | Cooling device for internal combustion engine |
JP2007247557A (en) * | 2006-03-16 | 2007-09-27 | Toyota Motor Corp | Start control device for internal combustion engine |
-
1984
- 1984-08-09 JP JP16762784A patent/JPS6146431A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH045454A (en) * | 1990-04-24 | 1992-01-09 | Japan Electron Control Syst Co Ltd | Cooling device for internal combustion engine |
JPH045455A (en) * | 1990-04-24 | 1992-01-09 | Japan Electron Control Syst Co Ltd | Cooling device for internal combustion engine |
JP2007247557A (en) * | 2006-03-16 | 2007-09-27 | Toyota Motor Corp | Start control device for internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JPH0559258B2 (en) | 1993-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1036266B1 (en) | Device for controlling exhaust gas recirculation in an internal combustion engine | |
JPH0747944B2 (en) | Engine controller | |
JP3864754B2 (en) | Control device for internal combustion engine | |
JP2658460B2 (en) | Exhaust gas recirculation system for internal combustion engine | |
JPH0251052B2 (en) | ||
JPH0874682A (en) | Evaporated fuel treatment device | |
JPS5857072A (en) | Ignition timing controlling method of electronic control engine | |
JPS63186955A (en) | Air-fuel ratio control device | |
JPS6146431A (en) | Electronic control type fuel injector | |
US11286829B2 (en) | System and method for controlling the emissions of a spark-ignition internal combustion engine of a motor-vehicle | |
JP3835975B2 (en) | In-cylinder injection internal combustion engine control device | |
JPS58144633A (en) | Method for electronically controlling fuel injection in internal-combustion engine | |
JPS58214632A (en) | Electronically controlled fuel injection method for internal-combustion engine | |
JP2019173578A (en) | Engine control device | |
JP2004346917A (en) | Internal combustion engine control device | |
JPS58198752A (en) | Controller for air-fuel ratio of internal combustion engine | |
JP2019049219A (en) | Engine system | |
JP2961971B2 (en) | Fuel injection amount control device for internal combustion engine | |
JPS6365146A (en) | Air-fuel ratio controller for internal combustion engine | |
JP4110566B2 (en) | Combustion control device | |
JPS5872629A (en) | Fuel supply method in warming state of electronically controlled engine | |
JPH0627813Y2 (en) | Engine fuel controller | |
JPS58195030A (en) | Fuel cutting-off method of automotive electronic control fuel injection internal-combustion engine | |
JP2657711B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPS5853659A (en) | Method of controlling air-fuel ratio in internal- combustion engine |