JPS5853659A - Method of controlling air-fuel ratio in internal- combustion engine - Google Patents

Method of controlling air-fuel ratio in internal- combustion engine

Info

Publication number
JPS5853659A
JPS5853659A JP15204681A JP15204681A JPS5853659A JP S5853659 A JPS5853659 A JP S5853659A JP 15204681 A JP15204681 A JP 15204681A JP 15204681 A JP15204681 A JP 15204681A JP S5853659 A JPS5853659 A JP S5853659A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
cylinders
predetermined value
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15204681A
Other languages
Japanese (ja)
Inventor
Toshio Yamada
敏生 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP15204681A priority Critical patent/JPS5853659A/en
Publication of JPS5853659A publication Critical patent/JPS5853659A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To maintain a predetermined accelerating property while enabling an internal-combustion engine to be run with lean air-fuel ratio, by maintaining the air-fuel ratio in all cylinders at at least a first predetermined value when the engine load is smaller than a set value and maintaining same in some cylinders at a second predetermined value when the engine load is larger than the set value. CONSTITUTION:In an electronic control unit 40 receiving signals of respective sensors 28, 29, 30 of intake tempetature, throttle position, water temperature and an air flow meter 2, etc. to control a fuel injection valve 41, etc., a central processing unit 56, ROM 57, input/output interface 61, etc. are connected to each other through a bus 62. When an engine load is less than 3/4, air fuel ratio in all cylinders is maintained at 20-25, and when same exceeds 3/4, the air-fuel ratio in some cylinders maintained at 12-15, that in the other cylinders being varied according to the air-fuel ratio charcteristics stored in ROM 57. Thus, the mixture becomes sufficiently lean so that noxious components in exhaust gas are reduced to ensure sufficiently a desired accelerating property.

Description

【発明の詳細な説明】 本発明は、機関負荷に応じて空燃比を変化させる内燃機
関の空燃比制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control method for an internal combustion engine that changes the air-fuel ratio according to engine load.

燃料消費効率を高くかつ排気ガス中の有害成分量を減少
させるためには空燃比は理論空燃比(約15)よりかな
り大きい20ないし25に設定する必要がある。車両重
量に対して排気量の大きい車両ではこのような空燃比領
域において機関が運転されても所定の加速、すなわちト
ルクを得ることが可能であるが、車両重量に対して排気
量の小さい車両ではこのような空燃比にお(・て機関運
転がなされると機関の出力トルクが低下し、加速性が著
しく悪化する。したがって後 者のような車両では機関
が運転される空燃比を要求トルクの増大に応じて前述の
空燃比より濃い12ないし加に設定する必要があるが、
この空燃比の変化の過程で使用する空燃比20から15
では窒素酸化物の発生を十分に抑制することが困難とな
る。窒素酸化物の発生を抑制するために所定の機関負荷
において空燃比を20な(・し25から理論空燃比より
小さい12ないし15に全気筒を同時に切換えることは
機関の出力トルクが急激に変化して機関の運転性能が悪
化するとともに、燃料消費効率も悪化する。
In order to increase fuel consumption efficiency and reduce the amount of harmful components in exhaust gas, it is necessary to set the air-fuel ratio to 20 to 25, which is considerably larger than the stoichiometric air-fuel ratio (about 15). In a vehicle with a large displacement compared to the vehicle weight, it is possible to obtain a specified acceleration, that is, torque, even if the engine is operated in this air-fuel ratio region, but in a vehicle with a small displacement compared to the vehicle weight, If the engine is operated at such an air-fuel ratio, the output torque of the engine will decrease and the acceleration performance will deteriorate significantly. Therefore, in the latter type of vehicle, the air-fuel ratio at which the engine is operated must be adjusted to the required torque. Depending on the increase, it is necessary to set the air-fuel ratio to 12 or more, which is richer than the above-mentioned air-fuel ratio.
The air-fuel ratio used in this process of changing the air-fuel ratio is from 20 to 15
In this case, it becomes difficult to sufficiently suppress the generation of nitrogen oxides. In order to suppress the generation of nitrogen oxides, switching the air-fuel ratio from 20 to 25 to 12 to 15, which is lower than the stoichiometric air-fuel ratio, for all cylinders at a given engine load at a given engine load causes a sudden change in engine output torque. As a result, the operating performance of the engine deteriorates, and fuel consumption efficiency also deteriorates.

本発明の目的は、排気ガス規制および燃料消費効率に関
して有利である十分に希薄な混合気により運転され、か
つ所定の加速性を確保できる内燃機関の空燃比制御方法
を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an air-fuel ratio control method for an internal combustion engine that is operated with a sufficiently lean air-fuel mixture that is advantageous in terms of exhaust gas regulations and fuel consumption efficiency, and that can ensure predetermined acceleration performance.

機関の低負荷領域では全気筒の燃焼室の空燃比が理論空
燃比(約15)より十分に大きい第1の所定値以上に維
持され、機関の高負荷領域(その回転での最大トルクの
3/4ないし1)では一部の気筒の燃焼室の空燃比を減
少させて機関全体としての出力トルクの上昇を図る。
In the engine's low load region, the air-fuel ratio in the combustion chambers of all cylinders is maintained at a first predetermined value or higher, which is sufficiently larger than the stoichiometric air-fuel ratio (approximately 15). /4 to 1), the air-fuel ratio in the combustion chamber of some cylinders is decreased to increase the output torque of the engine as a whole.

図面を参照して本発明の詳細な説明する。The present invention will be described in detail with reference to the drawings.

第1図は本発明が適用される電子制御燃料噴射機関の全
体の概略図である。エアクリーナから吸入された空気は
、エアフローメータ2、絞り弁3、サージタンク4、吸
気ポート5、および吸気弁6を含む吸気通路12を介し
て機関本体7の燃焼室8へ送られる。絞り弁3は運転室
の加速ペダル13に連動する。燃焼室8はシリンダヘッ
ド9、シリンダブロック10、およびピストン+1によ
って区画され、混合気の燃焼によって生成された排気ガ
スは排気弁15、排気ポート16、排気分岐管17、お
よび排気管18を介して大気へ放出される。バイパス通
路21は絞り弁3のに流とサージタンク4とを接続し、
バイパス流量制御弁22はバイパス通路21の流通断面
積を制御してアイドリング時の機関回転速度を一定に維
持する。窒素酸化物の発生を抑制するために排気ガスを
吸気系へ導(排気ガス再循環(EGR)通路23は、排
気分岐管17とサージタンク4とを接続し、オンオフ弁
形式の排気ガス再循環(EGR)制御弁24は電気パル
スに応動してEGR通路23を開閉する。吸気温センサ
測はエアフローメータ2内に設けられて吸気温を検出し
、スロットル位置センサ29は、絞り弁3の開度を検出
する。
FIG. 1 is an overall schematic diagram of an electronically controlled fuel injection engine to which the present invention is applied. Air taken in from the air cleaner is sent to the combustion chamber 8 of the engine body 7 through an intake passage 12 that includes an air flow meter 2, a throttle valve 3, a surge tank 4, an intake port 5, and an intake valve 6. The throttle valve 3 is linked to an accelerator pedal 13 in the driver's cab. The combustion chamber 8 is divided by a cylinder head 9, a cylinder block 10, and a piston +1, and the exhaust gas generated by combustion of the air-fuel mixture is passed through an exhaust valve 15, an exhaust port 16, an exhaust branch pipe 17, and an exhaust pipe 18. Released into the atmosphere. A bypass passage 21 connects the flow of the throttle valve 3 and the surge tank 4,
The bypass flow control valve 22 controls the flow cross-sectional area of the bypass passage 21 to maintain a constant engine rotational speed during idling. In order to suppress the generation of nitrogen oxides, exhaust gas is guided to the intake system (an exhaust gas recirculation (EGR) passage 23 connects the exhaust branch pipe 17 and the surge tank 4, and performs an on-off valve type exhaust gas recirculation). The (EGR) control valve 24 opens and closes the EGR passage 23 in response to electric pulses.The intake temperature sensor is installed in the air flow meter 2 to detect the intake temperature, and the throttle position sensor 29 detects the opening of the throttle valve 3. Detect degree.

水温センサ30はシリンダブロック10に取付けられて
冷却水温度、すなわち機関温度を検出し、酸素濃度セン
サとしての周知の空燃比センサ31は排気分岐管17の
集合部分に取付けられて集合部分における酸素濃度を検
出し、クランク角センサ32は、機関本体7のクランク
軸(図示せず)に結合する配電器33の軸34の回転か
らクランク軸のクランク角を検出し、車速センサ35は
自動変速機36の出力軸の回転速度を検出する。これら
の素子2 、28 、29 、30 、31 、32 
、 aの出力、および蓄電池37の電圧は電子制御装置
40へ送られる。燃料噴射弁41は各気筒に対応して各
吸気ポート5の近傍にそれぞれ設けられ、ポンプ42は
燃料タンク43からの燃料通路44を介して燃料噴射弁
41へ送る。電子制御装置40は各センサからの入力信
号から燃料噴射量を計算し、計算した燃料噴射量に対応
したパルス幅の電気パルスを燃料噴射弁41へ送る。電
子制御装置40はまた、バイパス流量制御弁22、EG
R1制御弁24、自動変速機36の油圧制御回路のソレ
ノイド45、および点火装置46を制御する。点火装置
46の点火コイルの二次側は配電器33へ接続されてい
る。
The water temperature sensor 30 is attached to the cylinder block 10 to detect the cooling water temperature, that is, the engine temperature, and the air-fuel ratio sensor 31, which is a well-known oxygen concentration sensor, is attached to the collecting part of the exhaust branch pipe 17 to detect the oxygen concentration in the collecting part. The crank angle sensor 32 detects the crank angle of the crankshaft from the rotation of the shaft 34 of the power distributor 33 coupled to the crankshaft (not shown) of the engine body 7, and the vehicle speed sensor 35 detects the crank angle of the crankshaft from the rotation of the shaft 34 of the power distributor 33 coupled to the crankshaft (not shown) of the engine body 7. Detects the rotation speed of the output shaft. These elements 2, 28, 29, 30, 31, 32
, a and the voltage of the storage battery 37 are sent to the electronic control device 40. A fuel injection valve 41 is provided near each intake port 5 in correspondence with each cylinder, and a pump 42 supplies fuel from a fuel tank 43 to the fuel injection valve 41 via a fuel passage 44. The electronic control unit 40 calculates the fuel injection amount from the input signals from each sensor, and sends an electric pulse having a pulse width corresponding to the calculated fuel injection amount to the fuel injection valve 41. The electronic controller 40 also controls the bypass flow control valve 22, EG
It controls the R1 control valve 24, the solenoid 45 of the hydraulic control circuit of the automatic transmission 36, and the ignition device 46. The secondary side of the ignition coil of the ignition device 46 is connected to the power distributor 33 .

第2図は電子制御装置の内部のブロック図である。CP
U(中央処理装置)56、ROM (読出し専用記憶装
置)57、RAM(直接アクセス記憶装置)58.59
、マルチプレクサ付きA/D (アナログ/デジタル)
変換器60、および入出力インタフェース61は、バス
62を介して互いに接続されて(・る。R,A M 5
9は、補助電源へ接続されており、点火スイッチが開か
れて機関が停止している期間も所定の電力を供給されて
記憶を保持することができる。エアフローメータ2、吸
気温センサ28、水温センサ30、および空燃比センサ
31からのアナログ信号はA/D変換器60へ送られる
。スロットル位置センサ29、クランク角センサ32、
および車速センサ35の出力は入出力インタフェース6
1へ送られ、バイパス流量制御弁22、EGR。
FIG. 2 is a block diagram of the inside of the electronic control device. C.P.
U (Central Processing Unit) 56, ROM (Read Only Memory) 57, RAM (Direct Access Memory) 58.59
, A/D with multiplexer (analog/digital)
The converter 60 and the input/output interface 61 are connected to each other via a bus 62 (R, A M 5
9 is connected to an auxiliary power source, and even when the ignition switch is opened and the engine is stopped, a predetermined power is supplied and the memory can be maintained. Analog signals from the air flow meter 2, intake temperature sensor 28, water temperature sensor 30, and air-fuel ratio sensor 31 are sent to the A/D converter 60. Throttle position sensor 29, crank angle sensor 32,
The output of the vehicle speed sensor 35 is input to the input/output interface 6.
1, bypass flow control valve 22, EGR.

制御弁24、燃料噴射弁41、ンレノイド45、および
点火装置46は入出力インタフェース6Iから入力信号
を送られる。
The control valve 24, the fuel injection valve 41, the injection valve 45, and the ignition device 46 receive input signals from the input/output interface 6I.

第3図は燃焼室の空燃比の基本的な変化を示している。FIG. 3 shows the basic changes in the air-fuel ratio in the combustion chamber.

横軸は機関回転速度、縦軸は吸気管圧力、パラメータは
A/F (空燃比)である。なお理論空燃比はほぼ15
である。吸気管圧力および機関回転速度が増大するに連
れて機関負荷が増大1.、吸気管圧力および機関回転速
度が減少するに連れて機関負荷が減少する。機関負荷は
吸入空気流量と機関回転速度とから求めることも可能で
あり、機関1回転当たりの吸入空気流量に比例する。機
関負荷が大きい場合は所望の機関出力を確保するため、
機関回転速度が小さ℃・場合は機関の運転性能の悪化を
回避するため、混合気は過濃にされる。第3図の特性は
空燃比マツプとして、すなわち機関回転速度と吸入空気
流量とを変数として空燃比を定めているマツプとしてR
OM57に記憶される。第3図の特性では、機関回転速
度が800〜+20Or、p、m、である範囲では機関
回転速度が10Or、p、m、減少するごとに空燃比が
1.25減少しており、吸気管圧力が640〜760 
mmH9である範囲では吸気管圧力がlO++tmHy
増大するごとに空燃比が0.5〜1.0減少している。
The horizontal axis is the engine rotation speed, the vertical axis is the intake pipe pressure, and the parameter is A/F (air fuel ratio). The stoichiometric air-fuel ratio is approximately 15.
It is. As the intake pipe pressure and engine speed increase, the engine load increases.1. , the engine load decreases as the intake pipe pressure and engine speed decrease. The engine load can also be determined from the intake air flow rate and the engine rotational speed, and is proportional to the intake air flow rate per engine rotation. When the engine load is large, to ensure the desired engine output,
When the engine speed is low (°C), the air-fuel mixture is enriched to avoid deterioration of engine performance. The characteristics shown in Figure 3 are expressed as an air-fuel ratio map, that is, a map that determines the air-fuel ratio using engine speed and intake air flow rate as variables.
It is stored in OM57. In the characteristics shown in Figure 3, in the range of engine rotational speed from 800 to +20Or, p, m, the air-fuel ratio decreases by 1.25 every time the engine rotational speed decreases by 10Or, p, m, and the air-fuel ratio decreases by 1.25. Pressure is 640-760
In the range of mmH9, the intake pipe pressure is lO++tmHy
Each time the air-fuel ratio increases, the air-fuel ratio decreases by 0.5 to 1.0.

第4図は第1の実施例の空燃比特性を示している。機関
負荷(その回転の最大トルクに対する比率)が3/4以
下である場合全気筒の燃焼室の空燃比は等しく、20な
いし25の値に維持される。この結果、混合気が十分に
希薄となり、4フ1気ガス中の有害成分量が減少し、燃
料消費効ギが向上する。絞り弁開度が3/4より太き(
・場合では一部の気筒の燃焼室の空燃比は実線で示すよ
うに12ないし15に維持され、他の残りの気筒の燃焼
室の空燃比は破線で示すように第3図の特性に従って機
関負荷の増大に連れて20ないし25からしだいに12
ないし15へ移行する。4気筒内燃機関では一部の気筒
は1,2、あるいは3個であってもよい。この結果、機
関全体としての出力トルクが増大し、所望の加速性が確
保され、また一部燃焼室の空燃比は窒素酸化物の発生量
の多い空燃比15ないし19に対してずれているので、
窒素酸化物の発生が抑制される。なお第4図の特性では
所定の絞り弁開度において他の気筒の燃焼室の空燃比は
理論空燃比となるが、全気筒の燃焼室の空燃比が同時に
空燃比15ないし19となることはないので、発生する
窒素酸化物の置は十分に少ない。
FIG. 4 shows the air-fuel ratio characteristics of the first embodiment. When the engine load (ratio of rotation to maximum torque) is less than 3/4, the air-fuel ratios in the combustion chambers of all cylinders are kept equal and at a value of 20 to 25. As a result, the air-fuel mixture becomes sufficiently lean, the amount of harmful components in the four-gas is reduced, and fuel consumption efficiency is improved. The throttle valve opening is wider than 3/4 (
- In some cases, the air-fuel ratio in the combustion chamber of some cylinders is maintained at 12 to 15 as shown by the solid line, and the air-fuel ratio in the combustion chamber of the remaining cylinders is maintained at 12 to 15 as shown by the broken line in the engine according to the characteristics in Figure 3. As the load increases, it gradually increases from 20 to 25 to 12.
to 15. In a four-cylinder internal combustion engine, some cylinders may have one, two, or three cylinders. As a result, the output torque of the engine as a whole increases and the desired acceleration performance is secured, and the air-fuel ratio in some combustion chambers is deviated from the air-fuel ratio of 15 to 19, which generates a large amount of nitrogen oxides. ,
Generation of nitrogen oxides is suppressed. Note that in the characteristics shown in Figure 4, the air-fuel ratios in the combustion chambers of other cylinders become the stoichiometric air-fuel ratio at a predetermined throttle valve opening, but the air-fuel ratios in the combustion chambers of all cylinders do not reach the air-fuel ratio of 15 to 19 at the same time. Since there are no nitrogen oxides, the amount of nitrogen oxides generated is sufficiently small.

第5図は第2の実施例の空燃比特性を示している。絞り
弁開度が3/4より小さい場合では全気筒の燃焼室の空
燃比は20ないし25に維持されろ。絞り弁開度が3/
4より大きい場合では絞り弁開度、すなわち機関負荷の
増大に連\て、気筒A、B、Cの順番に、燃焼室の空燃
比を20ない、シ25から12ないし15へ減少させる
。他の残りの気筒りは第4図の他の気筒の場合と同様に
第3図の特性に従って減少させる。このように機関の高
負荷領域では機関の負荷の増大に連Fて燃焼室が理論空
燃比より小さい空燃比にされる気筒の個数が増大し、機
関全体としてのトルクの増大が図られ、所定の加速性が
得られる。
FIG. 5 shows the air-fuel ratio characteristics of the second embodiment. When the throttle valve opening is smaller than 3/4, the air-fuel ratio in the combustion chambers of all cylinders should be maintained at 20 to 25. Throttle valve opening degree is 3/
If it is larger than 4, the air-fuel ratio of the combustion chamber is decreased from 20 to 25 to 12 to 15 in the order of cylinders A, B, and C as the throttle valve opening increases, that is, the engine load increases. The remaining cylinders are reduced according to the characteristics shown in FIG. 3, as in the case of the other cylinders in FIG. In this way, in the high load region of the engine, as the engine load increases, the number of cylinders in which the combustion chambers have an air-fuel ratio lower than the stoichiometric air-fuel ratio increases, and the torque of the engine as a whole is increased. acceleration is obtained.

第6図は第3の実施例の空燃比特性を示している。絞り
弁開度が3/4より小さい場合では全気筒の燃焼室の空
燃比は20ないし25に維持される。絞り弁開度が3/
4より大きい場合では、気筒A、B、Cの順番に燃焼室
の空燃比を20ないし25から12ないし15へ向かっ
てしだいに減少させる。気筒りの燃焼室め空燃比は絞り
弁開度が1.0になる直前までほぼ20ないし25に維
持される。この実施例でも機関が高負荷になると一部の
気筒の燃焼室の混合気がしだいに過濃側へ移行し、機関
全体としてのトルクが増大する。また全気筒の燃焼室が
同時に理論空燃比となることがないので、窒素酸化物の
発生も抑制される。
FIG. 6 shows the air-fuel ratio characteristics of the third embodiment. When the throttle valve opening is smaller than 3/4, the air-fuel ratio in the combustion chambers of all cylinders is maintained at 20 to 25. Throttle valve opening degree is 3/
If it is larger than 4, the air-fuel ratio of the combustion chamber is gradually decreased from 20 to 25 to 12 to 15 in the order of cylinders A, B, and C. The air-fuel ratio in the combustion chamber of the cylinder is maintained at approximately 20 to 25 until just before the throttle valve opening reaches 1.0. In this embodiment as well, when the engine becomes highly loaded, the air-fuel mixture in the combustion chambers of some cylinders gradually shifts to the richer side, and the torque of the engine as a whole increases. Furthermore, since the combustion chambers of all cylinders do not reach the stoichiometric air-fuel ratio at the same time, the generation of nitrogen oxides is also suppressed.

このように本発明によれば、機関の低負荷領域では空燃
比が理論空燃比より十分に大きい値にされ、燃料消費効
率が改善され、かつ排気ガス中の有害成分量も減少し、
また、機関の高負荷領域では一部の気筒の燃焼室の空燃
比が減少して窒素酸化物の発生を抑制しつつ機関全体と
してのトルクを増加し、所望の加速性を確保することが
できる。
As described above, according to the present invention, the air-fuel ratio is set to a value sufficiently larger than the stoichiometric air-fuel ratio in the low load region of the engine, the fuel consumption efficiency is improved, and the amount of harmful components in the exhaust gas is reduced.
Additionally, in high-load areas of the engine, the air-fuel ratio in the combustion chambers of some cylinders decreases, suppressing the generation of nitrogen oxides and increasing the torque of the engine as a whole, ensuring the desired acceleration. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用される電子制御機関の概略図、第
2図は第1図の電子制御装置の内部のブロック図、第3
図は燃焼室の空燃比の基本的な変化を示す図、第4図、
第5図、および第6図は本発明の種々の実施例における
空燃比特性を示す図である。 2・・・エアフローメータ、3・・・絞り弁、7・・・
機関本体、8・・・燃焼室、32・・・クランク角セン
サ、40・・・電子制御装置、41・・・燃料噴射弁。 第3図 !mmlmmlコルs ) →機関回転速度 第4図 一機関負荷(絞シ弁開度) 第5図 0       0.5      1.0一機関負荷
(絞り弁開度) 第6図 0       0.5      1.0一機関負荷
(絞り弁開度)
FIG. 1 is a schematic diagram of an electronic control engine to which the present invention is applied, FIG. 2 is a block diagram of the inside of the electronic control device shown in FIG.
Figure 4 shows the basic changes in the air-fuel ratio in the combustion chamber.
FIG. 5 and FIG. 6 are diagrams showing air-fuel ratio characteristics in various embodiments of the present invention. 2... Air flow meter, 3... Throttle valve, 7...
Engine body, 8... Combustion chamber, 32... Crank angle sensor, 40... Electronic control device, 41... Fuel injection valve. Figure 3! mmlmml cors ) → Engine rotation speed Fig. 4 - Engine load (throttle valve opening) Fig. 5 - Engine load (throttle valve opening) Fig. 6 0 0.5 1.0 One engine load (throttle valve opening)

Claims (1)

【特許請求の範囲】 1、機関負荷が所定値より小さい場合では全気筒の燃焼
室の空燃比を理論空燃比より大きい第1の所定値以上に
維持し、機関負荷が所定値より大きい場合では一部の気
筒の燃焼室の空燃比を理論空燃比より小さい第2の所定
値に維持し、残りの気筒の燃焼室の空燃比を機関の負荷
の増大に連れてしだいに減少させることを特徴とする、
内燃機関の空燃比制御方法。 2 機関負荷が所定値より小さい場合では全気筒の燃焼
室の空燃比を理論空燃比より大きい第1の所定値以上に
維持し、機関負荷が所定値より大きい場合では燃焼室が
理論空燃比より小さい第2の所定値以下の空燃比に維持
される気筒の個数を機関負荷の増大に連れて増大するこ
とを特徴とする、内燃機関の空燃比制御方法。 3 機関負荷が所定値より小さい場合では全気筒の燃焼
室の空燃比を理論空燃比より大きい第1の所定値以上に
維持し、機関負荷が所定値より大きい場合では機関負荷
の増大に連れて一部の気筒の燃焼室の空燃比を第1の所
定値以上から理論空燃比より小さい第2の所定値へ向か
ってしだいに減少させかつ残りの気筒の燃焼室の空燃比
は別の所定の機関負荷までなお第1の所定値以上に維持
することを特徴とする、内燃機関の空燃比制御方法。
[Claims] 1. When the engine load is smaller than a predetermined value, the air-fuel ratio in the combustion chambers of all cylinders is maintained at a first predetermined value or higher that is larger than the stoichiometric air-fuel ratio, and when the engine load is larger than the predetermined value, The air-fuel ratio of the combustion chambers of some cylinders is maintained at a second predetermined value smaller than the stoichiometric air-fuel ratio, and the air-fuel ratio of the combustion chambers of the remaining cylinders is gradually decreased as the engine load increases. and
Air-fuel ratio control method for internal combustion engines. 2 When the engine load is smaller than a predetermined value, the air-fuel ratio in the combustion chambers of all cylinders is maintained at a first predetermined value or higher that is larger than the stoichiometric air-fuel ratio, and when the engine load is larger than the predetermined value, the air-fuel ratio in the combustion chamber of all cylinders is maintained above the stoichiometric air-fuel ratio. An air-fuel ratio control method for an internal combustion engine, characterized in that the number of cylinders whose air-fuel ratio is maintained at an air-fuel ratio equal to or less than a second small predetermined value is increased as the engine load increases. 3. When the engine load is smaller than a predetermined value, the air-fuel ratio in the combustion chambers of all cylinders is maintained at a first predetermined value or higher, which is larger than the stoichiometric air-fuel ratio, and when the engine load is larger than the predetermined value, the air-fuel ratio is maintained as the engine load increases. The air-fuel ratio in the combustion chambers of some cylinders is gradually decreased from a first predetermined value or higher to a second predetermined value smaller than the stoichiometric air-fuel ratio, and the air-fuel ratio in the combustion chambers of the remaining cylinders is set to another predetermined value. An air-fuel ratio control method for an internal combustion engine, characterized in that the engine load is maintained at a first predetermined value or higher.
JP15204681A 1981-09-28 1981-09-28 Method of controlling air-fuel ratio in internal- combustion engine Pending JPS5853659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15204681A JPS5853659A (en) 1981-09-28 1981-09-28 Method of controlling air-fuel ratio in internal- combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15204681A JPS5853659A (en) 1981-09-28 1981-09-28 Method of controlling air-fuel ratio in internal- combustion engine

Publications (1)

Publication Number Publication Date
JPS5853659A true JPS5853659A (en) 1983-03-30

Family

ID=15531864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15204681A Pending JPS5853659A (en) 1981-09-28 1981-09-28 Method of controlling air-fuel ratio in internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS5853659A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133144U (en) * 1984-02-17 1985-09-05 日産自動車株式会社 Air fuel ratio control device
JPS6275043A (en) * 1985-09-26 1987-04-06 Mazda Motor Corp Air-fuel ratio control device for multicylinder engine
JPS62103447A (en) * 1985-10-30 1987-05-13 Mazda Motor Corp Intake-air device for engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133144U (en) * 1984-02-17 1985-09-05 日産自動車株式会社 Air fuel ratio control device
JPS6275043A (en) * 1985-09-26 1987-04-06 Mazda Motor Corp Air-fuel ratio control device for multicylinder engine
JPS62103447A (en) * 1985-10-30 1987-05-13 Mazda Motor Corp Intake-air device for engine

Similar Documents

Publication Publication Date Title
US5727528A (en) Control apparatus and control method of internal combustion engine
US5784880A (en) Engine fuel supply control device
US5562086A (en) Control device of a varable cylinder engine
US4596164A (en) Air-fuel ratio control method for internal combustion engines for vehicles
US5857445A (en) Engine control device
EP0926327B1 (en) Combustion controller and method for lean burn engines
EP0849461A2 (en) Combustion controller for internal combustion engines
EP1359305B1 (en) Fuel cut control apparatus for internal combustion engine
JPS5857072A (en) Ignition timing controlling method of electronic control engine
US4621600A (en) Fuel supply control method for internal combustion engines at fuel cut operation
US4503829A (en) Fuel supply control method for internal combustion engines under high load conditions
US4454855A (en) Fuel supply control method and system for internal combustion engines equipped with exhaust gas recirculation control systems
US4750466A (en) Exhaust gas recirculation method for internal combustion engines for automotive vehicles
US4699111A (en) Air-fuel ratio control method for internal combustion engines
JPS58144642A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS5853659A (en) Method of controlling air-fuel ratio in internal- combustion engine
US5661974A (en) Control system with function of protecting catalytic converter for internal combustion engines for vehicles
JP2590823B2 (en) Air-fuel ratio control device for internal combustion engine
JPS5872631A (en) Air-fuel ratio control method of engine
JP3193103B2 (en) Engine control device
JPS59168266A (en) Ignition timing control device for internal-combustion engine
GB2142164A (en) Fuel supply control method for internal combustion engines capable of improving acceleration of the engine from an idling region therof
JP2873504B2 (en) Engine fuel control device
JPH02104927A (en) Fuel supply control method for internal combustion engine
EP1479899A2 (en) Combustion control apparatus and method for internal combustion engine