JPS6146361A - Device for measuring thickness of molten layer of cc powder - Google Patents

Device for measuring thickness of molten layer of cc powder

Info

Publication number
JPS6146361A
JPS6146361A JP16606984A JP16606984A JPS6146361A JP S6146361 A JPS6146361 A JP S6146361A JP 16606984 A JP16606984 A JP 16606984A JP 16606984 A JP16606984 A JP 16606984A JP S6146361 A JPS6146361 A JP S6146361A
Authority
JP
Japan
Prior art keywords
layer
molten
powder
gamma ray
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16606984A
Other languages
Japanese (ja)
Other versions
JPH0465744B2 (en
Inventor
Masayuki Soma
相馬 正幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16606984A priority Critical patent/JPS6146361A/en
Publication of JPS6146361A publication Critical patent/JPS6146361A/en
Publication of JPH0465744B2 publication Critical patent/JPH0465744B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/187Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by using X-rays or nuclear radiation

Abstract

PURPOSE:To measure continuously the thickness of a molten powder layer with good accuracy without contacting by attaching a bar-shaped ray source and vertically movable gamma ray detector to the walls of a mold facing each other and disposing a device for measuring the level of a molten metal above the molten steel surface. CONSTITUTION:The bar-shaped gamma ray source 3 along the vertical direction is disposed to one mold wall 1 in continuous casting in proximity to the inside wall 4 and the gamma ray detector 5 is provided vertically movably by a moving device 7 to the other mold wall 2 in proximity to the inside wall 6. The relation between the quantity of the transmitted rays corresponding to the molten metallic layer A, molten powder layer B, powder grain layer C and air layer D and the moving position of the detector 5 is determined and is corrected by a level measuring device 9. The online measurement of the thickness of the layer B is thus executed. The continuous measurement of the thickness of the molten powder layer with good accuracy without contacting is thus made possible.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、連続鋳造モールド内投入パウダーの溶融液層
(パウダー溶融層)の厚さを測定するための装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an apparatus for measuring the thickness of a molten liquid layer (powder molten layer) of powder introduced into a continuous casting mold.

(従来技術とその問題点) 連続鋳造設備において、溶鋼表面上のパウダー溶融層厚
を測定することは、良品質の鋳片を製造し、かつ、ブレ
ークアウト等の操業トラブルを防止するために非常に重
要である。
(Prior art and its problems) In continuous casting equipment, measuring the thickness of the molten powder layer on the surface of molten steel is extremely important in order to produce high-quality slabs and prevent operational troubles such as breakouts. is important.

従来の電極式パウダー溶融層測定装置は、モールメ内に
上方からプローブを一定速度で降下 ”させて各層での
抵抗値を測定し、各層を通過する時抵抗値が不連続的に
変化することを利用してその不連続点通過時の時間間隔
を測定することによって、パウダー溶融層を測定しよう
とするものである。しかし、この従来装置では、間欠的
な測定とならざるを得ない。測定中の湯面レベル変動に
よる測定誤差を避けられない。モールド上方にタンディ
ツシュ等があるから、モールド上部にプローブ及びその
上下動機構等を設置し難いという不具合を免れなかった
。さらに、前記の電極に代えて、超音波を用い溶融パウ
ダー域では溶鋼面での反射がある特徴ある波形となる事
を利用した測定法が特開昭57−56146号出願で提
案されているが、前記電極式と同様の問題の上に、測定
端子の溶鋼付着又は溶損等の問題がある。
Conventional electrode-type powder molten layer measuring equipment measures the resistance value in each layer by lowering the probe into the moulme at a constant speed, and detects that the resistance value changes discontinuously as it passes through each layer. This method attempts to measure the molten powder layer by measuring the time interval when the discontinuity point passes using the conventional device.However, with this conventional device, measurements must be made intermittently.During the measurement Measurement errors due to fluctuations in the hot water level cannot be avoided.Since there is a tundish above the mold, it is difficult to install the probe and its vertical movement mechanism above the mold.Furthermore, instead of the electrodes mentioned above, Therefore, a measurement method using ultrasonic waves that takes advantage of the fact that in the molten powder region a characteristic waveform due to reflection on the molten steel surface is proposed has been proposed in Japanese Patent Laid-Open No. 57-56146. In addition to these problems, there are other problems such as adhesion of molten steel to measurement terminals or melting damage.

また、測温方式のパウダー溶融層測定装置は鉄線は溶鋼
中で溶けるが、パウダー溶融層では溶けずに残り、銅ワ
イヤは溶鋼中及びパウダー溶融層で溶けるのを利用して
、鉄線及び銅ワイヤを巻付けた棒状のものをモールド内
に挿入浸漬して数秒後取出し、鉄線及び銅ワイヤの残存
長差を図ることによって、パウダー溶融層厚を測定しよ
うとするものである。しかし、この従来装置では、間欠
的な測定とならざるを得ない。
In addition, the temperature measuring powder fused layer measurement device uses the fact that iron wire melts in molten steel but remains unmelted in the powder fused layer, while copper wire melts in the molten steel and powder fused layer. The purpose is to measure the thickness of the molten powder layer by inserting a rod-shaped object wrapped around it into a mold, immersing it in the mold, taking it out after a few seconds, and measuring the difference in remaining length between the iron wire and the copper wire. However, this conventional device has no choice but to perform intermittent measurements.

溶損量に関わる浸漬時間の取り方、読み取り誤差等人間
が測定することから生じる測定誤差、測定中の湯面レベ
ル変動による測定誤差を避けられない。モールド上方で
の作業で危険に晒されるという不具合を免れなかった。
Measurement errors that occur due to human measurements such as how to determine the immersion time related to the amount of erosion, reading errors, etc., and measurement errors due to fluctuations in the hot water level during measurement cannot be avoided. We were unable to avoid the problem of being exposed to danger when working above the mold.

(発明の目的) 本発明は、前記従来の問題点を解決するために創案され
たもので、パウダー溶融層厚を非接触でかつほぼ連続的
に精度良く測定できるようにすることを目的とする。
(Object of the Invention) The present invention was devised in order to solve the above-mentioned conventional problems, and an object of the present invention is to enable non-contact and almost continuous measurement of the thickness of the molten powder layer with high accuracy. .

(発明の構成) 本発明の連゛続鋳造モールドにおけるパウダー溶融層厚
測定装置は対向するモールド壁の一方側に上下方向に沿
い配置された棒状のγ線源と、前記モールド壁の他方側
に上下動可能に配置されたγ線検出器と、湯面レベル測
定装置とを備えたことを特徴とする。
(Structure of the Invention) The powder molten layer thickness measuring device in the continuous casting mold of the present invention includes a bar-shaped gamma ray source disposed along the vertical direction on one side of the opposing mold wall, and a bar-shaped gamma ray source disposed on the other side of the mold wall. It is characterized by comprising a gamma ray detector arranged to be movable up and down and a hot water level measuring device.

(実施例) 以下本発明の一実施例を図面により説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

図中1,2は対向するモールド壁で、一方のモールド壁
1内には、パウダー溶融層Bとパウダー粉粒層Cの変動
域をカバーする上下方向に沿った棒状のγ線源3がモー
ルド内壁4に近接して配置されている。他方のモールド
壁2内には、γ線検出器、例えばシンチレーションカウ
ンタ5が、パウダー粉粒層Aとパウダー溶融層Bの変動
域をモールド内壁6に近接して移動装置7により上下動
可能で、かつ、該装置7に設けた移動距離検出器8によ
り位置検出可能に配置されている。
In the figure, 1 and 2 are opposing mold walls, and inside one mold wall 1, there is a rod-shaped gamma ray source 3 along the vertical direction that covers the fluctuation range of the powder molten layer B and the powder powder layer C. It is arranged close to the inner wall 4. Inside the other mold wall 2, a gamma ray detector, for example, a scintillation counter 5, is movable up and down by a moving device 7 in the fluctuation range of the powder particle layer A and the powder molten layer B close to the mold inner wall 6. Moreover, it is arranged so that its position can be detected by a movement distance detector 8 provided in the device 7.

9は従来公知のマイクロ波又はレーザ光方式湯面レベル
測定装置で、モールド壁1,2間の湯面10より上方に
配置されている。該装置9は、湯面、10に向けてマイ
クロ波又はレーザ光を入射して、湯面10からの反射波
を捉え、マイクロ波又はレーザ光の干渉波もしくは入射
・反射角度に基いて湯面レベルを検知できる構成となっ
ている。
Reference numeral 9 denotes a conventionally known microwave or laser light type hot water level measuring device, which is disposed above the hot water level 10 between the mold walls 1 and 2. The device 9 injects microwave or laser light toward the hot water surface 10, captures the reflected wave from the hot water surface 10, and detects the hot water surface based on the interference wave or incidence/reflection angle of the microwave or laser light. The structure is such that the level can be detected.

(作用) γ線源3から放射されたγ線は、溶融金属層A1パウダ
ー溶融層B1パウダー粉粒層C1空気層りを透過してシ
ンチレーションカウンタ5に達し、その強度が検出され
る。一方、シンチレーションカウンタ5の位置は、移動
距離検出器8により検出される。
(Function) The γ-rays emitted from the γ-ray source 3 pass through the molten metal layer A1 powder molten layer B1 powder particle layer C1 air layer and reach the scintillation counter 5, where the intensity thereof is detected. On the other hand, the position of the scintillation counter 5 is detected by a moving distance detector 8.

J、二線源から検出器までの平均距離(crn)Si/
l:全体面積に占める各層の面積S1:各層におけるビ
ルドアップ係数 μm:各層における線吸収係数  ′ (Ol):線源単位容量(CVcIn)で表わされる。
J, average distance from the two sources to the detector (crn) Si/
1: Area of each layer in the total area S1: Build-up coefficient in each layer μm: Linear absorption coefficient in each layer ′ (Ol): Expressed in source unit capacity (CVcIn).

各層の線吸収係数μは、溶融金属層Aでは溶鋼の場合0
.46、パウダー溶融層Bでは0.141、パウダー粉
粒層Cでは0.064、空気層りではほぼOと、各層で
、γ線が透過する比率が異なるから、シンチレーション
カウンタ5を原点Oから下降させることにより求められ
るγ線の強度出力と検出器位置との関係曲線は、第3図
に示されているように、その変曲点と各層の境界位置a
、b、c  とが対応したものとなる。
The linear absorption coefficient μ of each layer is 0 in the case of molten steel in molten metal layer A.
.. 46. Since the transmission ratio of γ rays is different in each layer: 0.141 in the powder fusion layer B, 0.064 in the powder particle layer C, and almost O in the air layer, the scintillation counter 5 is lowered from the origin O. The relationship curve between the γ-ray intensity output and the detector position obtained by
, b, and c correspond to each other.

従って、上記関係曲線を求めれば、変曲点に対応する各
位置a、b、cにより各層の判別、各層厚の算出が充分
可能である。
Therefore, if the above-mentioned relationship curve is obtained, it is possible to distinguish each layer and calculate the thickness of each layer based on the positions a, b, and c corresponding to the inflection points.

実際には、湯面レベルの変動が存在するため、湯面レベ
ル測定装置9により湯面10(パウダー粉粒層Cの表面
−)の変動測定を、前記γ線及び検出器位置の測定と併
行して行ない、次いで検出器位置の原点0を揃える検出
器位置の補正を行なう必要がある。前記関係曲線は、こ
の補正がされた検出器位置について求められるものであ
る。
In reality, since there are fluctuations in the hot water level, the hot water level measurement device 9 measures the fluctuations in the hot water level 10 (the surface of the powder layer C) in parallel with the measurement of the gamma rays and the detector position. Then, it is necessary to correct the detector position so that the origin 0 of the detector position is aligned. The relationship curve is determined for the corrected detector position.

実験によれば、上記測定作業を最短5秒程度の周期でほ
とんど連続的に行なうことができた。
According to experiments, the above measurement work could be carried out almost continuously with a period of about 5 seconds at the shortest.

しかも、従来の鉄線及び銅ワイヤを使用したパウダー溶
融層測定装置に比して測定精度が向上し、±1 m8以
内の精度が確認できた。
Moreover, the measurement accuracy was improved compared to the conventional powder fused layer measuring device using iron wire and copper wire, and the accuracy was confirmed to be within ±1 m8.

尚、本実施例では、湯面レベル測定装置は、マイクロ波
又はレーザ方式のものであったが、■TVを用いた光学
式等であってもよい。
In this embodiment, the hot water level measuring device was of the microwave or laser type, but may be of an optical type using a TV.

(発明の効果) 以上の通り本発明は、溶融金属、パウダー溶融層、パウ
ダー粉粒層、空気層でγ線が透過する比率が異なること
を有効に利用して、γ線検出器を上下方向に移動させな
がらその位置とγ線透過量(強度)との相関を求めると
共に、湯面レベルにより前記相関の補正を行なって、パ
ウダー溶融層厚を非接触でいつでも、はとんど連続的に
、高い精度で測定できるようにしたため、オンライン測
定が可能である。パウダー溶融層厚が薄い場合は鋳込速
度を下げ、膜切れに起因するブレークアウトを防止する
と共に、パウダーの供給量を制御するという対処が確実
かつ迅速に採れ、良品質の鋳片を歩留よく製造できる。
(Effects of the Invention) As described above, the present invention makes effective use of the fact that the transmission ratio of gamma rays is different between the molten metal, the powder melt layer, the powder particle layer, and the air layer, so that the gamma ray detector can be moved in the vertical direction. The correlation between the position and the amount of gamma ray transmission (intensity) is determined while moving the powder, and the correlation is corrected based on the level of the molten metal. , online measurement is possible because it can be measured with high accuracy. When the thickness of the molten powder layer is thin, it is possible to reduce the casting speed to prevent breakouts caused by film breakage, and to control the powder supply amount reliably and quickly, increasing the yield of high-quality slabs. Can be manufactured well.

また電極式や超音波式のように、モールド上面にて計測
装置と作業オペレータとが干渉゛することもない、実用
性に優れた測定装置である。
In addition, unlike the electrode type and ultrasonic type, there is no interference between the measuring device and the operator on the upper surface of the mold, making it a highly practical measuring device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概要図、第2図は各層
の面積割合を示す概要図、第3図は検出器位置とγ線強
度との関係曲線図である。 1.2・・モールド壁、3・・γ線源、4,6・・モー
ルド内壁、5・・シンチレーションカウタ、7・・移動
装置、8・・移動距離検出器、9・・湯面レベル測定装
置、1o・・湯面、A・・溶融金属層、B・・パウダー
溶融層、C・・パウダー粉粒層、D・・空気層、a、b
、c  ・・層境界位置。 第1図 第2囚 第3図
FIG. 1 is a schematic diagram showing an embodiment of the present invention, FIG. 2 is a schematic diagram showing the area ratio of each layer, and FIG. 3 is a diagram showing a relationship curve between detector position and γ-ray intensity. 1.2... Mold wall, 3... Gamma ray source, 4, 6... Mold inner wall, 5... Scintillation counter, 7... Moving device, 8... Moving distance detector, 9... Hot water level Measuring device, 1o... Hot water surface, A... Molten metal layer, B... Powder molten layer, C... Powder particle layer, D... Air layer, a, b
,c...Layer boundary position. Figure 1 Prisoner 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 対向するモールド壁の一方側に上下方向に沿い配置され
た棒状のγ線源と、前記モールド壁の他方側に上下動可
能に配置されたγ線検出器と、湯面レベル測定装置とを
備えたことを特徴とするCCパウダー溶融層厚測定装置
A bar-shaped gamma ray source disposed along the vertical direction on one side of the opposing mold wall, a gamma ray detector disposed vertically movably on the other side of the mold wall, and a hot water level measuring device. A CC powder melt layer thickness measuring device characterized by the following.
JP16606984A 1984-08-08 1984-08-08 Device for measuring thickness of molten layer of cc powder Granted JPS6146361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16606984A JPS6146361A (en) 1984-08-08 1984-08-08 Device for measuring thickness of molten layer of cc powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16606984A JPS6146361A (en) 1984-08-08 1984-08-08 Device for measuring thickness of molten layer of cc powder

Publications (2)

Publication Number Publication Date
JPS6146361A true JPS6146361A (en) 1986-03-06
JPH0465744B2 JPH0465744B2 (en) 1992-10-21

Family

ID=15824397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16606984A Granted JPS6146361A (en) 1984-08-08 1984-08-08 Device for measuring thickness of molten layer of cc powder

Country Status (1)

Country Link
JP (1) JPS6146361A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650543A (en) * 2011-02-28 2012-08-29 Sms康卡斯特股份公司 Apparatus for detecting and displaying varying levels of a metal melt
WO2013002220A1 (en) * 2011-06-27 2013-01-03 住友金属工業株式会社 Method for measuring melt layer thickness of mold powder for continuous casting
AT517889A1 (en) * 2015-10-28 2017-05-15 Primetals Technologies Austria GmbH Detecting a level of pouring in a mold

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650543A (en) * 2011-02-28 2012-08-29 Sms康卡斯特股份公司 Apparatus for detecting and displaying varying levels of a metal melt
JP2012179654A (en) * 2011-02-28 2012-09-20 Sms Concast Ag Apparatus for detecting and displaying varying level of metal melt
WO2013002220A1 (en) * 2011-06-27 2013-01-03 住友金属工業株式会社 Method for measuring melt layer thickness of mold powder for continuous casting
AT517889A1 (en) * 2015-10-28 2017-05-15 Primetals Technologies Austria GmbH Detecting a level of pouring in a mold
AT517889B1 (en) * 2015-10-28 2017-09-15 Primetals Technologies Austria GmbH Detecting a level of pouring in a mold

Also Published As

Publication number Publication date
JPH0465744B2 (en) 1992-10-21

Similar Documents

Publication Publication Date Title
JPS57178111A (en) Microwave sensor for checking level of molten metal in continuous casting method
CN106537088A (en) Method for measuring thickness of slag floating on surface of molten metal
JPS5780510A (en) Vehicle for measuring shape of road surface
JPS6146361A (en) Device for measuring thickness of molten layer of cc powder
IT1144719B (en) PROCEDURE AND APPARATUS FOR DETECTING AND MEASURING CORROSION BY METAL SURFACES
JP2854256B2 (en) Apparatus for discontinuously detecting the thickness of a layer above a metal melt
RU2151389C1 (en) Process of measurement of electrochemical activity
JPH0318462A (en) Method and instrument for measuring molten layer thickness of mold powder on molten steel surface in mold for continuous casting
JPS55106693A (en) Resistance welding quality evaluating monitor
JPH02108444A (en) Method for measuring molten layer thickness of mold powder on molten steel surface in mold of continuous casting
JPS63242451A (en) Method and apparatus for measuring power layer thickness in mold
JPS61200444A (en) Method and apparatus for measuring moisture of particulate
KR100337988B1 (en) Method for measuring electrochemical activity
JPH0242409B2 (en)
JP2607772B2 (en) Flux filling rate detection method for flux cored welding wire
JPH02184706A (en) Dimension measuring device
JPH01124703A (en) Method and device for noncontact measurement of film characteristic
JPS6475902A (en) Method for measuring refractive index and film thickness
JPS62166065A (en) Method for measuring mold powder layer thickness on molten metal in mold in continuous casting
JPH11216551A (en) Method and device to measure continuous casting molten metal level
SU1183814A1 (en) Device for measuring lining thickness
JPH05249087A (en) Method of measuring filling rate of pulverulent body
SU371425A1 (en) METHOD OF DRAWING ON THE SURFACE OF THE RESEARCHED MATERIAL BASOVB1X METHODS
SU373564A1 (en) BLIELOTIK1_1
SU958336A1 (en) Method for determining thickness of bath layer