JPS6146288Y2 - - Google Patents

Info

Publication number
JPS6146288Y2
JPS6146288Y2 JP13679981U JP13679981U JPS6146288Y2 JP S6146288 Y2 JPS6146288 Y2 JP S6146288Y2 JP 13679981 U JP13679981 U JP 13679981U JP 13679981 U JP13679981 U JP 13679981U JP S6146288 Y2 JPS6146288 Y2 JP S6146288Y2
Authority
JP
Japan
Prior art keywords
sealed
fluid
temperature
face
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13679981U
Other languages
Japanese (ja)
Other versions
JPS5842455U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13679981U priority Critical patent/JPS5842455U/en
Publication of JPS5842455U publication Critical patent/JPS5842455U/en
Application granted granted Critical
Publication of JPS6146288Y2 publication Critical patent/JPS6146288Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mechanical Sealing (AREA)

Description

【考案の詳細な説明】 本考案は、メカニカルシールの負荷調整装置に
関するものである。
[Detailed Description of the Invention] The present invention relates to a load adjustment device for a mechanical seal.

従来のメカニカルシールにあつて、密封負荷
が、メカニカルシールの設計諸元及びこれが付設
されるポンプ等の回転機器の条件によつて固定的
に決定されること周知の通りであり、密封状況の
変化を予知し且つ密封端面に作用する負荷力を外
部から調整することは事実上不可能に近い。
As is well known, for conventional mechanical seals, the sealing load is fixedly determined by the design specifications of the mechanical seal and the conditions of the rotating equipment such as the pump to which it is attached. It is virtually impossible to predict this and adjust the load force acting on the sealed end face from the outside.

ところで、例えば初期設計時の設計誤差や回転
機器の運転条件の変化等に起因して密封端面に必
要以上の負荷力つまり過負荷が作用する虞れがあ
るが、このように過負荷が生じると、密封端面に
おける潤滑作用が良好に行われなくなり、そのた
め密封端面部分の摩耗量が激増してメカニカルシ
ールの寿命が大巾に短縮されたり、極端な場合に
は、密封端面部分が焼付いて損傷し、密封端面か
らの漏洩量が許容範囲を超えて何ら密封機能を果
たし得なくなるといつた種々の異常事態を招来す
る。
By the way, for example, due to design errors during the initial design or changes in the operating conditions of rotating equipment, there is a risk that an excessive load force, that is, an overload, will be applied to the sealed end face. In this case, the lubrication effect on the sealed end face is not performed properly, and as a result, the amount of wear on the sealed end face increases dramatically, significantly shortening the life of the mechanical seal, and in extreme cases, the sealed end face seizes and becomes damaged. This results in various abnormal situations such as the amount of leakage from the sealed end face exceeding the allowable range and the sealing function being unable to be achieved.

しかるに、従来のメカニカルシールにおいて
は、過負荷の発生を上記した如き異常事態の発生
前に発見することは極めて困難であり、したがつ
てかゝる異常事態の発生を未然に防止することは
不可能に近く、また例え過負荷の発生を事前に発
見し得たとしても、前記異常事態の発生を防止す
るためには、回転機器自体の運転を停止する以外
に途がなく、しかもかゝる回転機器の運転停止は
そのまゝプラント全体の停止に繋がることが多
く、甚だ不都合である。
However, with conventional mechanical seals, it is extremely difficult to detect the occurrence of an overload before an abnormal situation such as the one described above occurs, and therefore it is impossible to prevent such an abnormal situation from occurring. Even if it is possible, and even if the occurrence of an overload can be detected in advance, the only way to prevent the occurrence of the abnormal situation is to stop the operation of the rotating equipment itself. Stopping the operation of rotating equipment often leads to the stoppage of the entire plant, which is extremely inconvenient.

本考案は、上記の点に鑑みてなされたもので、
密封状態の変化を密封端面の温度変化を検出して
予知し、これに基づいて密封端面に作用する負荷
力を外部から調整しうる新規なメカニカルシール
の負荷調整装置を提供し、もつて焼付き等異常事
態の発生を未然に防止して、長期に亘つて良好な
密封機能が維持されるよう図つたものである。
This invention was made in view of the above points,
Provides a new mechanical seal load adjustment device that can predict changes in the sealing state by detecting temperature changes on the sealed end face, and adjust the load force acting on the sealed end face from the outside based on this prediction, thereby preventing seizure. The purpose is to prevent the occurrence of abnormal situations such as this, and maintain a good sealing function over a long period of time.

次に、その実施例を図について説明する。この
実施例は、本考案をポンプに付設されたメカニカ
ルシールに適用した例に関するものである。
Next, an example thereof will be explained with reference to the drawings. This embodiment relates to an example in which the present invention is applied to a mechanical seal attached to a pump.

図において、1はシールハウジング、2はポン
プ室から延出してシールハウジング1内を洞貫す
る羽根軸たる回転軸、3及び4はシールハウジン
グ1内に夫々配設された回転密封環及び静止密封
環である。回転密封環3は回転軸2に嵌着固定さ
れており、静止密封環4は、回転軸2に外嵌せる
スリーブ5に軸線方向移動自在に外嵌状に支持さ
れていると共に、シールハウジング1に取着せる
シールフランジ6との間に介設された圧縮コイル
スプリング7でもつて前記回転環3に押圧付勢さ
れている。なお、8は回転軸2に螺着されたナツ
トである。
In the figure, 1 is a seal housing, 2 is a rotary shaft extending from the pump chamber and penetrating through the seal housing 1, and 3 and 4 are rotating seal rings and stationary seals disposed in the seal housing 1, respectively. It is a ring. The rotating sealing ring 3 is fitted and fixed to the rotating shaft 2, and the stationary sealing ring 4 is supported by a sleeve 5 that is fitted onto the rotating shaft 2 so as to be movable in the axial direction. The rotary ring 3 is also biased by a compression coil spring 7 interposed between the rotary ring 3 and a seal flange 6 attached to the rotary ring 3. Note that 8 is a nut screwed onto the rotating shaft 2.

そして、前記シールハウジング1内には、回転
密封環3と静止密封環4との密封端面9に臨ませ
て主密封室10が形成されている。この主密封室
10は、シールハウジング1と回転軸2と間に形
成された連通路11を介して、ポンプ室の吸込側
たる密封流体側12に連通せしめられている。ま
た、前記密封端面9に略対向するシールハウジン
グ1部分には、ポンプの高圧源例えば吐出口14
に連通管15を介して連通接続され且つ主密封室
10内に開口する流入孔13を形成してあつて、
吐出口14から連通管15更に流入孔13を経て
主密封室10内に供給された流体が低圧側たる密
封流体側12へ流出されるようになされており、
この間において、前記密封端面9が冷却されるよ
う工夫されている。
A main sealed chamber 10 is formed in the seal housing 1 so as to face the sealed end surfaces 9 of the rotating sealing ring 3 and the stationary sealing ring 4. This main sealed chamber 10 is communicated with a sealed fluid side 12, which is the suction side of the pump chamber, via a communication passage 11 formed between the seal housing 1 and the rotating shaft 2. Further, in a portion of the seal housing 1 that substantially opposes the sealed end surface 9, a high pressure source of the pump, such as a discharge port 14, is provided.
An inflow hole 13 is formed which is connected to the main chamber 10 through a communication pipe 15 and opens into the main sealed chamber 10.
The fluid supplied into the main sealed chamber 10 from the discharge port 14 through the communication pipe 15 and the inflow hole 13 is configured to flow out to the sealed fluid side 12, which is the low pressure side.
During this time, the sealed end surface 9 is designed to be cooled.

また、前記両密封環3,4のうち密封端面9に
負荷力を作用させる側の密封環つまり静止密封環
4の背面側に臨ませて、前記主密封室10とは独
立した副密封室16が形成されている。すなわ
ち、この副密封室16は、静止密封環4とシール
ハウジング1及びシールフランジ6との間をOリ
ングパツキン17及び18でもつてシールするこ
とによつて、シールハウジング1及び静止密封環
4並びにシールフランジ6で囲繞された密封空間
として形成されており、後述の流体供給機構20
によつて所定圧の流体が供給されるものである。
Also, a sub-sealed chamber 16, which is independent of the main sealed chamber 10, is provided facing the back side of the sealing ring on the side that applies a load force to the sealing end face 9 of the two sealing rings 3, 4, that is, the stationary sealing ring 4. is formed. That is, by sealing between the stationary seal ring 4, the seal housing 1, and the seal flange 6 using the O-ring packings 17 and 18, the sub-seal chamber 16 is constructed so that the seal housing 1, the stationary seal ring 4, and the seal are sealed. It is formed as a sealed space surrounded by a flange 6, and is connected to a fluid supply mechanism 20, which will be described later.
Fluid at a predetermined pressure is supplied by the pump.

したがつて、両密封室10,16内に作用する
流体圧によつて密封端面9に所定の負荷力が作用
せしめられ、これによつて密封流体側12が大気
側19から密封されるようになされている。な
お、この密封状態においては、主密封室10内の
流体によつて密封端面9が潤滑せしめられる。
Therefore, the fluid pressure acting in both sealed chambers 10 and 16 causes a predetermined load force to be applied to the sealed end face 9, thereby sealing the sealed fluid side 12 from the atmospheric side 19. being done. In this sealed state, the fluid in the main sealed chamber 10 lubricates the sealed end surface 9.

さらに、前記副密封室16内に流体を供給し且
つその流体圧を増減調節可能とする流体供給機構
20、及び前記密封端面9の温度を検出する温度
検出器21、並びに該温度検出器21で検出され
た温度値に応じて前記両密封室10,16内の流
体圧の差を設定差圧に調整すべく前記流体供給機
構20を制御させる制御機構22が夫々設けられ
ているので、まず流体供給機構20について説明
する。
Furthermore, a fluid supply mechanism 20 that supplies fluid into the sub-sealed chamber 16 and is capable of increasing or decreasing the fluid pressure; a temperature detector 21 that detects the temperature of the sealed end surface 9; Since a control mechanism 22 is provided to control the fluid supply mechanism 20 in order to adjust the difference between the fluid pressures in the sealed chambers 10 and 16 to a set differential pressure in accordance with the detected temperature value, first the fluid is The supply mechanism 20 will be explained.

すなわち、常時吐出圧を一定とすべく運転され
る、当該メカニカルシールが付設されたポンプと
は別の供給ポンプ23を設け、この供給ポンプ2
3の吸込管24を適宜の水源25に導いてあると
共に、その吐出管26を分岐させて、一方の分岐
管たる供給管26aを、シールハウジング1に形
成されて前記副密封室16に開口する流入孔27
に接続し、且つ他方の分岐管たる還流管26bを
前記水源25に導いてあり、さらに該還流管26
bに圧力調整弁28を介設してある。
That is, a supply pump 23 separate from the pump equipped with the mechanical seal, which is operated to keep the discharge pressure constant at all times, is provided, and this supply pump 2
The suction pipe 24 of No. 3 is led to a suitable water source 25, and its discharge pipe 26 is branched, and one branch pipe, a supply pipe 26a, is formed in the seal housing 1 and opens into the sub-sealed chamber 16. Inflow hole 27
The reflux pipe 26b, which is the other branch pipe, is connected to the water source 25 and is connected to the reflux pipe 26b.
A pressure regulating valve 28 is provided at b.

したがつて、この流体供給機構20によれば、
吐出管26から供給管26a更に流入孔27を経
て副密封室16に流体が供給されると共に、余剰
の流体は還流管26bから水源25へ還流される
から、供給ポンプ23が吐出圧一定で運転されて
いることと相俟つて、副密封室16内の流体圧が
一定圧に維持される。そして、圧力調整弁28を
操作して還流管26bへ流れ込む流体の圧力を調
整させることによつて、前記副密封室16内の流
体圧を増減調節できるのである。
Therefore, according to this fluid supply mechanism 20,
Fluid is supplied from the discharge pipe 26 to the sub-sealed chamber 16 via the supply pipe 26a and the inflow hole 27, and excess fluid is returned to the water source 25 from the reflux pipe 26b, so the supply pump 23 is operated at a constant discharge pressure. In conjunction with this, the fluid pressure within the sub-sealed chamber 16 is maintained at a constant pressure. By operating the pressure regulating valve 28 to adjust the pressure of the fluid flowing into the reflux pipe 26b, the fluid pressure within the sub-sealed chamber 16 can be increased or decreased.

また、前記温度検出器21は、密封端面9の極
く近傍に位置する静止密封環4部分に熱電対29
を設け、この熱電対29を温度指示計30に接続
して構成されており、密封端面9の温度を検出し
うるようになされている。
The temperature detector 21 also includes a thermocouple 29 mounted on a portion of the stationary sealing ring 4 located very close to the sealing end face 9.
The thermocouple 29 is connected to a temperature indicator 30 so that the temperature of the sealed end surface 9 can be detected.

さらに、前記制御機構22は、変換器31と差
圧発信器32と制御器33とから構成されてい
る。
Further, the control mechanism 22 includes a converter 31, a differential pressure transmitter 32, and a controller 33.

変換器31は、密封端面9の温度つまり前記温
度指示計30に指示された温度値が設定値以上の
ときは制御器33をON動作させ、設定値以下の
ときは制御器33をOFF動作させるように、制
御器33を温度検知器21で検出された温度値に
応じてON−OFF制御させるものである。なお、
前記設定値は、メカニカルシールの負荷条件等の
諸条件を勘案して決定しておくものであり、例え
ば密封端面9が焼付く等の異常事態が発生する前
段階での最高温度に設定しておくことができる。
The converter 31 turns on the controller 33 when the temperature of the sealed end face 9, that is, the temperature value indicated by the temperature indicator 30, is above a set value, and turns off the controller 33 when it is below the set value. Thus, the controller 33 is controlled to be turned on and off according to the temperature value detected by the temperature detector 21. In addition,
The set value is determined in consideration of various conditions such as the load condition of the mechanical seal, and is set to the maximum temperature before an abnormal situation occurs such as the sealing end face 9 seizing, for example. You can leave it there.

また、差圧発信器32は、前記連通孔15と供
給管26aとを連結する連結管34に介設されて
いて、両管15,26aの管内圧の差つまり前記
両密封室10,16内の流体圧の差を検出して、
その設定値データを制御器33に入力させるもの
である。
Further, the differential pressure transmitter 32 is interposed in a connecting pipe 34 that connects the communication hole 15 and the supply pipe 26a, and is connected to a connecting pipe 34 that connects the communication hole 15 and the supply pipe 26a. Detects the difference in fluid pressure between
The set value data is input to the controller 33.

そして、制御器33は、前記変換器31によつ
てON動作されると、差圧発信器32で逐次検出
される差圧値が設定値に近づくように、つまり両
密封室10,16の差圧が設定差圧となるよう
に、前記圧力調整弁28を調整制御して、副密封
室16内の流体圧を自動的に調整するものであ
る。なお、この設定差圧は、静止密封環4が副密
封室16内の流体によつて受ける軸線方向全圧力
から主密封室10内の流体によつて受ける軸線方
向全圧力(密封端面9が受ける全圧力を含む)を
差引いた全圧力つまり密封端面9に作用する負荷
力が最良の密封機能を発揮させるものとなるとき
の差圧に設定されている。
Then, when the converter 31 turns ON, the controller 33 controls the differential pressure value successively detected by the differential pressure transmitter 32 to approach the set value, that is, the difference between the two sealed chambers 10 and 16. The fluid pressure in the sub-sealed chamber 16 is automatically adjusted by adjusting and controlling the pressure regulating valve 28 so that the pressure becomes a set differential pressure. Note that this set differential pressure is calculated from the total axial pressure that the stationary seal ring 4 receives from the fluid in the sub-sealed chamber 16 to the total axial pressure that the stationary seal ring 4 receives from the fluid in the main sealed chamber 10 (that the seal end surface 9 receives). The total pressure (including the total pressure) is subtracted, that is, the differential pressure is set at which the load force acting on the sealing end face 9 exhibits the best sealing function.

次に、本考案に係る負荷調整装置の作用を、上
記実施例について説明する。
Next, the operation of the load adjustment device according to the present invention will be explained with reference to the above embodiment.

密封端面9に作用する負荷力が許容範囲内であ
り、密封端面9の潤滑状態が安定しているとき
は、密封端面9の温度は多少の変動はあるにして
も安定している。
When the load force acting on the sealed end face 9 is within an allowable range and the lubrication state of the sealed end face 9 is stable, the temperature of the sealed end face 9 is stable even if there is some fluctuation.

したがつて、このような状態では、温度検知器
21で検出された温度値が設定値以下となつて、
制御機構22つまり制御器33はON動作され
ず、副密封室16内の流体圧はそのまゝ一定に保
持されることになる。
Therefore, in such a state, the temperature value detected by the temperature detector 21 becomes lower than the set value, and
The control mechanism 22, that is, the controller 33 is not turned on, and the fluid pressure in the sub-sealed chamber 16 is maintained constant.

しかし、例えば、ポンプの運転条件の変化等に
より主密封室10内の流体圧が大巾に減少して密
封端面9に過負荷が作用したり、密封端面9の冷
却条件が悪化したり、(例えば流入孔13から主
密封室10への流体の供給が大巾に減少したり或
いは停止したような場合等)したような場合に
は、密封端面9の温度が異常に上昇し、温度検出
器21で検出された温度値が設定値以上となる。
However, for example, due to a change in the operating conditions of the pump, the fluid pressure in the main sealed chamber 10 decreases significantly, causing overload to act on the sealed end surface 9, or the cooling conditions of the sealed end surface 9 worsening. For example, if the supply of fluid from the inflow hole 13 to the main sealed chamber 10 is drastically reduced or stopped, the temperature of the sealed end surface 9 will rise abnormally, and the temperature detector The temperature value detected in step 21 becomes equal to or higher than the set value.

このように、密封端面9の温度が設定温度以上
になると、変換器31により制御器33がON動
作されて、この制御器33によつて圧力調整弁2
8の調整制御が開始される。
In this way, when the temperature of the sealed end surface 9 becomes equal to or higher than the set temperature, the controller 33 is turned on by the converter 31, and the pressure regulating valve 2 is turned on by the controller 33.
8 adjustment control is started.

そして、この調整制御は差圧発信器32により
入力されてくる差圧値が設定値となるまで、つま
り両密封室10,16の差圧が設定差圧に調整さ
れるまで行われる。
This adjustment control is performed until the differential pressure value input by the differential pressure transmitter 32 reaches the set value, that is, until the differential pressure between the sealed chambers 10 and 16 is adjusted to the set differential pressure.

このようにして両密封室10,16の差圧が設
定差圧となるよう副密封室16内の流体圧が調整
されると、密封端面9には適正な負荷力が作用す
るようになり、密封端面9の潤滑が良好に行われ
て焼付き等の異常事態の発生が未然に防止され、
良好な密封機能が維持されるに至る。
In this way, when the fluid pressure in the sub-sealed chamber 16 is adjusted so that the differential pressure between the two sealed chambers 10 and 16 becomes the set differential pressure, an appropriate load force will be applied to the sealed end surface 9. The sealed end face 9 is well lubricated, and abnormal situations such as seizure are prevented from occurring.
Good sealing function is maintained.

かゝる良好な密封状態に復帰されると、密封端
面9の温度が下降し始め、設定温度以下にまで下
降すると、変換器31により制御器33がOFF
動作されて前記圧力調整弁28の調整制御は停止
され、副密封室16内の圧力は一定に保たれるこ
とになる。
When such a good sealing state is restored, the temperature of the sealed end face 9 begins to drop, and when it falls below the set temperature, the converter 31 turns off the controller 33.
Once activated, the adjustment control of the pressure regulating valve 28 is stopped, and the pressure within the sub-sealed chamber 16 is kept constant.

なお、本考案に係る負荷調整装置は前記実施例
に限定されるものではないこと勿論であり、例え
ば、前記実施例においては、密封端面9に作用す
る負荷力が過大となつた場合において、密封端面
9の温度が上昇する点に着目して、この温度上昇
を検知して負荷力を減少調整させるようにした
が、逆に負荷力が過少となつて密封端面9からの
漏洩量が潤滑の程度を超えた場合においても、負
荷力を増加調整させるようにしておくことも可能
である。
It should be noted that the load adjustment device according to the present invention is of course not limited to the above embodiment. For example, in the above embodiment, when the load force acting on the sealing end face 9 becomes excessive, the sealing Focusing on the point where the temperature of the end face 9 rises, this temperature rise is detected and the load force is reduced and adjusted, but on the other hand, the load force becomes too small and the amount of leakage from the sealed end face 9 becomes insufficient for lubrication. It is also possible to increase the load force even if the load force exceeds the limit.

すなわち、上記したような漏洩状態になると、
密封端面9の温度は適正な潤滑が行われている状
態におけるよりも顕著に低下するから、温度検出
器21により検出された温度値が設定範囲つまり
密封端面9の負荷力及び潤滑状態が適正であると
きの密封端面9の温度範囲内にあるときは、制御
器33がON動作されないが、前記温度値が前記
設定範囲以上若しくは以下となつたときは、変換
器31によつて制御器33がON動作されるよう
にしておけばよいのである。
In other words, when a leak occurs as described above,
Since the temperature of the sealed end face 9 is significantly lower than that under proper lubrication, the temperature value detected by the temperature sensor 21 is within the set range, that is, the load force and lubrication state of the sealed end face 9 are appropriate. When the temperature of the sealed end face 9 is within the temperature range at a certain time, the controller 33 is not turned on, but when the temperature value is above or below the set range, the converter 31 turns on the controller 33. All you have to do is set it to ON.

このようにしておけば、密封端面9の負荷力が
過大或いは過小の何れかになつたときにも、密封
端面9の温度検知により負荷力を適正な負荷力に
なるよう増加調整或いは減少調整して、密封機能
を良好に維持させておくことができる。
By doing this, even if the load force on the sealed end face 9 becomes either too high or too low, the temperature of the sealed end face 9 can be detected to increase or decrease the load force to the appropriate load force. Thus, the sealing function can be maintained well.

また、前記流体供給機構20において、圧力調
整弁28を設けることなく、供給ポンプ23の回
転数を増減させることによつて吐出圧を調節し、
これによつて副密封室16内の流体圧を増減調節
するようにしておいてもよい。この場合、制御機
構22によつて供給ポンプ32の回転数制御を行
うようにする。
Further, in the fluid supply mechanism 20, the discharge pressure is adjusted by increasing or decreasing the rotation speed of the supply pump 23 without providing the pressure regulating valve 28,
The fluid pressure within the sub-sealed chamber 16 may be increased or decreased by this. In this case, the control mechanism 22 controls the rotation speed of the supply pump 32.

さらに、制御機構22は、前記実施例の如く全
自動的なものとせず、一部又は全部を手動的なも
のとしておいてもよい。例えば、温度検出器21
の温度指示計30を単なる温度計に代えておいた
上、変換器31を廃しておき、前記温度計により
密封端面9の温度を視認検知して、制御器33を
人為的にON−OFF操作させるようにしてもよ
い。さらに、制御器33も廃しておき、且つ差圧
発信器32に代えて連結管34に差圧検知計を介
設しておき、この差圧検知計及び前記温度計を視
認検知しながら圧力調整弁28を人為的に操作さ
せるようにしてもよい。
Further, the control mechanism 22 may not be fully automatic as in the embodiment described above, but may be partially or entirely manual. For example, temperature sensor 21
In addition to replacing the temperature indicator 30 with a simple thermometer and eliminating the converter 31, the temperature of the sealed end face 9 is visually detected by the thermometer, and the controller 33 is artificially turned on and off. You may also do so. Furthermore, the controller 33 is also eliminated, and a differential pressure detector is installed in the connecting pipe 34 instead of the differential pressure transmitter 32, and the pressure is adjusted while visually detecting the differential pressure detector and the thermometer. The valve 28 may also be manually operated.

なお、前記した流体供給機構20及び温度検出
器21並びに制御機構22の各構成機器は、何れ
も従来公知のものである。
The components of the fluid supply mechanism 20, temperature detector 21, and control mechanism 22 described above are all conventionally known.

また本考案に係る負荷調整装置は、前記実施例
の如くポンプに付設されたメカニカルシールに適
用されるばかりでなく、他のあらゆる回転機器等
に付設されたメカニカルシールに適用できること
勿論であり、さらに前記実施例における、一方の
密封環3を回転させ他方の密封環4を静止させる
形式のメカニカルシールにも適用できるものであ
る。また、副密封室16は、前記実施例の如くO
リングパツキン17,18で密封形成せず、金属
ベローズ等を用いて形成することも可能である。
Furthermore, the load adjustment device according to the present invention can be applied not only to mechanical seals attached to pumps as in the above embodiments, but also to mechanical seals attached to all kinds of rotating equipment. The present invention can also be applied to the mechanical seal of the type in which one sealing ring 3 is rotated and the other sealing ring 4 is stationary in the above embodiment. Further, the sub-sealed chamber 16 has an O
Instead of sealing with the ring packings 17 and 18, it is also possible to use a metal bellows or the like.

何れにしても、以上の説明からも明らかなよう
に、本考案のメカニカルシールの負荷調整装置に
よれば、密封状態の異変を密封端面の温度検知に
よつて予知でき、しかも副密封室内の流体圧を調
整可能として、密封端面に作用する負荷力を外部
から調整できるから、冒頭に述べた如き異常事態
の発生を未然に防止して、メカニカルシールの寿
命を大巾に向上させながら、長期に亘つて良好な
密封機能を維持させることができる。
In any case, as is clear from the above explanation, according to the mechanical seal load adjustment device of the present invention, abnormalities in the sealing state can be predicted by detecting the temperature of the sealing end face, and the fluid inside the sub-sealing chamber Since the pressure can be adjusted and the load force acting on the sealed end face can be adjusted from the outside, it is possible to prevent the occurrence of the abnormal situation mentioned at the beginning, greatly extending the life of the mechanical seal and ensuring long-term use. A good sealing function can be maintained throughout.

しかも、主密封室つまり密封流体側の圧力変動
を大きな範囲で許容し得て、メカニカルシールの
使用限界を大巾に拡張することが可能となる。
Moreover, pressure fluctuations in the main sealed chamber, that is, on the sealed fluid side, can be tolerated over a wide range, making it possible to greatly extend the usage limits of the mechanical seal.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本考案に係るメカニカルシールの負荷調整
装置の一実施例を示す概略縦断面図である。 3…回転密封環、4…静止密封管、9…密封端
面、10…主密封室、16…副密封室、20…流
体供給機構、21…温度検出器、22…制御機
構。
The figure is a schematic vertical sectional view showing an embodiment of a mechanical seal load adjustment device according to the present invention. 3... Rotating sealed ring, 4... Stationary sealed tube, 9... Sealed end face, 10... Main sealed chamber, 16... Sub-sealed chamber, 20... Fluid supply mechanism, 21... Temperature detector, 22... Control mechanism.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 静止密封環と回転密封環との密封端面に臨んで
密封流体側に連らなる主密封室を形成し、前記密
封端面に負荷力を作用させる前記何れか一方の密
封環の背面側に臨ませて、前記主密封室とは独立
した副密封室を形成してあり、さらに該副密封室
内へ流体を供給し且つその流体圧を変更可能とす
る流体供給機構を設け、前記密封端面の温度を検
出する温度検出器を設けると共に、該温度検出器
で検出された温度値に応じて、前記両密封室内の
流体圧の差を設定差圧に調整すべく前記流体供給
機構を制御させる制御機構を設けたことを特徴と
する、メカニカルシールの負荷調整装置。
A main sealed chamber facing the sealed end faces of the stationary sealing ring and the rotating sealing ring and connected to the sealed fluid side, and facing the back side of one of the sealing rings that applies a load force to the sealed end face. A sub-sealed chamber is formed independent of the main sealed chamber, and a fluid supply mechanism is provided for supplying fluid into the sub-sealed chamber and changing the fluid pressure, thereby controlling the temperature of the sealed end surface. A control mechanism is provided that includes a temperature detector for detecting the temperature, and controls the fluid supply mechanism in accordance with the temperature value detected by the temperature detector to adjust the difference between the fluid pressures in the two sealed chambers to a set differential pressure. A mechanical seal load adjustment device characterized by the following:
JP13679981U 1981-09-14 1981-09-14 Mechanical seal load adjustment device Granted JPS5842455U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13679981U JPS5842455U (en) 1981-09-14 1981-09-14 Mechanical seal load adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13679981U JPS5842455U (en) 1981-09-14 1981-09-14 Mechanical seal load adjustment device

Publications (2)

Publication Number Publication Date
JPS5842455U JPS5842455U (en) 1983-03-22
JPS6146288Y2 true JPS6146288Y2 (en) 1986-12-26

Family

ID=29930108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13679981U Granted JPS5842455U (en) 1981-09-14 1981-09-14 Mechanical seal load adjustment device

Country Status (1)

Country Link
JP (1) JPS5842455U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5105313B2 (en) * 2008-09-25 2012-12-26 日立工機株式会社 centrifuge
JP6104820B2 (en) * 2012-06-13 2017-03-29 イーグル工業株式会社 Failure predictive mechanical seal system for sealing high temperature sealed fluid

Also Published As

Publication number Publication date
JPS5842455U (en) 1983-03-22

Similar Documents

Publication Publication Date Title
US5694975A (en) Pressure regulator
EP2188555B1 (en) Metal sealing disk having an elastomeric backing for use with fluid regulators
RU2479862C2 (en) Measuring tube for gas regulator with function of pressure averaging
RU2500956C2 (en) Valve with function δp (pressure difference) and flow limitation function
CN105135014A (en) Internal relief valve apparatus for use with loading regulators
US5113898A (en) Valve assembly for fluid pressure regulation
WO2009067434A1 (en) Pump suction pressure limiting speed control and related pump driver and sprinkler system
US6843266B2 (en) Regulator with erosion resistant seal assemblies
WO1983002488A1 (en) Pressure control valve and oil supply device using said valve
JPS6146288Y2 (en)
US2541395A (en) Pressure relief valve
WO2017070277A1 (en) Pressure regulating device having a variable travel stop
US20030122323A1 (en) Seal support systems-automatic re-fill device
US4540221A (en) Self regulating hydrostatic pad bearings
US3811792A (en) Automatic pressure control system for pumps
NO20140105A1 (en) REGULATORS WITH ISOLATED FILLING ROOMS AND EQUIPMENT FOR EXHAUST PROTECTION
US4285465A (en) Thermostatic devices
US3160332A (en) Automatic pressure relief valve
US4087986A (en) Control valve
US4283009A (en) Control valve for fluid-operated clutch
US559881A (en) Automatic relief-valve
JPS6146287Y2 (en)
US2854187A (en) System for unloading compressors
EP0187059B1 (en) Variable friction secondary seal for face seals
EP0472287B1 (en) Mechanical face seals