JPS6146287Y2 - - Google Patents

Info

Publication number
JPS6146287Y2
JPS6146287Y2 JP13679881U JP13679881U JPS6146287Y2 JP S6146287 Y2 JPS6146287 Y2 JP S6146287Y2 JP 13679881 U JP13679881 U JP 13679881U JP 13679881 U JP13679881 U JP 13679881U JP S6146287 Y2 JPS6146287 Y2 JP S6146287Y2
Authority
JP
Japan
Prior art keywords
pressure
sealed chamber
sub
sealed
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13679881U
Other languages
Japanese (ja)
Other versions
JPS5842454U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13679881U priority Critical patent/JPS5842454U/en
Publication of JPS5842454U publication Critical patent/JPS5842454U/en
Application granted granted Critical
Publication of JPS6146287Y2 publication Critical patent/JPS6146287Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mechanical Sealing (AREA)

Description

【考案の詳細な説明】 本考案は、メカニカルシールの漏洩防止装置に
関するものである。
[Detailed Description of the Invention] The present invention relates to a leakage prevention device for a mechanical seal.

従来のメカニカルシールにあつて、密封負荷
が、メカニカルシールの設計諸元及びこれが付設
されるポンプ等の回転機器の条件によつて固定的
に決定されること周知の通りであり、密封状況の
変化を予知し且つ密封端面に作用する負荷力を外
部から調整することは事実上不可能に近い。
As is well known, for conventional mechanical seals, the sealing load is fixedly determined by the design specifications of the mechanical seal and the conditions of the rotating equipment such as the pump to which it is attached. It is virtually impossible to predict this and adjust the load force acting on the sealed end face from the outside.

したがつて、密封端面に作用する負荷力が、回
転機器の運転条件の変化等により激減して、密封
端面から流体が多量に漏洩し、メカニカルシール
がその密封機能を何ら果たし得ない状態となつた
ときにも、これを未然に防止し得ないのが実情で
あつた。
Therefore, the load force acting on the sealed end face is drastically reduced due to changes in the operating conditions of the rotating equipment, etc., and a large amount of fluid leaks from the sealed end face, resulting in a state in which the mechanical seal is unable to perform its sealing function at all. The reality is that even when it happens, it is impossible to prevent it from happening.

本考案は、上記の実情に鑑みてなされたもの
で、密封端面から漏洩する流体量が密封機能を果
たし得ない程度に多量となつたとき、これを事前
に検知して密封負荷を外部から調整し、もつてメ
カニカルシールの密封機能を良好に維持させるよ
う工夫された、新規なメカニカルシールの漏洩防
止装置を提供するものである。
This invention was developed in view of the above-mentioned circumstances. When the amount of fluid leaking from the sealed end surface becomes too large to perform the sealing function, this invention is detected in advance and the sealing load is adjusted externally. In addition, the present invention provides a novel leakage prevention device for a mechanical seal that is devised to maintain the sealing function of the mechanical seal well.

次に、その実施例を図について説明する。この
実施例は、本考案をポンプに付設されたメカニカ
ルシールに適用した例に関するものである。
Next, an example thereof will be explained with reference to the drawings. This embodiment relates to an example in which the present invention is applied to a mechanical seal attached to a pump.

図において、1はシールハウジング、2はポン
プ室から延出してシールハウジング1内を洞貫す
る羽根軸たる回転軸、3及び4はシールハウジン
グ1内に夫々配設された回転密封環及び静止密封
環である。回転密封環3は回転軸2に嵌着固定さ
れており、静止密封環4は、回転軸2に外嵌せる
スリーブ5に軸線方向移動自在に外嵌状に支持さ
れていると共に、シールハウジング1に取着せる
シールケース6との間に介設された圧縮コイルス
プリング7でもつて前記回転環3に押圧付勢され
ている。なお、8は回転軸2に螺着されたナツト
である。
In the figure, 1 is a seal housing, 2 is a rotary shaft extending from the pump chamber and penetrating through the seal housing 1, and 3 and 4 are rotating seal rings and stationary seals disposed in the seal housing 1, respectively. It is a ring. The rotating sealing ring 3 is fitted and fixed to the rotating shaft 2, and the stationary sealing ring 4 is supported by a sleeve 5 that is fitted onto the rotating shaft 2 so as to be movable in the axial direction. The rotary ring 3 is also biased by a compression coil spring 7 interposed between the rotary ring 3 and a seal case 6 attached to the rotary ring 3. Note that 8 is a nut screwed onto the rotating shaft 2.

そして、前記シールハウジング1内には、回転
密封環3と静止密封環4との密封端面9に臨ませ
て主密封室10が形成されている。この主密封室
10は、シールハウジング1と回転軸2との間に
形成された連通路11を介して、ポンプ室の吸込
側たる密封流体側12に連通せしめられている。
また、前記密封端面9に略対向するシールハウジ
ング1部分には、ポンプの高圧源例えば吐出口1
4に連通管15を介して連通接続され且つ主密封
室10内に開口する流入孔13を形成してあつ
て、吐出口14から連通管15更に流入孔13を
経て主密封室10内に供給された流体が低圧側た
る密封流体側12へ流出されるようになされてお
り、この間において、前記密封端面9が冷却され
るよう工夫されている。
A main sealed chamber 10 is formed in the seal housing 1 so as to face the sealed end surfaces 9 of the rotating sealing ring 3 and the stationary sealing ring 4. This main sealed chamber 10 is communicated with a sealed fluid side 12, which is the suction side of the pump chamber, via a communication passage 11 formed between the seal housing 1 and the rotating shaft 2.
Further, in a portion of the seal housing 1 that substantially opposes the sealed end surface 9, a high pressure source of the pump, such as a discharge port 1, is provided.
4 is connected to the main sealed chamber 10 through a communicating pipe 15 and has an inflow hole 13 that opens into the main sealed chamber 10 . The fluid thus released is discharged to a sealing fluid side 12 which is a low pressure side, and the sealing end face 9 is cooled during this time.

また、前記両密封環3,4のうち密封端面9に
負荷力を作用させる側の密封環、つまり静止密封
環4の背面側に臨ませて、前記主密封室10とは
独立した第1副密封室16が形成されている。す
なわち、この第1副密封室16は、静止密封環4
とシールハウジング1及びシールケース6との間
をOリングパツキン17及び18でもつてシール
することによつて、シールハウジング1及び静止
密封環4並びにシールケース6で囲繞された密封
空間として形成されており、後述の流体供給機構
29によつて所定圧の流体が供給されるものであ
る。
Also, a first sub-sealing ring, which is independent of the main sealed chamber 10, is provided facing the back side of the sealing ring on the side that applies a load force to the sealing end face 9, that is, the stationary sealing ring 4, among the two sealing rings 3, 4. A sealed chamber 16 is formed. That is, this first sub-sealed chamber 16 is connected to the stationary sealing ring 4
A sealed space surrounded by the seal housing 1, stationary seal ring 4, and seal case 6 is formed by sealing between the seal housing 1 and the seal case 6 using O-ring packings 17 and 18. , a fluid at a predetermined pressure is supplied by a fluid supply mechanism 29, which will be described later.

したがつて、両密封室10,16内に作用する
流体圧によつて密封端面9に所定の負荷力が作用
せしめられ、これによつて密封流体側12が大気
側19から密封されるようになされている。な
お、この密封状態においては、主密封室10内の
流体によつて密封端面9が潤滑せしめられる。
Therefore, the fluid pressure acting in both sealed chambers 10 and 16 causes a predetermined load force to be applied to the sealed end face 9, thereby sealing the sealed fluid side 12 from the atmospheric side 19. being done. In this sealed state, the fluid in the main sealed chamber 10 lubricates the sealed end surface 9.

また、前記静止密封環4とスリーブ5との間に
形成された間隙部分たる漏洩通路23に連らな
る、スリーブ5とシールケース6との間には、前
記両密封室10,16とは独立した第2副密封室
24が形成されていて、前記密封端面9から漏洩
せる流体は前記漏洩通路23を経て第2副密封室
24内に導かれるようになされている。なお、2
5はスリーブ5とシールケース6との間に介設さ
れたメカニカルシールで、シールケース6に取着
せる静止密封環26とスリーブ5に摺動自在に外
嵌されて圧縮コイルスプリング27により静止密
封環26に押圧付勢された回転密封環28とから
構成されており、第2副密封室24を大気側19
から密封するものである。
Furthermore, there is a space between the sleeve 5 and the seal case 6 that is connected to the leak passage 23 which is a gap formed between the stationary seal ring 4 and the sleeve 5, and is independent of both the sealed chambers 10 and 16. A second sub-sealed chamber 24 is formed, and fluid leaking from the sealed end face 9 is guided into the second sub-sealed chamber 24 through the leak passage 23. In addition, 2
Reference numeral 5 denotes a mechanical seal interposed between the sleeve 5 and the seal case 6. The stationary seal ring 26 is attached to the seal case 6, and the stationary seal ring is slidably fitted onto the sleeve 5 and is connected to the stationary seal ring by a compression coil spring 27. 26 and a rotary sealing ring 28 which is biased to press the second sub-sealed chamber 24 to the atmosphere side 19.
It is to be sealed from

さらに、前記第1副密封室16内に流体を供給
し且つその流体圧を調整可能とする流体供給機構
29、及び前記第2副密封室24内の圧力を検出
する圧力検出機構30、並びに第2副密封室24
内の圧力に応じて前記両密封室10,16内の流
体圧の差を設定差圧に調整すべく前記流体供給機
構を制御させる制御機構31が夫々設けられてい
るので、まず流体供給機構29について説明す
る。
Further, a fluid supply mechanism 29 that supplies fluid into the first sub-sealed chamber 16 and can adjust the fluid pressure, a pressure detection mechanism 30 that detects the pressure within the second sub-sealed chamber 24, and a 2 sub-sealed chamber 24
First, the fluid supply mechanism 29 is provided with a control mechanism 31 that controls the fluid supply mechanism to adjust the difference between the fluid pressures in the sealed chambers 10 and 16 to a set differential pressure according to the pressure inside the sealed chambers 10 and 16. I will explain about it.

すなわち、常時吐出圧を一定とすべく運転され
る、当該メカニカルシールが付設されたポンプと
は別の供給ポンプ32を設け、この供給ポンプ3
2の吸込管33を適宜の水源34に導いてあると
共に、その吐出管35を分岐させて、一方の分岐
管たる供給管35aを、シールハウジング1に形
成されて前記副密封室16に開口する流入孔36
に接続し、且つ他方の分岐管たる還流管35bを
前記水源34に導いてあり、さらに該還流管35
bに圧力調整弁37を介設してある。
That is, a supply pump 32 separate from the pump to which the mechanical seal is attached, which is operated to keep the discharge pressure constant at all times, is provided, and this supply pump 3
The second suction pipe 33 is led to a suitable water source 34, and the discharge pipe 35 is branched, and one branch pipe, a supply pipe 35a, is formed in the seal housing 1 and opens into the sub-sealed chamber 16. Inflow hole 36
The reflux pipe 35b, which is the other branch pipe, is connected to the water source 34, and the reflux pipe 35b is connected to the water source .
A pressure regulating valve 37 is provided at b.

したがつて、この流体供給機構29によれば、
吐出管35から供給管35b更に流入孔36を経
て副密封室16に流体が供給されると共に、余剰
の流体は還流管35bから水源34へ還流される
から、供給ポンプ31が吐出圧一定で運転されて
いることと相俟つて、副密封室16内の流体圧が
一定圧に維持される。そして、圧力調整弁37を
操作して還流管35bへ流れ込む流体の圧力を調
整させることによつて、前記副密封室16内の流
体圧を増減調整できるのである。
Therefore, according to this fluid supply mechanism 29,
Fluid is supplied from the discharge pipe 35 to the sub-sealed chamber 16 via the supply pipe 35b and the inflow hole 36, and surplus fluid is returned to the water source 34 from the reflux pipe 35b, so the supply pump 31 is operated at a constant discharge pressure. In conjunction with this, the fluid pressure within the sub-sealed chamber 16 is maintained at a constant pressure. By operating the pressure regulating valve 37 to adjust the pressure of the fluid flowing into the reflux pipe 35b, the fluid pressure within the sub-sealed chamber 16 can be increased or decreased.

また、前記圧力検出機構30は、第2副密封室
24に、シールケース6に形成せる連通路38を
介して圧力タンク39を連設し、該圧力タンク3
9に安全弁40を備えた圧力スイツチ41を付設
して、密封端面9から流出する流体量を圧力で検
出するように構成されている。
Further, the pressure detection mechanism 30 includes a pressure tank 39 connected to the second sub-sealed chamber 24 via a communication path 38 formed in the seal case 6.
A pressure switch 41 equipped with a safety valve 40 is attached to 9, and the amount of fluid flowing out from the sealed end face 9 is detected by pressure.

すなわち、圧力タンク39には、密封端面9か
ら漏洩する流体量が所定の許容範囲内である適正
な潤滑状態においては、密封端面9から第2副密
封室24に流入せる流体量に相当する量だけ圧力
タンク39の流体を適宜の排出槽例えば前記水源
34へ排出させるオリフイス42が付設されてい
る。したがつて、このオリフイス42により、圧
力タンク39内の水位つまり第2副密封室24内
の圧力たる圧力タンク39内の圧力が所定の設定
圧に保持されるようになつている。なお、この設
定圧は主密封室10内の圧力より適宜量低く設定
されており、前記メカニカルシール25は、この
設定圧では勿論それ以上の圧力下においても充分
良好な密封機能を発揮しうるよう構成されてい
る。
That is, in a proper lubrication state in which the amount of fluid leaking from the sealed end face 9 is within a predetermined allowable range, the pressure tank 39 contains an amount corresponding to the amount of fluid that can flow into the second sub-sealed chamber 24 from the sealed end face 9. An orifice 42 is provided for discharging the fluid in the pressure tank 39 to a suitable discharge tank, such as the water source 34. Therefore, the orifice 42 maintains the water level in the pressure tank 39, that is, the pressure in the pressure tank 39, which is the pressure in the second sub-sealed chamber 24, at a predetermined set pressure. Note that this set pressure is set to be an appropriate amount lower than the pressure inside the main sealed chamber 10, and the mechanical seal 25 is designed so that it can exhibit a sufficiently good sealing function not only at this set pressure but also under higher pressures. It is configured.

そして、前記圧力スイツチ41は、密封端面9
から漏洩量が許容範囲(適正な潤滑が行われてい
るときの漏洩量の範囲)内にある状態、つまり圧
力タンク39内の圧力が設定圧に保持されている
状態では、OFF状態に保持されており、前記漏
洩量が許容範囲を超え、圧力タンク39内の水位
つまり圧力が前記設定圧を超えるとON作動され
るように構成されたものである。
The pressure switch 41 has a sealed end face 9
When the amount of leakage is within the allowable range (the range of leakage amount when proper lubrication is performed), that is, when the pressure in the pressure tank 39 is maintained at the set pressure, it is held in the OFF state. It is configured to be turned on when the amount of leakage exceeds the allowable range and the water level, that is, the pressure in the pressure tank 39 exceeds the set pressure.

したがつて、この圧力検出機構30は、密封端
面9から漏洩する流体量が許容範囲を超えている
か否かを、圧力タンク39内の圧力で検出すべく
圧力スイツチ41をON−OFF作動させるもので
ある。
Therefore, this pressure detection mechanism 30 operates the pressure switch 41 on and off in order to detect whether the amount of fluid leaking from the sealed end face 9 exceeds the permissible range based on the pressure inside the pressure tank 39. It is.

さらに、前記制御機構31は、差圧発信器43
と制御器44と構成されている。差圧発信器43
は、前記連通管15と供給管35aとを連結する
連結管45に介設されていて、両管15,35a
の管内圧の差つまり前記両密封室10,16内の
流体圧の差を検出して、その差圧値データを制御
器44に入力させるものである。
Furthermore, the control mechanism 31 includes a differential pressure transmitter 43
and a controller 44. Differential pressure transmitter 43
is interposed in a connecting pipe 45 that connects the communication pipe 15 and the supply pipe 35a, and both pipes 15, 35a are connected to each other.
The difference in the pressure inside the pipe, that is, the difference in the fluid pressure in both the sealed chambers 10 and 16 is detected, and the differential pressure value data is inputted to the controller 44.

そして、制御器44は、前記圧力スイツチ41
のON−OFFによつてON−OFF制御され、ON作
動されると、差圧発信器43で逐次検出される差
圧値が設定値に近づくように、つまり両密封室1
0,16の差圧が設定差圧となるように、前記圧
力調整弁37を調整制御して、第1副密封室16
内の流体圧を自動的に調整するものである。な
お、この設定差圧は、静止密封環4が第1副密封
室16内の流体によつて受ける軸線方向全圧力か
ら主密封室10内の流体によつて受ける軸線方向
全圧力(密封端面9が受ける全圧力を含む)を差
引いた全圧力つまり密封端面9に作用する負荷力
が最良の密封機能を発揮させるものとなるときの
差圧に設定されている。
Then, the controller 44 controls the pressure switch 41
ON-OFF control is performed by the ON-OFF of
The pressure regulating valve 37 is adjusted and controlled so that the differential pressure of 0 and 16 becomes the set differential pressure, and the first sub-sealed chamber 16
It automatically adjusts the fluid pressure inside the tank. Note that this set differential pressure is calculated from the total axial pressure that the stationary seal ring 4 receives from the fluid in the first sub-sealed chamber 16 to the total axial pressure that the stationary seal ring 4 receives from the fluid in the main sealed chamber 10 (sealed end surface 9 The differential pressure is set at which the total pressure (including the total pressure applied to the seal), that is, the load force acting on the sealing end face 9 exhibits the best sealing function.

次に、本考案に係る漏洩防止装置の作用を、上
記実施例について説明する。
Next, the operation of the leakage prevention device according to the present invention will be explained with reference to the above embodiment.

密封端面9に作用する負荷力が適正であり、密
封端面9の潤滑が適正に行われている密封状態に
あつては、密封端面9から漏洩する流体量が許容
範囲内にあるから、密封端面9から第2副密封室
24内に流入する流体量が相当する量だけ、圧力
タンク39内の流体がオリフイス42から排出さ
れ、第2副密封室24つまり圧力タンク39内の
圧力は設定圧に保持されており、圧力スイツチ4
1はOFF状態に保持されている。
In a sealed state in which the load force acting on the sealed end face 9 is appropriate and the sealed end face 9 is properly lubricated, the amount of fluid leaking from the sealed end face 9 is within the permissible range. The fluid in the pressure tank 39 is discharged from the orifice 42 by an amount corresponding to the amount of fluid flowing into the second sub-sealed chamber 24 from the second sub-sealed chamber 9, and the pressure in the second sub-sealed chamber 24, that is, the pressure tank 39, reaches the set pressure. is held and pressure switch 4
1 is kept in the OFF state.

しかし、例えば、ポンプの運転条件の変化等に
より主密封室10内の流体圧が増加して密封端面
9に作用する負荷力が許容負荷力以下に減少する
と、密封機能が損われ、密封端面9からは許容範
囲を超えた量の流体が漏洩し始める。
However, if, for example, the fluid pressure in the main sealed chamber 10 increases due to changes in pump operating conditions and the load force acting on the sealed end face 9 decreases below the allowable load force, the sealing function is impaired and the sealed end face 9 An unacceptable amount of fluid begins to leak.

このような漏洩状態になると、オリフイス42
から排出される流体量が一定以上に増加しないこ
とから、圧力タンク39内の水位が上昇し、つま
り圧力タンク39内の圧力が設定圧以上に上昇し
て、圧力スイツチ41がON動作せしめられ、制
御器44が作動される。
In such a leakage state, the orifice 42
Since the amount of fluid discharged from the pressure tank 39 does not increase above a certain level, the water level in the pressure tank 39 rises, that is, the pressure in the pressure tank 39 rises above the set pressure, and the pressure switch 41 is turned on. Controller 44 is activated.

そして、差圧発信器43により入力されてくる
データに基づき、制御器44によつて圧力調整弁
37が調整制御されて、両密封室10,16間の
差圧が設定差圧となるよう、第1副密封室16内
の流体圧が調整される。
Then, based on the data inputted by the differential pressure transmitter 43, the pressure regulating valve 37 is adjusted and controlled by the controller 44 so that the differential pressure between the two sealed chambers 10 and 16 becomes the set differential pressure. The fluid pressure within the first sub-sealed chamber 16 is adjusted.

両密封室10,16間の差圧が設定差圧に調整
されると、密封端面9に作用する負荷力が適正に
増加調整されて、密封端面9からの大量漏洩が未
然に防止されて、密封端面9による良好な密封機
能が発揮されるようになる。
When the differential pressure between the sealed chambers 10 and 16 is adjusted to the set differential pressure, the load force acting on the sealed end face 9 is appropriately increased and adjusted, and a large amount of leakage from the sealed end face 9 is prevented. A good sealing function by the sealing end face 9 is now exhibited.

このような密封状態に復帰されると、密封端面
9からの漏洩量が許容範囲内となり、圧力タンク
39内の流体が徐々にオリフイス42から排出さ
れていき、圧力タンク39内の圧力は再び設定圧
に復帰され、圧力スイツチ41がOFF動作され
て制御器44の作動が停止されるのである。
When the sealed state is restored, the amount of leakage from the sealed end face 9 falls within the allowable range, the fluid in the pressure tank 39 is gradually discharged from the orifice 42, and the pressure in the pressure tank 39 is set again. The pressure is returned to normal, the pressure switch 41 is turned off, and the operation of the controller 44 is stopped.

したがつて、密封端面9からの漏洩量が潤滑の
程度を超えると、これを第2副密封室24の圧力
で検知して密封端面9の負荷力を適正ならしめる
べく調整することができるから、常に良好な密封
機能が維持されるのである。
Therefore, if the amount of leakage from the sealed end face 9 exceeds the level of lubrication, this can be detected by the pressure in the second sub-sealed chamber 24 and the load force on the sealed end face 9 can be adjusted to be appropriate. , a good sealing function is always maintained.

なお、本考案に係る漏洩防止装置は前記実施例
に限定されるものでなく、例えば、流体供給機構
29において、圧力調整弁37を設けることな
く、供給ポンプ32の回転数を増減することによ
つて吐出圧を調節し、これによつて第1副密封室
16内の流体圧を増減調節するようにしておいて
もよい。この場合、制御機構31によつて、供給
ポンプ32の回転数制御を行うようにする。
Note that the leakage prevention device according to the present invention is not limited to the above-mentioned embodiments. For example, the leakage prevention device according to the present invention is not limited to the above-mentioned embodiment. Alternatively, the discharge pressure may be adjusted, thereby increasing or decreasing the fluid pressure within the first sub-sealed chamber 16. In this case, the control mechanism 31 controls the rotation speed of the supply pump 32.

また、圧力検出機構30は、密封端面9からの
漏洩量を第2副密封室24の圧力で検出するもの
であるが、この圧力つまり圧力タンク39の圧力
を圧力スイツチ41で検出せず、例えば電極棒等
によつて圧力タンク39の水位で検出するように
してもよい。つまり圧力タンク39の水位の変動
に応じて制御機構31の制御器44をON−OFF
させるようにしてもよい。
Further, the pressure detection mechanism 30 detects the amount of leakage from the sealed end face 9 using the pressure in the second sub-sealed chamber 24, but this pressure, that is, the pressure in the pressure tank 39, is not detected by the pressure switch 41. The water level in the pressure tank 39 may be detected using an electrode rod or the like. In other words, the controller 44 of the control mechanism 31 is turned on and off in response to fluctuations in the water level of the pressure tank 39.
You may also do so.

さらに、制御機構31は、前記実施例の如く全
自動的なものとせず、一部又は全部を手動的なも
のとしておいてもよい。例えば、圧力検出機構3
0を、第2副密封室24(又は圧力タンク39)
にその内部圧を検知しうる圧力検知計を付設した
ものとしておき、この圧力検知計を視認検知して
前記制御器44を人為的にON−OFF操作させる
ようにしてもよい。或いは、制御器44を廃して
おき、且つ差圧発信器43に代えて連結管45に
差圧検知計を介設しておき、この差圧検知計及び
前記圧力検知計を視認検知しながら圧力調整弁3
7を人為的に操作するようにしてもよい。
Furthermore, the control mechanism 31 may not be fully automatic as in the embodiment described above, but may be partially or entirely manual. For example, pressure detection mechanism 3
0, the second sub-sealed chamber 24 (or pressure tank 39)
A pressure detector capable of detecting the internal pressure may be attached to the controller 44, and the controller 44 may be manually turned on and off by visually detecting the pressure detector. Alternatively, the controller 44 may be eliminated, and a differential pressure detector may be provided in the connecting pipe 45 in place of the differential pressure transmitter 43, and the pressure may be determined while visually detecting the differential pressure detector and the pressure detector. Adjustment valve 3
7 may be manipulated artificially.

なお、前記した流体供給機構29及び圧力検出
機構30並びに制御機構31の各構成機器は、何
れも従来公知のものである。
The components of the fluid supply mechanism 29, pressure detection mechanism 30, and control mechanism 31 described above are all conventionally known.

また本考案に係る漏洩防止装置は、前記実施例
の如くポンプに付設されたメカニカルシールに適
用されるばかりでなく、他のあらゆる回転機器等
に付設されたメカニカルシールに適用できること
勿論であり、さらに前記実施例における一方の密
封環3を回転させ他方の密封環4を静止させる形
式のメカニカルシールにも適用できるものであ
る。また、第1副密封室16は、前記実施例の如
くOリングパツキン17,18で密封形成せず、
金属ベローズ等を用いて形成することも可能であ
り、第2副密封室24も前記実施例の如く形成し
ておくものに限定されない。
Furthermore, the leakage prevention device according to the present invention can be applied not only to mechanical seals attached to pumps as in the above embodiments, but also to mechanical seals attached to all other rotating equipment. The present invention can also be applied to a mechanical seal of the type in which one sealing ring 3 is rotated and the other sealing ring 4 is stationary in the above embodiment. Further, the first sub-sealed chamber 16 is not sealed with O-ring gaskets 17 and 18 as in the previous embodiment;
It is also possible to form the second sub-sealed chamber 24 using a metal bellows or the like, and the second sub-sealed chamber 24 is not limited to being formed as in the above embodiment.

何れにしても、以上の説明からも明らかなよう
に、本考案のメカニカルシールの漏洩防止装置に
よれば、密封端面からの漏洩量が許容範囲を超え
ているか否かを、第2副密封室の圧力変動を検出
することによつて予知でき、しかも第1副密封室
内の流体圧を調整可能として、密封端面に作用す
る負荷力を外部から調整できるから、密封端面に
作用する負荷力が激減して密封端面からの漏洩量
が潤滑の程度を超えるような事態が発生したとき
には、直ちに前記負荷力を適正に調整し得て、密
封端面からの多量漏洩つまり密封機能が損われる
といつた異常事態の発生を未然に防止でき、メカ
ニカルシールによる良好な密封機能を長期に亘つ
て維持しうるのである。
In any case, as is clear from the above explanation, according to the mechanical seal leakage prevention device of the present invention, whether or not the amount of leakage from the sealed end face exceeds the permissible range is detected in the second sub-sealed chamber. This can be predicted by detecting pressure fluctuations in the sealed end surface, and by making it possible to adjust the fluid pressure in the first sub-sealed chamber, the load force acting on the sealed end surface can be adjusted from the outside, so the load force acting on the sealed end surface is drastically reduced. If a situation occurs in which the amount of leakage from the sealed end face exceeds the level of lubrication, the load force can be adjusted appropriately to prevent abnormalities such as a large amount of leakage from the sealed end face, which may impair the sealing function. It is possible to prevent such a situation from occurring, and the good sealing function of the mechanical seal can be maintained for a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本考案に係るメカニカルシールの漏洩防止
装置の一実施例を示した概略縦断面図である。 3…回転密封環、4…静止密封環、9…密封端
面、10…主密封室、12…密封流体側、16…
第1副密封室、24…第2副密封室、29…流体
供給機構、30…圧力検出機構、31…制御機
構。
The figure is a schematic longitudinal sectional view showing an embodiment of the mechanical seal leakage prevention device according to the present invention. 3... Rotating sealing ring, 4... Stationary sealing ring, 9... Sealing end surface, 10... Main sealed chamber, 12... Sealing fluid side, 16...
First sub-sealed chamber, 24... Second sub-sealed chamber, 29... Fluid supply mechanism, 30... Pressure detection mechanism, 31... Control mechanism.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 静止密封環と回転密封環との密封端面に臨んで
密封流体側に連らなる主密封室を形成し、前記密
封端面に負荷力を作用させる前記何れか一方の密
封環の背面側に臨ませて、前記主密封室とは独立
した第1副密封室を形成すると共に、前記主密封
室及び第1副密封室とは独立し且つ前記密封端面
から漏洩する流体が流入しうる第2副密封室を形
成してあり、さらに前記第1副密封室内へ流体を
供給し且つその流体圧を変更可能とする流体供給
機構を設け、前記密封端面からの漏洩量を前記第
2副密封室内の圧力で検出する圧力検出機構を設
け、該圧力検出機構で検出された第2副密封室内
の圧力に応じて、前記主密封室と第1副密封室内
の流体圧の差を設定差圧に調整すべく前記流体供
給機構を制御させる制御機構を設けたことを特徴
とする、メカニカルシールの漏洩防止装置。
A main sealed chamber facing the sealed end faces of the stationary sealing ring and the rotating sealing ring and connected to the sealed fluid side, and facing the back side of one of the sealing rings that applies a load force to the sealed end face. a second sub-sealed chamber, which forms a first sub-sealed chamber independent of the main sealed chamber, and a second sub-sealed chamber which is independent of the main sealed chamber and the first sub-sealed chamber and into which fluid leaking from the sealed end surface can flow; A fluid supply mechanism is provided to supply fluid into the first sub-sealed chamber and to change the fluid pressure, and the amount of leakage from the sealed end surface is determined by the pressure in the second sub-sealed chamber. A pressure detection mechanism is provided to detect the pressure in the second sub-sealed chamber, and the difference between the fluid pressures in the main sealed chamber and the first sub-sealed chamber is adjusted to a set differential pressure according to the pressure in the second sub-sealed chamber detected by the pressure detection mechanism. A leakage prevention device for a mechanical seal, characterized in that a control mechanism is provided to control the fluid supply mechanism.
JP13679881U 1981-09-14 1981-09-14 Mechanical seal leak prevention device Granted JPS5842454U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13679881U JPS5842454U (en) 1981-09-14 1981-09-14 Mechanical seal leak prevention device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13679881U JPS5842454U (en) 1981-09-14 1981-09-14 Mechanical seal leak prevention device

Publications (2)

Publication Number Publication Date
JPS5842454U JPS5842454U (en) 1983-03-22
JPS6146287Y2 true JPS6146287Y2 (en) 1986-12-26

Family

ID=29930107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13679881U Granted JPS5842454U (en) 1981-09-14 1981-09-14 Mechanical seal leak prevention device

Country Status (1)

Country Link
JP (1) JPS5842454U (en)

Also Published As

Publication number Publication date
JPS5842454U (en) 1983-03-22

Similar Documents

Publication Publication Date Title
US5348036A (en) Automatic control valve
US4694848A (en) Flow control valve
CN1054821C (en) Regulating device for use while ship's draught is changing
US5769427A (en) Dual seal with clean barrier fluid and dynamic pressure control
US4244392A (en) Backflow prevention apparatus
US4840195A (en) Piston-backed gas pressure regulator
KR20030015210A (en) Pilot operated relief valve
KR100194854B1 (en) Pilot Valves and Safety Relief Devices Containing the Same
US20090129935A1 (en) Pump suction pressure limiting speed control and related pump driver and sprinkler system
GB2333863A (en) Automatic regulating valve apparatus
US4186776A (en) Pulsation dampener or surge absorber
US5762102A (en) Pneumatically controlled no-bleed valve and variable pressure regulator
US5996606A (en) Four-port valve and three-way valve
US2541395A (en) Pressure relief valve
US4364408A (en) Backflow prevention apparatus
US5372157A (en) Automatic bypass valve
NO20140105A1 (en) REGULATORS WITH ISOLATED FILLING ROOMS AND EQUIPMENT FOR EXHAUST PROTECTION
JPS6146287Y2 (en)
US4880534A (en) Reverse osmosis water purification system with improved pressure relief valve
US4398558A (en) Safety valve for vacuum control circuits
US2674829A (en) Pressure regulator
JPS6146288Y2 (en)
US4516601A (en) Mining cylinder hydraulic slide valve
JPH1137317A (en) Ball valve
US4197867A (en) Relay indicator valve