JPS6145942A - Measuring method of ultrasonic temperature distribution and waveguide device for method - Google Patents

Measuring method of ultrasonic temperature distribution and waveguide device for method

Info

Publication number
JPS6145942A
JPS6145942A JP16763884A JP16763884A JPS6145942A JP S6145942 A JPS6145942 A JP S6145942A JP 16763884 A JP16763884 A JP 16763884A JP 16763884 A JP16763884 A JP 16763884A JP S6145942 A JPS6145942 A JP S6145942A
Authority
JP
Japan
Prior art keywords
temperature
waveguide
waveguides
time
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16763884A
Other languages
Japanese (ja)
Inventor
Fuminobu Takahashi
高橋 文信
Satoshi Ogura
聰 小倉
Masahiro Koike
正浩 小池
Kazunori Koga
古賀 和則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16763884A priority Critical patent/JPS6145942A/en
Publication of JPS6145942A publication Critical patent/JPS6145942A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
    • G01K11/24Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of the velocity of propagation of sound

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To measure a spatial temperature distribution by dividing a temperature measured area into (n) areas, coupling (n) kinds of materials which differ in rate of temperature variation in acoustic velocity directly with the respective areas, and arranging them in parallel and measuring the time of ultrasonic wave propagation between both waveguide ends. CONSTITUTION:A troidal core 21 is fed with electricity to generate plasma in a vacuum container 22, that is controlled stably, and its characteristics are analyzed by an experimental device 20. In this device, (n) waveguides W1-Wn having (n) kinds of metal arrayed in a matrix are stuck on the periphery of the coil 21. Ultrasonic waves are transmitted from transmitters X at one-terminal sidces of the respective waveguides W1-Wn and intervals of time up to reception by receivers R are measured by a time difference measuring instrument 10; and time differences are computed by a temperature distributin arithmetic unit 11 to display temperatures of the respective areas. Consequently, the temperature distribution of an area where there is disturbance of an electric or magnetic field is measured accurately.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は物質中の音速が温度によって変化する現象を利
用して、導波路を伝わる超音波の速度の変化を検出する
ことに! fi、空間温度分布を正確に測定することの
可能な超音波温度分布測定装置に関するもので、例えば
溶鉱炉、核融合炉、原子炉などの空間温度分布の測定に
好適な装置に関するO 〔発明の背景〕 これまで、物質中の音速変化から物質の温度を測定する
方法は、液体とぐに水等の温度測定に適用されてきた。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention utilizes the phenomenon that the speed of sound in a substance changes depending on temperature to detect changes in the speed of ultrasonic waves traveling through a waveguide! FI, relates to an ultrasonic temperature distribution measuring device capable of accurately measuring spatial temperature distribution, and relates to a device suitable for measuring spatial temperature distribution in, for example, blast furnaces, fusion reactors, nuclear reactors, etc. [Background of the Invention] ] Until now, the method of measuring the temperature of a substance from changes in the speed of sound in the substance has been applied to measuring the temperature of liquids, water, etc.

特に超音波送信子あるいは受信子が接触できない程の低
温、高温、あるいは化学的に活性な物質の温度を測定す
る場合には、第2図に示す如く、該物質との接触に耐え
得る導波管1を該物質の存在する温度測定領域5に挿入
し、その両外端に超音波送信子3および受信子4を取付
け、導波管1を媒体としてその中の超音波の音速を測定
することにより、温度測定領域5の温度を求めていた。
In particular, when measuring the temperature of a chemically active substance that is too low or too high to be contacted by an ultrasonic transmitter or receiver, a waveguide that can withstand contact with the substance is required, as shown in Figure 2. The tube 1 is inserted into the temperature measurement region 5 where the substance is present, an ultrasonic transmitter 3 and a receiver 4 are attached to both outer ends of the tube, and the sound speed of the ultrasonic wave therein is measured using the waveguide 1 as a medium. By doing so, the temperature of the temperature measurement area 5 was determined.

この場合導波管1が配置されている領域5内で空間的に
温度が均一であれば、その温度が正確に求められる。し
かし、温度が空間的に変化していると、導波管を通過す
る超音波の音速は導波管の各所で変化するが、結果的に
は導波管全体での平均の音速変化、従って、空間的に積
分した平均温度しか求められない。
In this case, if the temperature is spatially uniform within the region 5 where the waveguide 1 is arranged, the temperature can be accurately determined. However, when the temperature changes spatially, the sound speed of the ultrasonic wave passing through the waveguide changes at various points in the waveguide, but as a result, the average sound speed changes throughout the waveguide, and therefore , only the spatially integrated average temperature can be determined.

空間的温度分布は熱電対を多数個所に分布して設置する
等の方法で測定し得るが、多数個所への配線が必要で複
雑厄介であるだけでなく、電界や磁界の外乱がある領域
では、それに影−されるという嫌いがある。
Spatial temperature distribution can be measured by methods such as installing thermocouples distributed in many locations, but this is not only complicated and cumbersome as it requires wiring to multiple locations, but also difficult to measure in areas where there are disturbances in electric or magnetic fields. , I hate being overshadowed by it.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、電界や磁界の外乱に影響されずに高温
や低温領域又は化学的に活性な領域においても、超音波
導波路を用いて空間的温度分布を測定すること可能なら
しめる方法および装置を提供するにある。
The purpose of the present invention is to provide a method and method that enables the measurement of spatial temperature distribution using an ultrasonic waveguide even in high temperature or low temperature regions or chemically active regions without being affected by disturbances of electric or magnetic fields. We are in the process of providing equipment.

〔発明の概要〕 物質中の音速が温度によって変化することはよく知られ
ている。一般に液体では温度が高くなると音速が大きく
なる。水の場合は100℃上昇すると約80 mis増
加する。金属の場合には、第3図に示す様に、温度が高
くなると音速は小さくなる傾向がある。いずれにしても
物質毎に音速の温度変化率は特有の値である。本発明は
、この性質を利用した以下に述べる原理に基づいている
[Summary of the Invention] It is well known that the speed of sound in a substance changes depending on temperature. In general, as the temperature of a liquid increases, the speed of sound increases. In the case of water, an increase of 100°C increases approximately 80 mis. In the case of metal, as shown in FIG. 3, the speed of sound tends to decrease as the temperature increases. In any case, the rate of change in the speed of sound with temperature is a unique value for each substance. The present invention is based on the following principle that utilizes this property.

第1図において、両端に超音波発信子Xお工び受信子R
を有する導波路w、 、 w2. w3. w4の各各
は等長(長さt)の物質M4. M2. M3. M4
を直列連結したものから成る。これら導波路を温度測定
領域に並行に且つ互に近くに配置する。各長さtに対応
する該温度測定領域の各部分全部分領域A1. A2.
 A3. A4と名付ける。夫々の導波路w4.w、、
 、w、 、w4はこの各部分領域の任意の1つにおい
て前記物質M4. M2. M3. M4が互に異るよ
うに構成されている(いうなれば、マトリクス配列をな
している)0 各物質M1 ’ M2 ”3 ”4中の音速の温度変化
重金それぞれcl、 c2. c3. c4とする。ま
た部分領域A4.A2.A3.A4の温度が全てT。で
あるときに1発信子Xから発信した超音波が導波路w、
 、 w2. w3. w4中を伝播して各受信子RI
C受信されるまでの時間’It。とする。温度T。にお
ける物質M4. M2. M3. M4中の音速をそれ
ぞれV1’(To) 、 V2(To) 、 V、(T
o) 、 V4(To)とすると下式の関係が成勺立つ
In Figure 1, there is an ultrasonic transmitter X and a receiver R on both ends.
Waveguides w, , w2. w3. Each of w4 is a material M4. of equal length (length t). M2. M3. M4
Consists of serially connected. These waveguides are placed parallel to the temperature measurement area and close to each other. Each partial area A1 of the temperature measurement area corresponding to each length t. A2.
A3. Name it A4. Each waveguide w4. lol...
, w, , w4 is the substance M4. M2. M3. M4 are configured to be different from each other (in other words, they form a matrix arrangement) 0 Temperature change in the speed of sound in each material M1 ' M2 ``3 '' 4 Heavy metals cl, c2 . c3. Let it be c4. Also, partial area A4. A2. A3. The temperature of all A4 sheets is T. When , the ultrasonic wave emitted from one oscillator X passes through the waveguide w,
, w2. w3. Propagates through w4 to each receiver RI
C Time until reception 'It. shall be. Temperature T. Substance M4. M2. M3. Let the sound speed in M4 be V1'(To), V2(To), V, (T
o), V4(To), the following relationship holds true.

 t ’o  v、(r、)+Yz光り十V3(To)+v4
(To)   ・・・(1)さて、部分領域A1 ”2
 ’ A、 ”4の温度がそれぞれT1. T2. T
3. T4であるときには導波路W、の超音波伝播時間
t、は次の様に表わされる。
t 'o v, (r,) + Yz light ten V3 (To) + v4
(To) ... (1) Now, partial area A1 "2
' A, ' 4 temperatures are respectively T1. T2. T
3. When T4, the ultrasonic propagation time t in the waveguide W is expressed as follows.

+ 6 ’  q  79十%+v4(T4)  ”’(2)こ
こで、温度Tjでの物質M、中の音速v、(’rj)は
、温度T。での音速vi(To)を基準として下式の様
に表わされる。
+ 6' q 790% + v4 (T4) '' (2) Here, the speed of sound v, ('rj) in the material M at temperature Tj is based on the speed of sound vi (To) at temperature T. It is expressed as the following formula.

V、(Tj)=V、(To)+C,−(T、−TO) 
  −(3)したがって式(2)は次の様に書き改めら
れる。
V, (Tj) = V, (To) + C, - (T, -TO)
-(3) Therefore, equation (2) can be rewritten as follows.

+□     ・・・(4) v4(TO)+c4(T4−To) ここで、簡単のためΔT、 =T、−Toと表わし、式
(1)4の両辺から式(4)の両辺を差し引くと次式を
得る。
+□ ...(4) v4(TO)+c4(T4-To) Here, for simplicity, it is expressed as ΔT, =T, -To, and both sides of equation (4) are subtracted from both sides of equation (1) 4. and obtain the following equation.

ところで一般にvs (To )>c、ΔTiであるか
ら、式(5)の右辺各項は次の様に近似できる。
By the way, since vs (To) > c and ΔTi in general, each term on the right side of equation (5) can be approximated as follows.

したがって式(5)は下式の如く近似できる。Therefore, equation (5) can be approximated as shown below.

to  tIをΔt、で表わすと、式(7)はと書ける
When to tI is expressed as Δt, equation (7) can be written as.

同様に、導波路W2に関しては、 が成立し、 導波路W3に関しては が成立し、 導波路W4に関しては が成立する。Similarly, regarding the waveguide W2, is established, Regarding waveguide W3 is established, Regarding waveguide W4 holds true.

式(8)々いしα9において、zc、7V、(’ro)
2を伝播時間の温度増加率と呼びDiで表わすと、下記
の式αりないしαりを得る。
Equation (8) In the minor α9, zc, 7V, ('ro)
2 is called the rate of temperature increase during propagation time and is expressed by Di, the following equations α and α are obtained.

Δt1=D、ΔT1+D2ΔT2+r)3ΔT、+D4
ΔT4  ・・−(ハ)Δt2=D4ΔT、+D1ΔT
2+D2ΔT5+D、ΔT4  ・・・0]Δt 5 
” D 5ΔT1+D4ΔT2+D、ΔT3+D2ΔT
4  ・・・α◆Δt4=D2ΔT1+D3ΔT2+D
4ΔT3+D、ΔT4  ・・・(ト)式(2)ないし
αυヲ行列にまとめると、次式の様になる。
Δt1=D, ΔT1+D2ΔT2+r)3ΔT, +D4
ΔT4...-(c) Δt2=D4ΔT, +D1ΔT
2+D2ΔT5+D, ΔT4...0]Δt 5
” D 5ΔT1+D4ΔT2+D, ΔT3+D2ΔT
4...α◆Δt4=D2ΔT1+D3ΔT2+D
4∆T3+D, ∆T4...(G) When formula (2) and αυ are combined into a matrix, the following formula is obtained.

式06で表わした関係により、各導波路W、で測定した
伝播時間のずれΔtiから、次式αηを用いて各部分領
域A、の基準温度T。からの温度差ΔTjを算出できる
According to the relationship expressed by Equation 06, the reference temperature T of each partial region A is determined from the propagation time shift Δti measured in each waveguide W using the following equation αη. It is possible to calculate the temperature difference ΔTj from .

以上の如く、例えば第1図に示すように4本の導波路を
用い、各導波路の超音波伝播時間と基準温度T。におけ
るそれとの差を測定することにより式α′?)を用いて
4つの部分領域A4. A2. A3. A4の温度を
一義的に決定できる。各導波路Wiの各物質M、は、配
列は異なるが苧じ長さだけで構成しであるので、全領域
の温度を基準温度T。Kして伝播時間の基準値を求める
際には全ての導波路の伝播時間はt。になるので、各導
波路につき温度較正を同時に実施できる。
As described above, for example, as shown in FIG. 1, four waveguides are used, and the ultrasonic propagation time and reference temperature T of each waveguide are determined. By measuring the difference between that in the equation α′? ) to create four partial areas A4. A2. A3. The temperature of A4 can be uniquely determined. Each material M of each waveguide Wi is arranged only in different lengths, so the temperature of the entire area is the reference temperature T. When determining the reference value of propagation time using K, the propagation time of all waveguides is t. Therefore, temperature calibration can be performed simultaneously for each waveguide.

以上は4つの部分領域に区分した場合金例忙とって説明
したが、本発明は一般に複数の部分領域に区分した場合
にも成シ立つものである。すなわち温度測定領鰺をn個
の部分領域A1. A2.・・・Anに区分しくnは2
以上の整数)これら部分領域に対応して音速の温度変化
率の異るn種の物質の直列連結から夫々成るn本の導波
路を用い、上記n個の部分領域の任意のものA1に存す
る上記n種の物質が互に異なるような配列として上記n
本の導波路を並行に互に近くに配置し、各導波路の超音
波伝播時間t1と全ての部分領域が既知基準温度ToV
Cあるときのそれt。との差Δtt f測定し式(1時
に準じたn行の行列を解くことKよって、各部分領域A
1. A2.・・・Anの基準温度T。からの夫々の温
度差Δt1.Δt2.・・・Δtnヲ算出することがで
きる。
Although the above explanation has been given by way of example in which the area is divided into four partial areas, the present invention is also generally applicable to the case where the area is divided into a plurality of partial areas. That is, the temperature measurement area of the mackerel is divided into n partial areas A1. A2. ...Divided into An, n is 2
(integer greater than or equal to)) Using n waveguides, each consisting of a series connection of n types of materials having different rates of temperature change in the speed of sound corresponding to these partial regions, any one of the above n partial regions exists in A1. The above n types of substances are arranged so that they are different from each other.
Two waveguides are arranged in parallel and close to each other, and the ultrasonic propagation time t1 of each waveguide and all subregions are set to a known reference temperature ToV.
C when there is t. By measuring the difference Δtt f and solving the n-row matrix according to the formula (1), each partial area A
1. A2. ... Reference temperature T of An. The respective temperature differences Δt1. Δt2. ...Δtnwo can be calculated.

〔発明の実施例〕[Embodiments of the invention]

プラズマ実験装置のトロイダルコイルの温度分布を測定
した実施例を第4図に示す。プラズマ実験装置20はト
ロイダルコイル21に電流を流し真空容器22にプラズ
マを発生させ、それを安定に制御しプラズマの特性を実
験的に解析する装置である。装置の性格上、強い電界、
磁場が発生し、かつ、それらがプラズマ制御のため時間
的に変化するため、例えば、温度測定用として広く使わ
れている熱電対は電界、磁場に影響され、精確な測定に
は利用できない。そこで、前述の如きマトリクス状に4
種の金属を配列した4本の導波路W1゜W2. W3.
 W4をトロイダルコイル21の周シに貼りつけ、その
両端に送信子Xおよび受信子Rをそれぞれ取り付け、こ
れら各導波路W、 、 W2. W3゜W4の一端にあ
)送信子Xから超音波を発信させ、受信子Rで受信する
までの時間間隔を時間差測定器10で測定する。測定し
た時間差を温度分布演算器11で、弐〇ηで示す演算処
理を実施することにより、各領域の温度を表示する。
FIG. 4 shows an example in which the temperature distribution of a toroidal coil of a plasma experimental device was measured. The plasma experimental device 20 is a device that applies current to a toroidal coil 21 to generate plasma in a vacuum vessel 22, stably controls it, and experimentally analyzes the characteristics of the plasma. Due to the nature of the device, strong electric fields,
Because magnetic fields are generated and change over time to control plasma, for example, thermocouples, which are widely used for temperature measurements, are affected by electric and magnetic fields and cannot be used for accurate measurements. Therefore, we created four
Four waveguides W1°W2. in which seed metals are arranged. W3.
W4 is pasted around the circumference of the toroidal coil 21, a transmitter X and a receiver R are respectively attached to both ends of the toroidal coil 21, and each of these waveguides W, , W2. A) At one end of W3 and W4, the transmitter X emits an ultrasonic wave, and the time interval until it is received by the receiver R is measured by the time difference measuring device 10. The temperature distribution calculator 11 performs arithmetic processing on the measured time difference indicated by 20η, thereby displaying the temperature of each area.

各導波路の配列の例を第5図に示す。各導波路W1.W
2.W3.W4は、鉄101、アルミ102、インコネ
ル103、ステンレス鋼104(それ(’れ中の音速の
温度係数は−0,6m/s/l、 −1,5m/lI/
℃。
An example of the arrangement of each waveguide is shown in FIG. Each waveguide W1. W
2. W3. W4 is made of iron 101, aluminum 102, Inconel 103, and stainless steel 104 (the temperature coefficient of the sound velocity during the bending is -0.6 m/s/l, -1.5 m/l I/
℃.

−1,2m/s/℃、 −0,4m/s/’Cと異なる
)という4種の金属棒を直列連結したものから夫々なシ
、これら4種の金属棒それぞれの長さは等しくし、プラ
ズマ実験装置20の周方向において4分割した部分領域
A1. A2. A3. A4の温度を測定する。図示
の如く、これら各部分領域A+ 、 A2 + 15 
+ A4に存する夫々の導波路の4種の金属棒は互に異
種であるよう配列されている。
-1,2 m/s/℃, -0,4 m/s/'C) are connected in series, and each of these four metal rods has the same length. , partial areas A1., which are divided into four in the circumferential direction of the plasma experimental apparatus 20. A2. A3. Measure the temperature of A4. As shown in the figure, each of these partial areas A+, A2 + 15
+ The four types of metal rods of each waveguide in A4 are arranged so as to be of different types.

第4図の時間差測定器10の回路構成を第6図に示す。The circuit configuration of the time difference measuring device 10 shown in FIG. 4 is shown in FIG.

発信器200から、一定時間間隔で、発信ノ?ルスとそ
れに先行した発信トリガとを出力する。発信トリガは、
カウンタ202で順次計数され、第6図の場合4進で計
数される。このため、カウンタ202の4進計数値は発
信順位を表わす値として使用される。マルチプレクサ2
01゜201′はそれぞれ、上記発信順位に従ってスイ
ッチングする。マルチプレクサ201は、4個の発信子
Xのうちの1つを選択してこれに発信パルスを供給し、
発信子から超音波を上記導波路中に発信させる。同様に
マルチプレクサ201′は4個の受信子Rのうちの1つ
を選択し、その受信パルスを時間測定器203に入力さ
せる。第6図に図示したマルチプレクサ201,201
′のスイッチング状態は、4本の導波路W1 + W2
 r W3+ W4のうち、第1番目の導波路中の超音
波伝播時間を測定していることに相当する。時間測定器
203は発信パルス出力時刻から受信パルス入力時刻ま
での時間を測定し、その結果を受信時間として減算器2
05に入力する。他方、基準時間記憶器204には、各
導波路が全ての部分領域A1. A2. A、 。
The transmitter 200 sends a message at fixed time intervals. output the signal and the outgoing trigger that preceded it. The outgoing trigger is
It is counted sequentially by a counter 202, and in the case of FIG. 6, it is counted in quartal notation. Therefore, the quaternary count value of the counter 202 is used as a value representing the transmission order. multiplexer 2
01.degree. 201' are respectively switched according to the above-mentioned transmission order. The multiplexer 201 selects one of the four oscillators X and supplies it with an oscillation pulse;
Ultrasonic waves are transmitted from the transmitter into the waveguide. Similarly, the multiplexer 201' selects one of the four receivers R and inputs the received pulse to the time measuring device 203. Multiplexers 201, 201 illustrated in FIG.
'The switching state of the four waveguides W1 + W2
This corresponds to measuring the ultrasonic propagation time in the first waveguide among r W3+W4. A time measuring device 203 measures the time from the sending pulse output time to the receiving pulse input time, and the subtractor 203 uses the result as the receiving time.
Enter 05. On the other hand, in the reference time memory 204, each waveguide is stored in all partial areas A1. A2. A.

A4において均一な既知の基準温度T。′Cあるときの
超音波の受信時間(基準時間)を記憶しておく。
Uniform known reference temperature T at A4. The ultrasonic reception time (reference time) when 'C is present is memorized.

減算器205は受信時間から基準時間を差し引いた時間
差を出力する。以上の如く、時間差測定器10は、各導
波路の番号を示す発信順位とその導波路の超音波伝播時
間の変化を示す時間差を出力する。
A subtracter 205 outputs a time difference obtained by subtracting the reference time from the reception time. As described above, the time difference measuring device 10 outputs the transmission order indicating the number of each waveguide and the time difference indicating the change in the ultrasonic propagation time of the waveguide.

第7図は、前記発信順位と時間差を入力されて、温度分
布を表示する第4図の温度分布演算器11の構成を示し
た図である。上記発信順位に従って、入力される上記時
間差をセレクタ206を通して順次バッファメモIJ 
207に記憶する。一方、前記既知基準温度T。で測定
した超音波伝播時間から求めた前記り、+ D2 r 
03+ 04(伝播時間の温度増加率)がメモリ208
からマトリクス演算器209に入力される。メモリ20
8.バッファメモリ207からの上記データを用いて、
弐〇ηに示す演算に従い、マトリクス演算器209で基
準温度T。からの部分領域A4. A2 r 15 r
 A4の各温度差ΔT1.ΔT2.ΔT3.ΔT4が算
出され、前記既知基準温度T。に対し、To+ΔT4.
 To+ΔT2. To+ΔT3゜To+ΔT4がデコ
ーダ210に出力される。デコーダ210では入力値を
表示器211に表示するためにコード変換し、表示器2
11に出力する。この結果、部分領域AI ”2 ”3
1 A4の温度がそれぞれ表示器211に表示される。
FIG. 7 is a diagram showing the configuration of the temperature distribution calculator 11 of FIG. 4, which receives the transmission order and time difference and displays the temperature distribution. According to the transmission order, the input time differences are sequentially passed through the selector 206 to the buffer memo IJ.
207. On the other hand, the known reference temperature T. + D2 r
03+04 (temperature increase rate of propagation time) is memory 208
is inputted to the matrix calculator 209 from . memory 20
8. Using the above data from the buffer memory 207,
According to the calculation shown in 20η, the reference temperature T is determined by the matrix calculator 209. Partial area A4. A2 r 15 r
Each temperature difference ΔT1 of A4. ΔT2. ΔT3. ΔT4 is calculated and the known reference temperature T. For To+ΔT4.
To+ΔT2. To+ΔT3°To+ΔT4 is output to the decoder 210. The decoder 210 converts the input value to display it on the display 211, and converts the input value to the display 211.
Output to 11. As a result, partial area AI “2”3
1 The temperature of each A4 is displayed on the display 211.

本実施例では、磁場による外乱の大きいプラズマ実験装
置において、マグネ、ト部に流す電流のため温度の高く
なるコイル部及び外壁部の温度分布を1℃以下の精度で
測定できる。測定した温度分布から、異常に昇温する部
分を把握でき、電流のリークあるいはマグネット部に用
いる電源部の異常を判定できる。
In this example, in a plasma experimental apparatus where disturbances caused by a magnetic field are large, the temperature distribution of the coil part and outer wall part, where the temperature becomes high due to the current flowing through the magnet part, can be measured with an accuracy of 1° C. or less. From the measured temperature distribution, it is possible to identify areas where the temperature rises abnormally, and it is possible to determine whether there is a current leak or an abnormality in the power supply unit used for the magnet unit.

以上は、金属棒を使った導波路を用いた実施例について
説明したが、液体を利用した導波路も使用できる。液体
を利用した導波路の構造の例を第8図に示す。図中30
0は金属管であシ、管内を隔膜301で例えば3つの部
分領域に分割する。
Although the embodiment using a waveguide using a metal rod has been described above, a waveguide using a liquid can also be used. FIG. 8 shows an example of a structure of a waveguide using a liquid. 30 in the diagram
0 is a metal tube, and the inside of the tube is divided into, for example, three partial regions by a diaphragm 301.

部分領域302には水、部分領域303にはメチルアル
コール、部分領域304にはグリセリンを入れる。この
導波路は、こ−れら3種類の液体中の音速の温度変化率
がそれぞれ異なることを利用したもので、注入する液体
の配置をマトリクス状に違えた3本の導波路で3ケ所の
温度を測定できる。
Water is placed in the partial area 302, methyl alcohol is placed in the partial area 303, and glycerin is placed in the partial area 304. This waveguide takes advantage of the fact that the rate of change of the sound velocity in these three types of liquids is different with temperature, and the three waveguides have different placements of the liquid injected in a matrix. Can measure temperature.

隔膜301を増設して4つの部分領域に分割して4種類
の液体を入れれば、同様にして4ケ所の温度を測定でき
る。
If the diaphragm 301 is added and divided into four partial areas and four types of liquids are added thereto, the temperatures at four locations can be measured in the same way.

第9図は自由に曲げられる導波路の構造を示す。FIG. 9 shows the structure of a freely bendable waveguide.

管305は、塩化ビニル、ラバー等の可撓性のある管で
ある。隔膜301で管305内を部分領域分割し、夫々
の部分領域に、該部分領域数と同じ種別数の液体を注入
し、且つこれら液体は音速の温度変化率が異るものとし
、注入の配列をマトリクス状に違えた上記の部分領域数
と同じ本数の導波路を用いれば、同様に、各部分領域の
温度を測定できる。
The pipe 305 is a flexible pipe made of vinyl chloride, rubber, or the like. The inside of the tube 305 is divided into partial areas by the diaphragm 301, and liquids of the same number of types as the number of partial areas are injected into each partial area, and these liquids have different rates of temperature change in the speed of sound. If the same number of waveguides as the above-mentioned number of partial regions are used in different matrix shapes, the temperature of each partial region can be similarly measured.

部分領域の数が多くなった場合、各部分領域に注入すべ
き液体の種類を準備できないことがある。
When the number of partial areas increases, it may not be possible to prepare the type of liquid to be injected into each partial area.

そのような場合には、グリセリンなど有機溶剤と水の混
合比を変えた液体を使用する。グリセリンと水の混合液
は混合比によってグリセリンと水の特性の中間の特性を
有する。このため、混合比を10チ置きに変えた液体を
作れば(たとえば、Oチ、10%、・・・・・・90%
、100%というようにX音速の温度変化率が異なる1
1種の液体を確保できる。同様に、He 、 N2. 
O□、H2などの気体、あるいはこれらの気体を混合し
た気体を管に領域分けして注入した導波路も利用できる
In such cases, a liquid with a different mixing ratio of organic solvent and water, such as glycerin, is used. A mixed solution of glycerin and water has properties intermediate between those of glycerin and water depending on the mixing ratio. For this reason, if you make a liquid with the mixing ratio changed every 10 times (for example, every 10 times, 10%,...90%
, 100%, the temperature change rate of X sound velocity is different1
One type of liquid can be secured. Similarly, He, N2.
A waveguide in which a gas such as O□, H2, or a mixture of these gases is injected into a tube in divided regions can also be used.

第9図に示すようなフレキシブルな導波路は複雑な径路
に敷設して温度分布を測定することもでき、また、狭隘
部にも挿入して温度測定することが可能である。
A flexible waveguide as shown in FIG. 9 can be installed in a complicated path to measure temperature distribution, and can also be inserted into a narrow space to measure temperature.

〔発明の効果〕〔Effect of the invention〕

(1)熱電対が利用できないような電界、磁界の外乱が
ある領域の温度分布を正確に測定できる。
(1) It is possible to accurately measure the temperature distribution in areas where there is disturbance in the electric field or magnetic field where thermocouples cannot be used.

(2)融点の高い金屑なと耐熱性の高い物質又は耐化学
作用性の物質を導波路に使用することにより、高温領域
たとえば溶融金属中の温度分布又は化学的に活性な物質
中の温度分布を測定できる。
(2) By using high melting point metal scraps, highly heat resistant substances, or chemical action resistant substances in the waveguide, high temperature regions such as temperature distribution in molten metal or temperature in chemically active substances can be achieved. Distribution can be measured.

(3)  フレキシブルな導波路を用いることにより複
雑な径路または狭隘部にも敷設でき、左様な部分での温
度分布を測定できる。
(3) By using a flexible waveguide, it can be installed in a complicated path or in a narrow area, and the temperature distribution in a portion like the left can be measured.

(4)  マトリクス演算により、複数のデータから複
数個所の温度を並列に算出するため、各個所温度の計算
精度を高めることができる。この際、誤差は複数の導波
路の平方根になるから、いずれかの導波路の精度が若干
悪くなっても測定誤差は小さい。
(4) Since temperatures at multiple locations are calculated in parallel from multiple pieces of data by matrix calculation, the accuracy of calculating the temperature at each location can be improved. At this time, since the error is the square root of the plurality of waveguides, the measurement error is small even if the accuracy of any one of the waveguides is slightly degraded.

(5)全ての導波路の端部は同一場所にあシ、発信超音
波の印加、受信超音波の信号取出しは、夫々同一場所で
行えるから、測定系の配置が非常に簡単になる。
(5) The ends of all the waveguides are located at the same location, and the application of the transmitted ultrasonic waves and the signal extraction of the received ultrasonic waves can be performed at the same location, making the arrangement of the measurement system very simple.

(6)温度測定領域の区分数(部分領域の数)を増すこ
とにより、空間温度分布を測定する細かさを増すことが
できる。
(6) By increasing the number of divisions (number of partial regions) of the temperature measurement region, it is possible to increase the fineness with which the spatial temperature distribution is measured.

従って本発明は、グラズマ実験装置、核融合装置などの
電界、磁場の変動が激しい領域の温度分布を正確に測定
できるため、これら装置の温度の安定化ひいては装置の
運転の信頼性の同上に利用することができ、また溶鉱炉
中の温度分布を測定できるため、製鋼などで不良の原因
となる溶融不足の領域を把握して不良鋼の産出を防止す
るのに利用できる等、各種の応用が可能でちる。
Therefore, the present invention can accurately measure the temperature distribution in areas where the electric field and magnetic field fluctuate greatly, such as in glasma experimental devices and nuclear fusion devices, so it can be used to stabilize the temperature of these devices and, in turn, to improve the reliability of the device operation. In addition, since it is possible to measure the temperature distribution in a blast furnace, it can be used in various applications such as identifying areas with insufficient melting that can cause defects in steel manufacturing, etc., and preventing the production of defective steel. Dechiru.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するため導波路装置を示し
た図、第2図は従来の導波管による温度測定を示した図
、第3図は金属中の音速の温度変化率を示した図、第4
図は、本発明をグラズマ実験装置のマグネット部の温度
測定に実施した図、第5図は第4図の導波路の配列を示
した図、第6図は時間差測定装置の一例の構成を示した
図、第7図は温度分布演算器の一例の構成を示した図、
第8図は、液体を使った本発明に基づく導波路の構造を
例示した図、第9図は、本発明に基づくフレキシブルな
導波管の構造を例示した図である。 A1. A2. A、l A4・・・部分領域M1. 
M2+ M5 r M4・・・異なる物質w1. w2
. w、 、 w4・・・導波路X・・・超音波発信子 R・・・超音波受信子 第1図 第2図 第3図 5に庭(°C) 第4図 11J11LfT尋j賞算器 第51.、:4 痣     蛮
Fig. 1 shows a waveguide device for explaining the present invention in detail, Fig. 2 shows temperature measurement using a conventional waveguide, and Fig. 3 shows the temperature change rate of sound velocity in metal. Figure shown, 4th
The figure shows the present invention implemented to measure the temperature of the magnet part of a GLAZMA experimental device, FIG. 5 shows the arrangement of the waveguides in FIG. 4, and FIG. 6 shows the configuration of an example of the time difference measuring device. Figure 7 is a diagram showing the configuration of an example of a temperature distribution calculator,
FIG. 8 is a diagram illustrating the structure of a waveguide based on the present invention using a liquid, and FIG. 9 is a diagram illustrating the structure of a flexible waveguide based on the present invention. A1. A2. A, l A4... partial area M1.
M2+ M5 r M4...Different substance w1. w2
.. w, , w4... Waveguide X... Ultrasonic transmitter R... Ultrasonic receiver Figure 1 Figure 2 Figure 3 Figure 5 Garden (°C) Figure 4 No. 51. , :4 Bruises

Claims (1)

【特許請求の範囲】 1、温度測領域をn個(nは2以上の整数)の部分領域
に分け、各部分領域毎に音速の温度変化率の異るn種の
物質の直列連結より夫々なる導波路のn本を、任意の1
つの部分領域には互に異る物質が位置するように、互に
近接して並行に温度測定領域に配置し、各導波路につき
その両端間を超音波が伝播する時間を測定し、これら各
導波路の超音波伝播時間に基づき各部分領域の温度を算
出することを特徴とする超音波式温度分布測定方法。 2、音速の温度変化率の異るn種(nは2以上の整数)
の物質の直列連結より夫々なる導波路のn本と、それら
の端部に夫々取り付けられた超音波発信子および超音波
受信子とからなり、これらn本の導波路は互に並行に近
接して組をなし、且つ各導波路における同一番目の位置
に相異る物質が存するように配置されていることを特徴
とする超音波式温度分布測定用導波路装置。
[Scope of Claims] 1. The temperature measurement area is divided into n partial areas (n is an integer of 2 or more), and each partial area is formed by serially connecting n types of substances with different rates of temperature change in the speed of sound. Let n waveguides be any one
The two subareas are placed in close proximity and parallel to each other in the temperature measurement area so that different materials are located in each subarea, and the time it takes for the ultrasound to propagate between the two ends of each waveguide is measured. An ultrasonic temperature distribution measuring method characterized by calculating the temperature of each partial region based on the ultrasonic propagation time of a waveguide. 2. N types with different temperature change rates of sound speed (n is an integer of 2 or more)
It consists of n waveguides each made of serially connected materials, and an ultrasonic transmitter and an ultrasonic receiver attached to their ends, respectively, and these n waveguides are close to each other in parallel. What is claimed is: 1. A waveguide device for ultrasonic temperature distribution measurement, characterized in that the waveguides are arranged so that different substances are present at the same position in each waveguide.
JP16763884A 1984-08-10 1984-08-10 Measuring method of ultrasonic temperature distribution and waveguide device for method Pending JPS6145942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16763884A JPS6145942A (en) 1984-08-10 1984-08-10 Measuring method of ultrasonic temperature distribution and waveguide device for method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16763884A JPS6145942A (en) 1984-08-10 1984-08-10 Measuring method of ultrasonic temperature distribution and waveguide device for method

Publications (1)

Publication Number Publication Date
JPS6145942A true JPS6145942A (en) 1986-03-06

Family

ID=15853482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16763884A Pending JPS6145942A (en) 1984-08-10 1984-08-10 Measuring method of ultrasonic temperature distribution and waveguide device for method

Country Status (1)

Country Link
JP (1) JPS6145942A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383625A (en) * 1986-09-27 1988-04-14 Nippon Steel Corp Method for measuring temperature of high temperature object
CZ306214B6 (en) * 2015-07-01 2016-10-05 České Vysoké Učení Technické V Praze, Fakulta Elektrotechnická Stabilized and homogenized source of non-thermal plasma
US20170176265A1 (en) * 2014-03-13 2017-06-22 Siemens Energy, Inc. Method for determining waveguide temperature for acoustic transceiver used in a gas turbine engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383625A (en) * 1986-09-27 1988-04-14 Nippon Steel Corp Method for measuring temperature of high temperature object
US20170176265A1 (en) * 2014-03-13 2017-06-22 Siemens Energy, Inc. Method for determining waveguide temperature for acoustic transceiver used in a gas turbine engine
US9945737B2 (en) * 2014-03-13 2018-04-17 Siemens Energy, Inc. Method for determining waveguide temperature for acoustic transceiver used in a gas turbine engine
CZ306214B6 (en) * 2015-07-01 2016-10-05 České Vysoké Učení Technické V Praze, Fakulta Elektrotechnická Stabilized and homogenized source of non-thermal plasma

Similar Documents

Publication Publication Date Title
Salama et al. Third-order elastic constants of copper at low temperature
Barlow et al. The effect of pressure on the viscoelastic properties of liquids
US3237453A (en) Ultrasonic flowmeter system
KR102407528B1 (en) Gas concentration measuring device and its calibration method
US6857323B1 (en) Two phase flow sensor using tomography techniques
JPS6145942A (en) Measuring method of ultrasonic temperature distribution and waveguide device for method
JP3381747B2 (en) Method and apparatus for measuring solution concentration
US3474336A (en) Signal transmission comparison with hybrid combining means
US4078427A (en) Ultrasonic flow or current meter
US3299707A (en) Method of measuring temperatures
US20200264136A1 (en) Propagation time measurement machine, gas concentration measurement device, propagation time measurement program, and propagation time measurement method
Apfel Acoustic thermometry
JPS63150664A (en) Defect measuring instrument for ultrasonic flaw detection device
Balasubramaniam et al. Ultrasonic waveguide sensors for measurements in process industries
KR101522249B1 (en) a gas mass flow meter program using ultra sonic wave and the measuring device using thereof
US3554016A (en) Pulse-echo ultrasonic test apparatus with signal selection and storage means
De Podesta et al. Practical acoustic thermometry with twin-tube and single-tube sensors
US3343414A (en) Gas velocity probe for flowing ionized gases
JPS62231175A (en) Measuring instrument for fluid velocity distribution
Kostoff et al. Measurements of momentum accommodation of gas molecules at surfaces
JPS6395353A (en) Measuring range setter for ultrasonic flaw detector
JP2001074759A (en) Non-contact flow velocity/flow rate measurement method using electromagnetic ultrasonic wave
SU720567A1 (en) Method of measuring electron temperature of plasma placed in magnetic field
Huang et al. A novel flowrate measurement method for small-diameter pipeline based on bidirectional acoustic resonance
JPS60257308A (en) Measuring method of adhering matter to inside wall