JPS6383625A - Method for measuring temperature of high temperature object - Google Patents
Method for measuring temperature of high temperature objectInfo
- Publication number
- JPS6383625A JPS6383625A JP22918686A JP22918686A JPS6383625A JP S6383625 A JPS6383625 A JP S6383625A JP 22918686 A JP22918686 A JP 22918686A JP 22918686 A JP22918686 A JP 22918686A JP S6383625 A JPS6383625 A JP S6383625A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- ultrasonic wave
- molten metal
- ultrasonic
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 11
- 230000008878 coupling Effects 0.000 claims abstract description 19
- 238000010168 coupling process Methods 0.000 claims abstract description 19
- 238000005859 coupling reaction Methods 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 abstract description 27
- 229910052751 metal Inorganic materials 0.000 abstract description 27
- 238000005259 measurement Methods 0.000 abstract description 8
- 238000009529 body temperature measurement Methods 0.000 abstract description 7
- 239000003779 heat-resistant material Substances 0.000 abstract description 2
- 230000001902 propagating effect Effects 0.000 abstract 4
- 230000004043 responsiveness Effects 0.000 abstract 1
- 229910000831 Steel Inorganic materials 0.000 description 12
- 239000010959 steel Substances 0.000 description 12
- 238000005266 casting Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000007664 blowing Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000004901 spalling Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は高温物体例えば溶融金属の温度測定方法に係り
、例えば転炉又は連続鋳造設備におけるタンディシュ内
の如きに収容された溶鋼温度の平均温度を連続測定する
に適した温度測定方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the temperature of a high-temperature object, such as molten metal, and for measuring the average temperature of molten steel contained, for example, in a tundish in a converter or continuous casting equipment. This invention relates to a temperature measurement method suitable for continuous measurement of temperature.
転炉における吹錬操業において炉内の溶鋼温度をリアル
タイムで管理、制御することは吹上温度を適中させるの
に重要な要件であることは一般に知られている。又、鋼
を連続鋳造するような場合においてはその鋳鍋と鋳型間
に中間容器としてタンディシュが用いられ、このタンデ
ィシュ内の溶鋼温度を的確に管理することが鋳造条件、
鋳造作業を決定し、又成品たる鋳片の性質を決定する重
要な要件であることは一般に知られている通りであり、
従ってこのような温度管理を厳密に行うことについては
従来から種々に工夫がなされている。It is generally known that in blowing operations in a converter furnace, managing and controlling the temperature of molten steel in the furnace in real time is an important requirement for adjusting the blowing temperature. In addition, in cases where steel is continuously cast, a tundish is used as an intermediate container between the casting pot and the mold, and the casting conditions include accurately controlling the temperature of the molten steel in the tundish.
It is generally known that this is an important requirement that determines the casting work and the properties of the finished slab.
Therefore, various efforts have been made in the past to strictly perform such temperature control.
即ち従来このような溶鋼温度測定法としては、消耗型熱
電対を用いたスポット測温法、又は例えば特開昭56−
11329にみられるように熱電対を保護管に内蔵させ
た連続ヨリ温性があるが、何れも欠点を有している。That is, conventional methods for measuring the temperature of molten steel include the spot temperature measurement method using a consumable thermocouple, or, for example, the method disclosed in Japanese Patent Application Laid-open No. 1986-
11329, there are continuous thermostats with built-in thermocouples in the protective tube, but all of them have drawbacks.
スポット測温法は一般的に用いられる方法であるが、こ
の方法においては測定者が消耗型熱電対を溶鋼中に浸漬
するものであるから測温が時間的にスポット的であり、
又浸漬位置の如何により測定のばらつきが大きく、溶鋼
中の平均温度は測定できない。しかも測定毎に消耗型熱
電対が消費されランニングコストが高価になる。The spot temperature measurement method is a commonly used method, but in this method, the measurer immerses a consumable thermocouple in molten steel, so the temperature measurement is spot-time.
In addition, the measurement variation is large depending on the immersion position, and the average temperature in molten steel cannot be measured. Moreover, a consumable thermocouple is consumed for each measurement, increasing running costs.
又保護管に熱電対を内蔵させた連続測温法においてはそ
の熱電対保護管が高価であり、しかも破損し易く、従っ
てランニングコストがそれなりに嵩み、又この保護管使
用のため溶鋼真温度測定のタイムラグがある。又、消耗
型熱電対と同様に溶鋼中の平均温度は測定できない。In addition, in the continuous temperature measurement method in which a thermocouple is built into a protection tube, the thermocouple protection tube is expensive and easily damaged, resulting in a considerable increase in running costs. There is a time lag in measurement. Also, like consumable thermocouples, the average temperature in molten steel cannot be measured.
本発明は高温物体例えば溶融金属の平均温度を正確に応
答性良くしかも連続的にu11温する方法を提供するも
のである。The present invention provides a method for accurately, responsively and continuously increasing the average temperature of a hot object, such as a molten metal.
本発明について図面を参照しながら溶融金属の温度測定
を実施例として詳細に説明する。The present invention will be described in detail as an example of temperature measurement of molten metal with reference to the drawings.
図面特に第1図において1は容器であり、2は容器1に
収容された溶融金属例えば溶鋼である。In the drawings, particularly in FIG. 1, 1 is a container, and 2 is molten metal, such as molten steel, contained in the container 1.
3.4は超音波結合棒で、前記容器1内の溶融金属2を
はさんで対向して設けられる。該超音波結合棒3,4は
溶鋼その他の金属溶湯に対する耐溶損性及びスラグの存
在するような場合においては耐スラグ性と耐スポーリン
グ性を有すると同時に超音波伝播性能をもった耐熱性物
又は耐火物(金属でも非金泥でも可)で製作される。こ
の超音波結合棒3,4は耐熱性の低い超音波送受信素子
を用いて高温である溶融金属2との間で超音波送受信を
可能にするためのものであり、一端は溶融金属2に接し
、他端には超音波送受信素子5,6がとりつけられてい
る。Reference numeral 3.4 denotes an ultrasonic coupling rod, which is provided facing each other with the molten metal 2 in the container 1 interposed therebetween. The ultrasonic coupling rods 3 and 4 are made of a heat-resistant material that is resistant to melting damage against molten steel and other molten metals, and has slag resistance and spalling resistance in cases where slag is present, and at the same time has ultrasonic propagation performance. Or made of refractory material (can be metal or non-metallic). The ultrasonic coupling rods 3 and 4 are used to enable ultrasonic transmission and reception between the high-temperature molten metal 2 and the molten metal 2 using ultrasonic transmitting and receiving elements with low heat resistance, and one end is in contact with the molten metal 2. , ultrasonic transmitting and receiving elements 5 and 6 are attached to the other end.
これらの超音波送受信素子5,6は超音波送受信器7に
電気的に接続されており、超音波の送信、受信共可能に
なっている。例えば超音波送受信素子5から超音波を送
信すると超音波の一部は超音波結合棒3の端面3−1で
反射され、超音波送受信素子5で受信され、この間の経
過時間t1の半分が超音波結合棒3中での伝播所要時間
t2となる。この伝播所要時間t2は超音波送受信器7
に設けられているタイマーにより判明する。These ultrasonic transceiver elements 5 and 6 are electrically connected to an ultrasonic transceiver 7, and are capable of both transmitting and receiving ultrasonic waves. For example, when an ultrasonic wave is transmitted from the ultrasonic transmitting/receiving element 5, a part of the ultrasonic wave is reflected by the end face 3-1 of the ultrasonic coupling rod 3 and is received by the ultrasonic transmitting/receiving element 5, and half of the elapsed time t1 during this period is The time required for propagation in the acoustic wave coupling rod 3 is t2. This propagation time t2 is the ultrasonic transceiver 7
This is determined by the timer installed in the.
超音波の一部は端面3−1、溶融金属2及び他方の超音
波結合棒4を伝播して超音波送受信素子6で受信され、
この間の伝播所要時間t3が得られる。A part of the ultrasonic wave propagates through the end face 3-1, the molten metal 2, and the other ultrasonic coupling rod 4, and is received by the ultrasonic transmitting/receiving element 6.
The required propagation time t3 during this period is obtained.
又、超音波送受信素子6から超音波を送信すると前記と
同様に超音波結合棒4の一端4−1でm一部反射され、
超音波送受信素子6で受信され、この間の経過時間t4
の半分が超音波結合棒4中での伝播所要時間もうとなる
。Further, when an ultrasonic wave is transmitted from the ultrasonic transmitting/receiving element 6, a portion of the ultrasonic wave is reflected by one end 4-1 of the ultrasonic coupling rod 4, as described above.
It is received by the ultrasonic transmitting/receiving element 6, and the elapsed time t4 during this time
half of the time required for propagation in the ultrasonic coupling rod 4.
従って溶融金属中での超音波伝播所要時間tはt =
t 3−t 2−t 5 ・・・・・・
(3)と容易に得ることができる。即ち超音波結合棒3
゜4と超音波送受信素子5.6を用いて溶融金属2中の
超音波伝播時間を測定する場合、超音波結合棒中の伝播
所要時間は超音波結合棒3,4の温度変化により変化す
るが前記のごとくリアルタイムで超音波結合棒中の伝播
所要時間を測定し、これを演算器8に入力する。Therefore, the time t required for ultrasonic propagation in molten metal is t =
t 3-t 2-t 5 ・・・・・・
(3) can be easily obtained. That is, the ultrasonic coupling rod 3
When measuring the ultrasonic propagation time in the molten metal 2 using the ultrasonic transmitter/receiver element 5.6, the propagation time in the ultrasonic coupling rod changes depending on the temperature change of the ultrasonic coupling rods 3 and 4. measures the time required for the ultrasonic wave to propagate through the coupling rod in real time as described above, and inputs this to the calculator 8.
演算器8は(1)〜(4)式の演算を行うとともに、第
3図に示すような温度−音速特性が記憶されており、温
度出力を行う演算器である。演算器8で前記(11(2
) (31式により計算することで正確に溶融金属中の
超音波伝播時間を求めることができる。The computing unit 8 is a computing unit that computes equations (1) to (4), stores temperature-sound velocity characteristics as shown in FIG. 3, and outputs the temperature. The arithmetic unit 8 calculates the above (11(2)
) (By calculating using Equation 31, the ultrasonic propagation time in the molten metal can be accurately determined.
ここで超音波結合棒3,4の端面3−1.4−1間の長
さしを一定に保てば端面3−1.4−1間に存在する熔
融金属中の平均音速塵Vはで求められる。Here, if the length between the end surfaces 3-1.4-1 of the ultrasonic coupling rods 3 and 4 is kept constant, the average sonic velocity dust V in the molten metal existing between the end surfaces 3-1.4-1 is is required.
ところが大半の熔融ぎ属2の平均音速は−0,2〜−0
,6m/s/ ”Cの温度係数をもっている。これは溶
融金属2の種類、温度域によって異るが、予め対象とす
る溶融金属2の温度−音速特性は記憶されているので、
(4)式の平均音速塵■から熔融金属2の平均温度を連
続して測定することができる。又その測定応答性におい
ては被測定物質中を音波を伝播させるだけなので極めて
早い測定が可能である。However, the average sound speed of most molten metals 2 is between -0.2 and -0.
, 6m/s/''C. This varies depending on the type of molten metal 2 and the temperature range, but since the temperature-sound velocity characteristics of the target molten metal 2 are stored in advance,
The average temperature of the molten metal 2 can be continuously measured from the average sonic velocity dust (2) in equation (4). In addition, in terms of measurement response, extremely fast measurements are possible because only the sound waves are propagated through the substance to be measured.
なお9.10は超音波結合棒3,4を通して熱が超音波
送受信素子5,6へ伝わるのを防ぐための水冷ボックス
である。Note that 9.10 is a water-cooled box for preventing heat from being transmitted to the ultrasonic transmitting and receiving elements 5 and 6 through the ultrasonic coupling rods 3 and 4.
測温される溶融金属2としては溶鋼のみならずその他の
溶融金属であってよく、本発明はこれらにも適用される
。又溶融液体高温スラブ等に対しても同様に採用するこ
とができる。The molten metal 2 whose temperature is measured may be not only molten steel but also other molten metals, and the present invention is also applicable to these. Further, it can be similarly adopted for molten liquid high temperature slabs and the like.
又超音波結合棒3.4は第2図のごとく上下方向に対向
設置させることも可能である。Further, the ultrasonic coupling rods 3.4 can be installed vertically facing each other as shown in FIG.
以上説明したように本発明によると高温物体の平均温度
を連続して、しかも極めて早い応答性で温度測定が可能
となり、工業的にその効果はきわめて大きい。As explained above, according to the present invention, it is possible to measure the average temperature of a high-temperature object continuously and with extremely fast response, which is extremely effective industrially.
第1図は本発明の一実施例を示す説明図、第2図は本発
明の他の実施例を示す説明図、第3図は演算器に予め記
憶した被測定高温物体の温度−音速特性の一例を示す図
表である。
1:容器、 2:高温物体、 3.4:超音波結合棒、
5.6:超音波送受信素子、 7:B音波送受信器、
8;演算器
出 願 人 新日本製鐵株式会社
代理人弁理士 青 柳 稔
第1図
第2図
温 度 (0C)
第3図Fig. 1 is an explanatory diagram showing one embodiment of the present invention, Fig. 2 is an explanatory diagram showing another embodiment of the invention, and Fig. 3 is a temperature-sound velocity characteristic of a high temperature object to be measured, which is stored in advance in a computing unit. This is a chart showing an example. 1: Container, 2: High temperature object, 3.4: Ultrasonic coupling rod,
5.6: Ultrasonic transceiver element, 7: B sonic transceiver,
8; Computing unit applicant Minoru Aoyagi, patent attorney representing Nippon Steel Corporation Figure 1 Figure 2 Temperature (0C) Figure 3
Claims (1)
超音波送受信素子から、超音波を発して、被測温高温物
体中の伝播時間を測定し、この時間と被測温高温物体の
超音波結合棒間の長さと、予め記憶された温度−音速特
性から、被測温高温物体の平均温度を測定することを特
徴とする高温物体の温度測定方法。Ultrasonic waves are emitted from ultrasonic transmitting/receiving elements installed between the high-temperature object and the high-temperature object via ultrasonic coupling rods, and the propagation time in the high-temperature object is measured. A method for measuring the temperature of a high-temperature object, comprising measuring the average temperature of the high-temperature object based on the length between the ultrasonic coupling rods of the object and a temperature-sound velocity characteristic stored in advance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22918686A JPS6383625A (en) | 1986-09-27 | 1986-09-27 | Method for measuring temperature of high temperature object |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22918686A JPS6383625A (en) | 1986-09-27 | 1986-09-27 | Method for measuring temperature of high temperature object |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6383625A true JPS6383625A (en) | 1988-04-14 |
Family
ID=16888151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22918686A Pending JPS6383625A (en) | 1986-09-27 | 1986-09-27 | Method for measuring temperature of high temperature object |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6383625A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01304334A (en) * | 1988-06-01 | 1989-12-07 | Babcock Hitachi Kk | Instrument for measuring temperature of high-temperature fluid |
US5141331A (en) * | 1988-02-19 | 1992-08-25 | Oscar Oehler | Ultrasonic temperature measurement and uses in optical spectroscopy and calorimetry |
US5285677A (en) * | 1989-12-08 | 1994-02-15 | Oscar Oehler | Selective gas detection by field separation and velocity of sound determination, especially O2 detection |
CN105486424A (en) * | 2014-09-17 | 2016-04-13 | 南京理工大学 | Ultrasonic non-invasive measurement method for transient temperature field of inner wall of combustion chamber |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50147765A (en) * | 1974-05-17 | 1975-11-27 | ||
JPS5418776A (en) * | 1977-07-12 | 1979-02-13 | Doryokuro Kakunenryo | Ultrasonic flowmeter |
JPS56124028A (en) * | 1980-03-05 | 1981-09-29 | Furuno Electric Co Ltd | Ultrasonic thermometer |
JPS6145942A (en) * | 1984-08-10 | 1986-03-06 | Hitachi Ltd | Measuring method of ultrasonic temperature distribution and waveguide device for method |
-
1986
- 1986-09-27 JP JP22918686A patent/JPS6383625A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50147765A (en) * | 1974-05-17 | 1975-11-27 | ||
JPS5418776A (en) * | 1977-07-12 | 1979-02-13 | Doryokuro Kakunenryo | Ultrasonic flowmeter |
JPS56124028A (en) * | 1980-03-05 | 1981-09-29 | Furuno Electric Co Ltd | Ultrasonic thermometer |
JPS6145942A (en) * | 1984-08-10 | 1986-03-06 | Hitachi Ltd | Measuring method of ultrasonic temperature distribution and waveguide device for method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5141331A (en) * | 1988-02-19 | 1992-08-25 | Oscar Oehler | Ultrasonic temperature measurement and uses in optical spectroscopy and calorimetry |
JPH01304334A (en) * | 1988-06-01 | 1989-12-07 | Babcock Hitachi Kk | Instrument for measuring temperature of high-temperature fluid |
US5285677A (en) * | 1989-12-08 | 1994-02-15 | Oscar Oehler | Selective gas detection by field separation and velocity of sound determination, especially O2 detection |
CN105486424A (en) * | 2014-09-17 | 2016-04-13 | 南京理工大学 | Ultrasonic non-invasive measurement method for transient temperature field of inner wall of combustion chamber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101323959B1 (en) | Temperature measuring method and device for continuous-casting mold copper plate | |
JPS6383625A (en) | Method for measuring temperature of high temperature object | |
JP4843790B2 (en) | Temperature measurement method using ultrasonic waves | |
JP2019162664A (en) | Billet internal state determination apparatus and method and continuous casting device | |
US20200173867A1 (en) | Systems and methods for determining the temperature and/or level of a molten metal bath in a vessel | |
JPS6383626A (en) | Method for measuring temperature of molten metal | |
JPH01291134A (en) | Temperature measuring method for high temperature object | |
JP3757830B2 (en) | Manufacturing method of continuous cast slab | |
JPH07318436A (en) | Temperature distribution measuring method for high temperature object and ultrasonic wave sensor therefor | |
JPH10219323A (en) | Method for evaluating wear of refractory, device therefor and method for controlling refractory device therefor | |
JP5029954B2 (en) | Method and apparatus for measuring temperature of continuous casting mold copper plate | |
JP4296946B2 (en) | Method and device for detecting solidification completion position of continuous cast slab | |
JPH0242409B2 (en) | ||
JP2008076125A (en) | Method and device for measuring thickness of solidified shell | |
JPH05223653A (en) | Apparatus for measuring temperature of steel | |
JPH10122847A (en) | Method and apparatus for measuring thickness of refractory | |
JP2904467B2 (en) | Mold level meter for continuous casting | |
JPH07146183A (en) | Method and device for measuring temperature distribution of refractory | |
RU2098756C1 (en) | Method determining thickness of wall and conductivity pickup of heat flow for implementation of it | |
JPH01127161A (en) | Method for measuring profile of crater end solidification in continuous casting | |
Yao et al. | Development of an experimental system for the study of the effects of electromagnetic stirring on mold heat transfer | |
JPS6113162B2 (en) | ||
JPS619955A (en) | Molten steel level detecting gage of continuous casting machine | |
JP2000337849A (en) | Method and apparatus for measurement of thickness of refractories in furnace | |
JPS58159960A (en) | Method and device for detecting thickness of solidified layer in continuous casting machine |