JPS62231175A - Measuring instrument for fluid velocity distribution - Google Patents

Measuring instrument for fluid velocity distribution

Info

Publication number
JPS62231175A
JPS62231175A JP7392086A JP7392086A JPS62231175A JP S62231175 A JPS62231175 A JP S62231175A JP 7392086 A JP7392086 A JP 7392086A JP 7392086 A JP7392086 A JP 7392086A JP S62231175 A JPS62231175 A JP S62231175A
Authority
JP
Japan
Prior art keywords
electrode
velocity distribution
liquid
flow velocity
air bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7392086A
Other languages
Japanese (ja)
Other versions
JPH0515229B2 (en
Inventor
Makoto Suzuki
誠 鈴木
Kazuo Tateishi
和雄 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOHAMA SYST KENKYUSHO KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
YOKOHAMA SYST KENKYUSHO KK
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOHAMA SYST KENKYUSHO KK, Agency of Industrial Science and Technology filed Critical YOKOHAMA SYST KENKYUSHO KK
Priority to JP7392086A priority Critical patent/JPS62231175A/en
Publication of JPS62231175A publication Critical patent/JPS62231175A/en
Publication of JPH0515229B2 publication Critical patent/JPH0515229B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

PURPOSE:To easily measure a flow velocity distribution in real time by detecting variation in the electrostatic capacity of an electrode which is different with phases when a vapor-liquid mixed phase flow passes between orthogonal grating type electrodes. CONSTITUTION:Air bubbles 6 are discharged into liquid 7 from the air blowout hole of a nozzle in response to a trigger signal from a processor 27. Many blown-out air bubbles 6 reach a downstream-side electrode 18 while reduced in speed according to the flow velocity distribution of the liquid owing to the radial difference in the discharge position in the duct 2. All lateral shield lines 13a are excited in order through the switching of a multiplexer 22 to measure the electrostatic capacity at the electrode 18 and then their signals are inputted to the processor 27; and the dielectric constant of the objective liquid at each electrode 18 is measured through arithmetic operation to specify an air bubble 6 interposed between electrode element of each electrode 18, thereby specifying the flow velocity distribution from the distribution of the air bubbles.

Description

【発明の詳細な説明】 (イ)発明の目的 [産業上の利用分野1 この発明は、管路を流れる液体の流速分布測定装置に関
するものである。液体流速分布測定装置は、例えば、化
学プラント、LNG輸送管路、伝熱機器等において使用
する管路内を流れる液体の流動状態を測定する場合等に
利用可能である。
DETAILED DESCRIPTION OF THE INVENTION (a) Object of the Invention [Industrial Field of Application 1 This invention relates to a flow velocity distribution measuring device for a liquid flowing through a pipe. The liquid flow velocity distribution measuring device can be used, for example, when measuring the flow state of a liquid flowing in a pipe used in a chemical plant, an LNG transport pipe, a heat transfer device, or the like.

[従来の技術] 管内液体の流動状態を知るためには、その流速の分布を
測定する必要がある。
[Prior Art] In order to know the flow state of a liquid in a pipe, it is necessary to measure the distribution of its flow velocity.

従来、管内液体の流速分布を計測するために、レーザプ
ローブ法や電気探針法等のプローブ法、超音波計、電磁
流口針等が開発されている。
Conventionally, in order to measure the flow velocity distribution of a liquid in a pipe, probe methods such as a laser probe method and an electric probe method, an ultrasonic meter, an electromagnetic flow probe, and the like have been developed.

[発明が解決しようとづ′る問題点] レーザプローブ法は管路内を液体とともにプローブに向
って流れていく気泡により反射された光をドツプラシフ
トを利用して流速を検出し流速分布を計測するものであ
り、また電気探針法は二つのプローブを管路の流れの中
に配置し、そのプローブ間を流れる気泡の時間差から流
速を求めるものであるがそれぞれ多数のプローブを管路
内に配置する必要があり、装置が相当大掛かりになり、
しかもこれらのプローブ法はリアルタイムで分布を測定
することができない。また、超音波を利用するもの及び
電磁側u1を利用するものは管路内の平均的流母を計る
ことはできるが流速分布は計測することができない。
[Problems to be solved by the invention] The laser probe method detects the flow velocity and measures the flow velocity distribution by using Doppler shift of the light reflected by the bubbles flowing towards the probe along with the liquid in the pipe. In addition, in the electric probe method, two probes are placed in the flow of a pipe, and the flow velocity is determined from the time difference of the bubbles flowing between the probes. It is necessary to do this, and the equipment becomes quite large.
Moreover, these probe methods cannot measure distribution in real time. Further, those using ultrasonic waves and those using electromagnetic side u1 can measure the average flow base in the pipe, but cannot measure the flow velocity distribution.

この発明は上記の如き事情に鑑みてなされたものであっ
て、簡単に、かつ、リアルタイムで流速分布の測定をす
ることができ、また、小規模な設備で高速の測定を可能
にする液体流速分布測定装置を提供することを目的とす
るものである。
This invention was made in view of the above-mentioned circumstances, and it is possible to measure the flow velocity distribution easily and in real time, and also enables high-speed measurement with small-scale equipment. The object is to provide a distribution measuring device.

(ロ)発明の構成 c問題を解決するための手段] この目的に対応して、この発明の液体流速分布測定装置
は、間隙を置いて対向して位置する一対の電極素子から
なる電極の複数をマトリックス状に備えているセンサを
管路の軸に平行に被測定液体の流れの内に配設し、かつ
前記センサの上流側に前記センサと同一面内に気泡を発
生するノズルを配設して備え、それぞれの電極の一方の
電極素子を励振する励振装置と、及びそれぞれ電極の他
方の電極素子からの出力を処理する処理装置とを備え、
前記それぞれの電極の電極素子間の被測定体の誘電率を
検出Jるように構成したことを特徴としている。
(B) Structure of the Invention Means for Solving Problem c] Corresponding to this object, the liquid flow velocity distribution measuring device of the present invention has a plurality of electrodes each consisting of a pair of electrode elements positioned opposite to each other with a gap. A sensor having a matrix of sensors is disposed in the flow of the liquid to be measured parallel to the axis of the pipe, and a nozzle for generating air bubbles is disposed upstream of the sensor in the same plane as the sensor. an excitation device that excites one electrode element of each electrode, and a processing device that processes output from the other electrode element of each electrode,
The present invention is characterized in that it is configured to detect the dielectric constant of the object to be measured between the electrode elements of each of the electrodes.

以下、この発明の詳細を一実施例を示す図面について説
明する。
Hereinafter, details of the present invention will be explained with reference to the drawings showing one embodiment.

第1図において、1は液体流速分布測定装置であり、液
体流速分布測定装置1は管路2内にノズル3とセンサで
ある電極格子4を備えている。
In FIG. 1, reference numeral 1 denotes a liquid flow velocity distribution measuring device, and the liquid flow velocity distribution measuring device 1 is provided with a nozzle 3 and an electrode grid 4 serving as a sensor in a conduit 2.

ノズル3は良民の管状体をなし、その長手方向に複数の
空気吹出し孔5を備えている。ノズル3は管路2の直径
方向に位置しており、これによって複数の空気吹出し孔
5が管路5の軸に垂直な面内に開口している。それぞれ
の空気吹出し孔5からは気泡6を管路2内を流れる被測
定体である液体7中に吹出すことが出来る。このノズル
3の作動は後述する処理装置27によって制御される。
The nozzle 3 has a solid tubular shape and is provided with a plurality of air blowing holes 5 in its longitudinal direction. The nozzle 3 is located in the diametrical direction of the conduit 2, so that a plurality of air blowing holes 5 are opened in a plane perpendicular to the axis of the conduit 5. Air bubbles 6 can be blown out from each of the air blowing holes 5 into the liquid 7 that is the object to be measured and flowing inside the pipe 2 . The operation of this nozzle 3 is controlled by a processing device 27, which will be described later.

電極格子4はノズル3の下流に配置され、第2図、第3
図及び第4図に示すように、仮想の第1の平面内におい
て横方向に平行して配列している複数のシールド線13
aと、第2の平面内において縦方向に平行して配列して
いる複数のシールド線13bとからなっている。複数の
シールド線13aと複数のシールド線13bはそれぞれ
樹脂19によって平板状にモールドされて電極板20を
構成する。こうして樹脂19によって平板状にモールド
することによって、格子電極4を管路2内に配設したと
きに、液体7の流れを乱すことを減少させることができ
る。第1の平面と第2の平面は間隔を保って平行に位置
している。横のシールド線13aと縦のシールド線13
bは、第2図に符号Aで示すように、配設のビッヂ毎に
、間隔Sを保って対向方向視で交差している。
The electrode grid 4 is arranged downstream of the nozzle 3 and is shown in FIGS.
As shown in the figure and FIG. 4, a plurality of shield wires 13 are arranged in parallel in the lateral direction within the imaginary first plane.
a, and a plurality of shield wires 13b arranged in parallel in the vertical direction within the second plane. The plurality of shielded wires 13a and the plurality of shielded wires 13b are each molded into a flat plate shape with resin 19 to constitute an electrode plate 20. By molding the resin 19 into a flat plate shape, it is possible to reduce the disturbance of the flow of the liquid 7 when the grid electrode 4 is disposed within the conduit 2. The first plane and the second plane are located parallel to each other with a distance maintained between them. Horizontal shield wire 13a and vertical shield wire 13
As shown by the symbol A in FIG. 2, the bits intersect with each other at an interval S when viewed from opposite directions.

横のシールド線13a及び縦のシールド線13bは共に
、導線15を中心として、その外側に絶縁wA16、シ
ールド層17を設けた同軸型のシールド線で構成されて
いるが、交差点においては、両シールド線13a、13
bの対向する側において絶縁層16、シールド層17を
剥離、除去して導線15を露出させでいる。露出して対
向する導線15は電極素子として対向して電極18を構
成する。また、電極板20は第5図に示すように、2枚
の絶縁板10の上に電m層15a、絶縁層16a及びシ
ールド層17aを重ね印刷して形成してもよい。
Both the horizontal shield wire 13a and the vertical shield wire 13b are composed of coaxial shield wires with a conductor 15 at the center and an insulation wA 16 and a shield layer 17 on the outside. Lines 13a, 13
The insulating layer 16 and the shield layer 17 are peeled off and removed on the opposite sides of b to expose the conductive wire 15. The exposed conductive wires 15 facing each other constitute electrodes 18 facing each other as electrode elements. Alternatively, the electrode plate 20 may be formed by overprinting an electric m layer 15a, an insulating layer 16a, and a shield layer 17a on two insulating plates 10, as shown in FIG.

このように構成された電極格子4は例えば管路2内の液
体の流れ内に管路2の軸平行に配置される。電極格子4
の横のシールド線13aはマルチプレクサ22に接続し
、マルチプレクサ22はオシレータ23に接続する。
The electrode grid 4 configured in this way is arranged, for example, in the flow of liquid in the conduit 2 parallel to the axis of the conduit 2 . electrode grid 4
The shielded wire 13a next to is connected to a multiplexer 22, and the multiplexer 22 is connected to an oscillator 23.

一方、電極格子4の縦のシールド線13bは、それぞれ
、検波器アレー24を構成する検波器25に接続する。
On the other hand, the vertical shield wires 13b of the electrode grid 4 are respectively connected to detectors 25 constituting a detector array 24.

検波器25の出力は多チャンネル高速ADコンバータ2
6を介して処理装置27に入力される。処理装置27は
外部記憶装置28及びCRTディスプレー31が付属し
ている。
The output of the detector 25 is sent to the multi-channel high-speed AD converter 2.
6 to the processing device 27. The processing device 27 is attached with an external storage device 28 and a CRT display 31.

[作用] このように構成された液体流速分布測定装置において、
被測定体の流速分布を検出する場合の動作は次の通りで
ある。
[Function] In the liquid flow velocity distribution measuring device configured as described above,
The operation when detecting the flow velocity distribution of the object to be measured is as follows.

処理装置27からのトリガー信号によってノズル3の空
気吹出し孔5から気泡6を液体7内に放出する。放出さ
れた多数の気泡6は管路2内の半径方向の放出位置の違
いにより、液体の流速分布に応じて遅速を生じた状態で
下流側の電極18に達する。このとき、オシレータ23
が例えば10MH2以上の周波数で励振する。これをマ
ルチプレクサ22で複数の横のシールドa13aのうち
の一本を選択して励振する。マルチプレクサ22の切替
は処理装置27からの切替信号によって制御される。選
択された横のシールド線13aが励振されると縦のシー
ルド線13bと交差した電極18の部分で露出している
導l1115の近傍に交流電界が形成され、対応する縦
のシールド線13bの露出している導線15が受信する
。この受信の電圧は電極18の電極素子の間に介在する
被測定体に応じて変化する電極18の静電容量の情報を
含んでいる。
Air bubbles 6 are discharged into the liquid 7 from the air outlet 5 of the nozzle 3 in response to a trigger signal from the processing device 27 . Due to the difference in the release position in the radial direction within the conduit 2, the many released bubbles 6 reach the electrode 18 on the downstream side with a slow velocity depending on the flow velocity distribution of the liquid. At this time, the oscillator 23
is excited at a frequency of 10 MH2 or higher, for example. The multiplexer 22 selects and excites one of the plurality of horizontal shields a13a. Switching of multiplexer 22 is controlled by a switching signal from processing device 27. When the selected horizontal shield wire 13a is excited, an alternating current electric field is formed near the conductor 1115 exposed at the part of the electrode 18 that intersects with the vertical shield wire 13b, and the corresponding vertical shield wire 13b is exposed. The conductor 15 that is connected receives the signal. This received voltage includes information on the capacitance of the electrode 18, which changes depending on the object to be measured interposed between the electrode elements of the electrode 18.

複数の縦のシールド線13bが受信した信号は、同14
に検波器25で検波され、かつ多チャンネル高速ADコ
ンバータ26に送られてAD変換され、処理装置27に
入力される。検波器25としてはヘテロダイン検波器を
使用し、ヘテロゲイン方式により中間周波数で滅渡し、
増幅検波を行う。各検波器で検波信号を10〜数」−ラ
イフル積分し、出力する。ただし検波器25としては位
相検波器を使用することもできる。
The signals received by the plurality of vertical shield wires 13b are
The signal is then detected by a wave detector 25, sent to a multi-channel high-speed AD converter 26 for AD conversion, and input to a processing device 27. A heterodyne detector is used as the detector 25, and the signal is dissipated at an intermediate frequency by a hetero gain method.
Perform amplification detection. Each detector performs 10 to several rifle integrals on the detected signal and outputs it. However, a phase detector can also be used as the detector 25.

同様にして、マルチプレクサ22の切替によって、順次
、すべての横のシールド線13aが励振され、電極18
における静電容量が測定されると、それらの信号が処理
装置27に入力され、演算によって、各電極18におけ
る静電容量から、各電極18における被測定体の誘電率
が算出され、その誘電率から、各電極18の電極素子間
に介在する気泡6が特定され、その分布から流速分布が
特定される。この流速分布はCRTディスプレー31上
に描画される。
Similarly, by switching the multiplexer 22, all the horizontal shield wires 13a are sequentially excited, and the electrode 18
When the capacitance at is measured, those signals are input to the processing device 27, and the dielectric constant of the object to be measured at each electrode 18 is calculated from the capacitance at each electrode 18 by calculation. From this, the bubbles 6 interposed between the electrode elements of each electrode 18 are identified, and the flow velocity distribution is identified from the distribution. This flow velocity distribution is drawn on the CRT display 31.

(ハ)発明の効果 この発明の液体流速分布測定装置によれば、直交する格
子状電極の間を気液混和流が通過するとき、相によって
異なる電極の0電容屋の変化を精度よく高速で検出する
ことができるので、これにもとずいて、相によって異な
る誘電率の分布から、気泡の流速分布ひいては液体の流
速分布を検出することができる。微小空間の誘電率分布
の変化を精度良く高速で検出することは、極めて大きな
インピーダンスのため従来は困難であるとされて来たが
、この発明では電極部分をなす格子点以外はすべてシー
ルドされているシールド線を使用して電極格子を構成す
ることにより、外部からの静電誘導ノイズを抑え、局所
的な誘電率の変化を静電容量の変化として検出すること
が可能になった。
(C) Effects of the Invention According to the liquid flow velocity distribution measuring device of the present invention, when a gas-liquid mixed flow passes between orthogonal grid-like electrodes, changes in the zero capacitance of the electrodes, which differ depending on the phase, can be measured accurately and at high speed. Based on this, it is possible to detect the flow velocity distribution of bubbles and, in turn, the flow velocity distribution of liquid, from the distribution of permittivity that differs depending on the phase. Accurately and rapidly detecting changes in the dielectric constant distribution in minute spaces has traditionally been considered difficult due to the extremely large impedance, but with this invention, everything except the lattice points that form the electrodes are shielded. By constructing the electrode grid using shielded wires, it has become possible to suppress electrostatic induction noise from the outside and detect local changes in dielectric constant as changes in capacitance.

しかも取扱いは簡単でありプローブ法と同等の手軽さで
リアルタイムに流動分布を測定することができ、かつ、
超音波を利用するもの或いは電ll流団計を利用するも
のとくらべて、はるかに小規模に計測システムを構築す
ることがきる。
Moreover, it is easy to handle and can measure flow distribution in real time with the same ease as the probe method.
A measurement system can be constructed on a much smaller scale than those using ultrasonic waves or current flowmeters.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は液体流速分布測定装置の斜視説明図、第2図は
液体流速分布測定装置の回路図、第3図は電極を示す斜
視説明図、第4図は第3図にお【プるA部分拡大側面図
、及び第5図は電極板の他の例を示す断面説明図である
。 1・・・液体流速分布測定装置  2・・・管路  3
・・・ノズル  4・・・電極格子  13a・・・横
シールドM   13b・・・縦シールド線  15・
・・導線16・・・絶縁層  17・・・シールド層 
 18・・・電極  20・・・電極板  22・・・
マルチプレクサ23・・・オシレータ  24・・・検
波器アレー25・・・検波器  26・・・多ヂャンネ
ル高速△Dコンバータ  27・・・処理装置   2
8・・・外部記憶装置  31・・・CRTディスプレ
ー指定代理人   工業技術院機械技術研究所長清水嘉
重部 第1図 第2図
Fig. 1 is a perspective explanatory diagram of the liquid flow velocity distribution measuring device, Fig. 2 is a circuit diagram of the liquid flow velocity distribution measuring device, Fig. 3 is a perspective explanatory diagram showing the electrodes, and Fig. 4 is similar to Fig. 3. The enlarged side view of part A and FIG. 5 are cross-sectional explanatory views showing other examples of the electrode plate. 1...Liquid flow velocity distribution measuring device 2...Pipeline 3
...Nozzle 4...Electrode grid 13a...Horizontal shield M 13b...Vertical shield wire 15.
... Conductor wire 16 ... Insulating layer 17 ... Shield layer
18... Electrode 20... Electrode plate 22...
Multiplexer 23... Oscillator 24... Detector array 25... Detector 26... Multi-channel high speed △D converter 27... Processing device 2
8... External storage device 31... CRT display designated agent Yoshigebe Shimizu, Director of Mechanical Technology Research Institute, Agency of Industrial Science and Technology Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 間隙を置いて対向して位置する一対の電極素子からなる
電極の複数をマトリックス状に備えている面内センサを
管路の軸に平行に被測定液体の流れの内に配設し、かつ
前記面内センサの上流側に前記管路の軸に交差する面内
に気泡を発生するノズルを配設して備え、それぞれの電
極の一方の電極素子を励振する励振装置と、及びそれぞ
れ電極の他方の電極素子からの出力を処理する処理装置
とを備え、前記それぞれの電極の電極素子間の被測定体
の誘電率を検出するように構成したことを特徴とする液
体流速分布測定装置
An in-plane sensor comprising a plurality of electrodes arranged in a matrix, each consisting of a pair of electrode elements facing each other with a gap therebetween, is disposed within the flow of the liquid to be measured parallel to the axis of the conduit, and an excitation device that excites one electrode element of each electrode; and an excitation device that excites one electrode element of each electrode, and includes a nozzle that generates bubbles in a plane that intersects the axis of the pipe on the upstream side of the in-plane sensor; a processing device for processing output from the electrode elements of the respective electrodes, and configured to detect the dielectric constant of the object to be measured between the electrode elements of the respective electrodes.
JP7392086A 1986-03-31 1986-03-31 Measuring instrument for fluid velocity distribution Granted JPS62231175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7392086A JPS62231175A (en) 1986-03-31 1986-03-31 Measuring instrument for fluid velocity distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7392086A JPS62231175A (en) 1986-03-31 1986-03-31 Measuring instrument for fluid velocity distribution

Publications (2)

Publication Number Publication Date
JPS62231175A true JPS62231175A (en) 1987-10-09
JPH0515229B2 JPH0515229B2 (en) 1993-03-01

Family

ID=13532074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7392086A Granted JPS62231175A (en) 1986-03-31 1986-03-31 Measuring instrument for fluid velocity distribution

Country Status (1)

Country Link
JP (1) JPS62231175A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539397A (en) * 2005-04-28 2008-11-13 フォルシュングスツェントルム・ドレスデン−ロッセンドルフ・アインゲトラーゲナー・フェライン Grid sensor
JP2010107487A (en) * 2008-11-01 2010-05-13 Tokyo Institute Of Technology Device and method for measuring multiphase flow
US8450208B2 (en) 2010-09-29 2013-05-28 Kabushiki Kaisha Toshiba Semiconductor device manufacturing method
WO2024106473A1 (en) * 2022-11-16 2024-05-23 京セラ株式会社 Bubble fraction sensor, flowmeter employing same, and cryogenic liquid transfer tube

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083749A1 (en) * 2013-12-03 2015-06-11 シャープ株式会社 Sensor chip and biosensor system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539397A (en) * 2005-04-28 2008-11-13 フォルシュングスツェントルム・ドレスデン−ロッセンドルフ・アインゲトラーゲナー・フェライン Grid sensor
JP4654293B2 (en) * 2005-04-28 2011-03-16 フォルシュングスツェントルム・ドレスデン−ロッセンドルフ・アインゲトラーゲナー・フェライン Grid sensor
JP2010107487A (en) * 2008-11-01 2010-05-13 Tokyo Institute Of Technology Device and method for measuring multiphase flow
US8450208B2 (en) 2010-09-29 2013-05-28 Kabushiki Kaisha Toshiba Semiconductor device manufacturing method
WO2024106473A1 (en) * 2022-11-16 2024-05-23 京セラ株式会社 Bubble fraction sensor, flowmeter employing same, and cryogenic liquid transfer tube

Also Published As

Publication number Publication date
JPH0515229B2 (en) 1993-03-01

Similar Documents

Publication Publication Date Title
JP5653999B2 (en) Equipment for nondestructive testing of conductive structures.
JPH11512831A (en) Monitoring method of three-phase fluid flow in pipe
Fan et al. Non-contact ultrasonic gas flow metering using air-coupled leaky Lamb waves
US3967500A (en) Magnetic transit-time flowmeter
JPS6326552A (en) Particle counter and manufacture thereof
EP0172461B1 (en) Apparatus and method for measuring the concentration of a paramagnetic gas
US3370463A (en) Mass flow meter
JPH06229797A (en) Capacitive electromagnetic flowmeter
JPS62231175A (en) Measuring instrument for fluid velocity distribution
US6973840B2 (en) Comprehensive electromagnetic flowmeter
US3314289A (en) Swirl flow meter transducer system
CN110133053A (en) A kind of Metal pipeline corrosion monitoring method and system
CN114199116B (en) Liquid film sensor
US3075145A (en) Magnetic detection of flaws using mutually coupled coils
RU2712723C1 (en) Acoustic multichannel analyzer of micro samples of liquid media
JP3274101B2 (en) Method and apparatus for measuring flow velocity in open channel and calibration inspection method
US3343414A (en) Gas velocity probe for flowing ionized gases
JP2003254987A (en) Capacitance type flow velocity detecting device using temperature fluctuation and capacitance type flow rate detecting device using temperature fluctuation
RU2110784C1 (en) Method of checking of metal object corrosion rate
JPS6212836A (en) Measuring device for two-phase fluid distribution
KR100189166B1 (en) New liquid quantity measurement apparatus and measurement method
Sanderson Electromagnetic and ultrasonic flowmeters: their present states and future possibilities
SU901895A1 (en) Device for two-phase flow diagnostics
GB2123237A (en) Surface detector
Huang et al. A novel flowrate measurement method for small-diameter pipeline based on bidirectional acoustic resonance

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term