JPS6145549A - Charged particle ray device - Google Patents

Charged particle ray device

Info

Publication number
JPS6145549A
JPS6145549A JP15221885A JP15221885A JPS6145549A JP S6145549 A JPS6145549 A JP S6145549A JP 15221885 A JP15221885 A JP 15221885A JP 15221885 A JP15221885 A JP 15221885A JP S6145549 A JPS6145549 A JP S6145549A
Authority
JP
Japan
Prior art keywords
sample
difference
charged particle
divergence
held
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15221885A
Other languages
Japanese (ja)
Inventor
Masahide Okumura
正秀 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15221885A priority Critical patent/JPS6145549A/en
Publication of JPS6145549A publication Critical patent/JPS6145549A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

PURPOSE:To make it possible to correct with high accuracy a relatively positional relation of a sample to the charged electron rays in order to minimize divergence of a visual field due to inclination or rotation of a sample by digital performance of detection and correction of positional divergence. CONSTITUTION:When finished to scan one line, a deflection control unit 11 controls unit 11 controls a deflection signal generator 2 so as to perform line scanning in the Y-axis direction 1 while the coordinates of the edge part of a sample image are held by each register X and Y. Thereafter, when a sample fine-moving stand 16 is inclined, the coordinates of the edge part of the sample image are held by DELTAX or DELTAY registers. In this way, when a difference in the contents of X and DELTAX register or Y and DELTAY register, which are held, is generated and positional divergence is detected, its difference is taken out by the subtractors 17 and 18 for being converted into analogue value by the digital-analogue converters and being outputted to a deflector 3 with the direction and sensitivity where the positional difference may be minimized. As its result, the position of the electron beam 4 on the sample is shifted thus, as a result, generating no divergence of a visual field.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は走査型電子顕vI鏡およびその類似装置等の荷
電粒子線装置に係り、特に試料の傾斜あるいは回転をし
ても、視野位置を正確に一定に保ち得る新規な装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to charged particle beam devices such as scanning electron microscopes and similar devices. The present invention relates to a new device that can maintain a constant value.

〔発明の背景〕[Background of the invention]

試料微動装置に望まれる条件1よ、理想的には視野中心
で試料が回転し、あるいは、傾斜することであるが、機
構的に実現困難である。従来、特開昭51−11756
9号公報に記載の如く1位置ずれの検出や補正をアナロ
グ的に、例えば、試料の傾斜前後の像における位相差を
検出し、その位相差を電圧に変換して、荷電粒子線の位
置を補正し・ているが、高精度な位置ずれの補正には限
度があった。
Condition 1 desired for a sample fine movement device is ideally for the sample to rotate or tilt at the center of the field of view, but this is mechanically difficult to achieve. Previously, JP-A-51-11756
As described in Publication No. 9, one position shift can be detected and corrected in an analog manner, for example, by detecting the phase difference between the images before and after tilting the sample, and converting the phase difference into a voltage to determine the position of the charged particle beam. However, there was a limit to the ability to accurately correct misalignment.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、試料の傾斜あるいは、回転したことに
よる視野位置のずれを検出し、このずれが最小となるよ
うに、試料と荷電子線との相対的位置関係を高精度に補
正し得る荷電粒子線装置を提供することにある。
An object of the present invention is to detect a shift in the field of view position due to the tilt or rotation of the sample, and to correct the relative positional relationship between the sample and the valence electron beam with high precision so that this shift is minimized. An object of the present invention is to provide a charged particle beam device.

〔発明の概要および実施例〕[Summary of the invention and examples]

上記目的を達成するためには、先ず試料像を観良しなが
ら、その中の何処を固定しようとするのかを決めなけれ
ばならない。
In order to achieve the above objective, it is first necessary to carefully examine the specimen image and decide where in it to be fixed.

試料の観察装置の一例として走査型電子顕微鏡(以下、
SEMと記す)があり、その動作は周知なので詳細は省
略するが、以下、SEMを例にとって説明する。
A scanning electron microscope (hereinafter referred to as a scanning electron microscope) is an example of a sample observation device.
SEM), whose operation is well known and will not be described in detail, will be explained below by taking the SEM as an example.

第1図にはSEM像の一例を示している。すなわち、C
RT画面Aには、試料を同期して電子ビーl、で二次元
走査することによって、例えば、試けることを仮定する
。したがって、この場合においては試料像■3をカバー
する範囲の限定された走査(第2図参照)が必要である
。この結果、目的の試A′、1像が抽出された訳である
から、この試料像■3をそのまま記憶しても良いが、当
然予想されるように、試料を傾けると、その結果の試料
像は異なったものとなってしまうため、目的とする位置
ずれの検出が困難になる。
FIG. 1 shows an example of a SEM image. That is, C
It is assumed that the RT screen A can be viewed, for example, by synchronously scanning the sample two-dimensionally with an electronic beam. Therefore, in this case, limited scanning (see FIG. 2) is required to cover the sample image (3). As a result, the target sample A', image 1 has been extracted, so this sample image ■3 can be stored as is, but as expected, when the sample is tilted, the resulting sample Since the images become different, it becomes difficult to detect the desired positional deviation.

この欠点を無くするため、本発明においては少なくとも
1本以上の線走査をした時化じる、試料像の明るさの変
化する部分(エツジ部分)を検出対象とする。たとえば
、第3図に示しているように又軸方向についてX、で示
す線走査を実施すると、その結果生じる映像信号は波形
dとして出力される。この波形dをスライスレベル悲で
比較し。
In order to eliminate this drawback, in the present invention, the detection target is a portion (edge portion) where the brightness of the sample image changes when at least one or more lines are scanned. For example, as shown in FIG. 3, when a line scan indicated by X is performed in the axial direction, the resulting video signal is output as a waveform d. Compare this waveform d at the slice level.

2値化すると、波形Fが得られる6そして、波形Fのた
とえば、立上り迄の時間tXを求めれば、走査の開始点
からの距離Qxは、 QX=□・tx(μm) として求めることができる(ここで、−はビームの走査
速度である。)。すなわち、試料機工。
When binarized, waveform F is obtained.6 Then, for example, if the time tX until the rise of waveform F is determined, the distance Qx from the scanning start point can be determined as QX=□・tx (μm). (Here, - is the scanning speed of the beam.) In other words, sample mechanics.

のX方向の座標が求められる。The coordinate in the X direction is determined.

次に走査をylで示す方向に切り換え、同様にして1y
を求める。これらの操作によって試料像■3の座標検出
が行なわれる。
Next, switch the scanning to the direction indicated by yl, and do the same with 1y.
seek. By these operations, the coordinates of sample image (3) are detected.

以上によって座標検出をした後1例えば、試料をわずか
に傾けたらば、第4図の工、′で示しているように13
に対して位置がずれたことを仮定する。 ここで、再度
、前述した如く、電子ビー11を第3図に示しているよ
うにX軸方向についてX、で示す線走査をし、走査の開
始点からエツジ部名の時間txnを求めると、試料を傾
ける前の座標からのずれ量へX11はΔXn=K (t
x  txn)どして求められる。したかって、ΔXn
が最小になるような方向、量を試料微動台のX軸徹動機
講にンイードバソタすれば良い。しかし、実際的には(
t”ja 4’J部のガタにより、所望の精度が得られ
ない場合も有り得る。このような場合には、電子ビーム
をX軸にシフトしても同様が結果が得られる。
After detecting the coordinates as described above, 1. For example, if the sample is slightly tilted, 13
Assume that the position has shifted with respect to . Here, as mentioned above, if the electronic bee 11 is scanned in the line indicated by X in the X-axis direction as shown in FIG. The amount of deviation X11 from the coordinates before tilting the sample is ΔXn=K (t
x txn). I want to, ΔXn
All you have to do is move the sample fine movement stage in the direction and amount that minimizes it. However, in practice (
There may be cases where the desired accuracy cannot be obtained due to play in the t"ja 4'J section. In such a case, the same result can be obtained even if the electron beam is shifted to the X axis.

具体的には、電子ビームのX線偏向器にΔXに相当する
偏向感度の直流バイアスを供給すれば良い。
Specifically, a DC bias having a deflection sensitivity corresponding to ΔX may be supplied to the electron beam X-ray deflector.

以−ヒの操作の終了後、Y軸方向についても同様のこと
を実施する。そして、Y軸方向についても位置ずれの補
正が終了したらば、再び、目的の方向に試料をわずかに
傾け、さらに同様のことを行ないながら、これらを繰返
せば、ついには目的の傾斜迄、傾けたにも拘らず試料機
工、は視野から逃げていないことになり、すなわち1本
発明の目的である視野位置中心での試料傾斜が実現され
たことになる。
After completing the following operations, the same procedure is performed in the Y-axis direction. Once the positional deviation has been corrected in the Y-axis direction, the sample is tilted slightly in the desired direction again, and the same process is repeated until the sample is tilted to the desired tilt. Nevertheless, the sample mechanism does not escape from the field of view, which means that the object of the present invention, which is to tilt the sample at the center of the field of view, has been achieved.

以上詳述した操作は一見PHAtで、めんどうなことの
ようであるが、これらは自動的に行なわれるものであり
、一連の動作が終了する迄の時間は僅かである。たとえ
ば、座標位置検出のために望ましい1回の傾斜による位
置のずれ量を0.5μmと仮定し、目的の傾斜まで傾け
た時の全ずれ量を1000μmと仮定すると、現状での
SEMの最高走査速度の一例としては1m s / 1
ライン程度であから概略所要時間は約4秒である。
At first glance, the operations detailed above may seem troublesome in PHAt, but they are performed automatically and it takes only a short time to complete the series of operations. For example, assuming that the desired amount of positional deviation due to one tilt for coordinate position detection is 0.5 μm, and assuming that the total amount of deviation when tilting to the desired inclination is 1000 μm, the current maximum scanning of the SEM An example of speed is 1m s/1
The approximate time required to complete the line is approximately 4 seconds.

以下、゛本発明をSEMに適用した場合の一実施例を第
5図により説明する。同図にて、ブロック1が本発明の
一実施例を示している。
Hereinafter, an embodiment in which the present invention is applied to a SEM will be described with reference to FIG. In the figure, block 1 shows one embodiment of the present invention.

先ず偏向信号発生器2の出力が偏向器3を駆動すること
により、電子ビー1% 4は試料5を照射しながら走査
、偏向する。この結果、試料5から発生する二次電子信
号6は検出器7にて検出され、増幅器8を経由してCR
T 9の輝度変調信号となる。一方、偏向信号発生器2
はCRT 、9の偏向器jOにλJしても偏向信号を出
力するため、CRT9には試料5の映像が映し出される
。例えば、第1図の例のような結果が得られる。
First, the output of the deflection signal generator 2 drives the deflector 3, so that the electron beam 1% 4 scans and deflects the sample 5 while irradiating it. As a result, the secondary electron signal 6 generated from the sample 5 is detected by the detector 7 and transmitted to the CR via the amplifier 8.
This becomes a T9 brightness modulation signal. On the other hand, the deflection signal generator 2
Since λJ outputs a deflection signal to the deflector jO of the CRT 9, an image of the sample 5 is displayed on the CRT 9. For example, a result like the example shown in FIG. 1 can be obtained.

次いで、偏向制御部11で、偏向信号発生器2のLM幅
、直流レベルを制御すると、例えば、第2図が実現され
る。
Next, when the deflection control section 11 controls the LM width and DC level of the deflection signal generator 2, for example, FIG. 2 is realized.

以」二の操作の後、偏向制御部11を試料固定のモート
にすると、偏向制御部11は約1 m sの周期でX方
向、Y方向に交互に線走査するように偏向信号発生器2
を制御する。先ず、第1回目のX方向の走査が開始され
ると、このタイミングでカウンタ13はリセットされ、
同時に発振器12が起動し、約17z s周期のクロッ
クを発生し、カウンタ13はこれを訓数する。走査が進
み、増幅器8の出力での試料像信号が第3図波形dの如
く生じると、その信号は2値化回路14で2値化され、
波形Fが出力線15に出現する。出力線15の一部はX
レジスタに加えられ、この時のカウンタ13の内容がX
レジスタに保持される。更に出力線15は発振器12の
発振を止める作用もある。
After the above two operations, when the deflection control unit 11 is set to the sample fixing mote, the deflection signal generator 2 is set so that the deflection control unit 11 performs line scanning alternately in the X direction and the Y direction at a period of about 1 ms.
control. First, when the first scan in the X direction is started, the counter 13 is reset at this timing.
At the same time, the oscillator 12 is activated and generates a clock with a period of approximately 17zs, which is counted by the counter 13. When the scanning progresses and a sample image signal is generated at the output of the amplifier 8 as shown in waveform d in FIG. 3, the signal is binarized by the binarization circuit 14,
Waveform F appears on output line 15. A part of the output line 15 is X
is added to the register, and the contents of counter 13 at this time are
held in a register. Furthermore, the output line 15 also has the function of stopping the oscillation of the oscillator 12.

以上の動作によって1ラインの線走査が終了すると、偏
向制御部11は、Y軸方向1の線走査をするよう偏向信
号発生器2を制御する。この結果の作用はX軸の場合と
全く同じである。ただし。
When one line of line scanning is completed through the above operations, the deflection control unit 11 controls the deflection signal generator 2 to perform one line scanning in the Y-axis direction. The effect of this result is exactly the same as for the X-axis. however.

カウンタ13の内容はYレジスタに保持される。The contents of counter 13 are held in the Y register.

これら動作は約2 m sの間に行なわれる。These operations are performed for about 2 ms.

以上の動作によって、X、Y各しジスタには、例えば第
3図の試料機工、のエツジ部の座標が、保持されること
になる。この後、試料微動台16を手動またはモーター
等を使って傾けると、前記したと同様の過程を経て、試
料像のエツジ部の座標データが、ΔXあるいはΔYレジ
スタに保持される。(X、Yレジスタの内容は書き変ら
ない。
Through the above operations, the coordinates of the edge portion of the sample machine shown in FIG. 3, for example, are held in each of the X and Y registers. Thereafter, when the sample fine movement stage 16 is tilted manually or by using a motor or the like, the coordinate data of the edge portion of the sample image is held in the ΔX or ΔY register through the same process as described above. (The contents of the X and Y registers are not changed.

一方、ΔX、ΔYレジスタは、同一方向の線走査が行な
われる毎、内容が更新される。)このようにして、保持
されたXとΔXレジスタあるいは、YとΔYレジスタの
内容に差が生じると、すなわち、位置ずれが検知される
と、その差分が減醇器17.18に綴って取り出され、
後続するティシタルーアナログコンバーター9.20力
する。この結果、電子ビーム4の試料上における位置が
シフトし、 4A’i果として、視野位置がずれない、
二とになる。
On the other hand, the contents of the ΔX and ΔY registers are updated every time line scanning in the same direction is performed. ) In this way, when a difference occurs between the contents of the held X and ΔX registers or Y and ΔY register, that is, when a positional shift is detected, the difference is written to the reducer 17 and 18 and taken out. Re,
Followed by a 9.20 analog converter. As a result, the position of the electron beam 4 on the sample shifts, and as a result, the field of view position does not shift.
It becomes two.

〔発明の効果〕〔Effect of the invention〕

以−ヒ、詳述した如く1本発明によれば、位置すれの検
出や補正をディジタル的に行なっているため、試料と荷
電粒子線との相対的位置関係を常に正確に一定に保つこ
とができる。その結果、従来のアナログ的に位相差を求
め2位置を補正する場合に比べて、 [、試料の(す1斜、回転機構をもった試料微動機構に
適用すれば、視野位置中心での高精度な微動が可能とな
り、 2、長時間同一地点に荷電粒子線を止めておきたい場合
、たとえばXMA装置などに適用すれば、試料のドリフ
トや、電子ビームのドリフトが高精度に補正されるので
、分析精度が向上する。
As described in detail below, according to the present invention, since positional deviation is detected and corrected digitally, the relative positional relationship between the sample and the charged particle beam can always be kept accurately and constant. can. As a result, compared to the conventional analog method of calculating the phase difference and correcting two positions, if applied to a sample fine movement mechanism with a rotation mechanism, the height at the center of the field of view can be reduced. 2. If you want to keep the charged particle beam at the same point for a long time, for example, if you apply it to an XMA device, sample drift and electron beam drift can be corrected with high precision. , the accuracy of analysis is improved.

和 な〃1本発明は、走査、偏向機能をもった荷電粒子線装
置について説明したが、たとえば透過型電子顕微鏡の場
合、静止している試料像をテレビカメラなどで撮影すれ
ば実施可能である。
Japanese 1. The present invention has been described with respect to a charged particle beam device having scanning and deflection functions, but in the case of a transmission electron microscope, for example, it can be implemented by photographing a stationary sample image with a television camera or the like. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSEM像の一例を示す図、第2図は視野制限し
た時、CRTで(131mされる試料像を示す図、第3
図は線走査をした結果の試料像信号波形の一例を示す図
、第4図は試料を傾けた場合に視野位置がずれることを
説明する図、第5図は本発明をSEMに実施した場合の
一実施例を示す図である。 1・・・本発明の全体ブロック図、2・・・偏向信号発
生器、3,10・・・偏向器、4・・・″こ子ビーt1
.5・・・試料、6・・・二次電子、7・・・検出器、
8・・・増Φば器、9・・・CRT、11・・・偏向制
御部、12・・・発振器、・・・13・・・カウンタ、
14・・・2値化回路、16・・・試料微動台、17.
18・・・l成算器、19.20・・・ディジタル−ア
ナログコンバータ。 lど−1− 代理人弁理士 小 川 勝 男 、3.゛。 ■う゛ yJJlo     第2図 ■。 工2 %3 図 一時P5
Figure 1 shows an example of a SEM image, Figure 2 shows a sample image taken on a CRT (131 m) when the field of view is restricted, and Figure 3
The figure shows an example of the sample image signal waveform as a result of line scanning, Figure 4 is a diagram explaining that the field of view position shifts when the sample is tilted, and Figure 5 is a diagram when the present invention is implemented in an SEM. It is a figure showing one example of this. DESCRIPTION OF SYMBOLS 1... Entire block diagram of the present invention, 2... Deflection signal generator, 3, 10... Deflector, 4...'' Koko beat t1
.. 5... Sample, 6... Secondary electron, 7... Detector,
8... Φ amplifier, 9... CRT, 11... Deflection control section, 12... Oscillator,... 13... Counter,
14... Binarization circuit, 16... Sample fine movement table, 17.
18...l compensator, 19.20...digital-to-analog converter. ldo-1- Representative Patent Attorney Katsuo Ogawa, 3.゛. ■Wow JJlo Figure 2■. Work 2 %3 Figure 1 P5

Claims (1)

【特許請求の範囲】[Claims] 1、試料に荷電粒子線を照射する手段、該粒子線を該試
料上で偏向する手段、上記照射の結果の試料情報信号を
検出する手段、該情報信号にもとづいて映像表示する表
示手段、および上記試料の微動装置からなる荷電粒子線
装置において、映像として表示されている試料像の中の
少なくとも明るさの変化が生じている部分が含まれる一
部分を選定し、選定された一部分までの走査の開始点か
らの荷電粒子線の移動量を検出し、保持する手段と、上
記保持した後において生じた走査の開始点からの上記一
部分迄の移動量を検出し、上記保持された移動量に対す
る差分を求める手段と、該差分に対応して荷電粒子線と
試料との相対的位置関係を補正する手段とを具備したこ
とを特徴とする荷電粒子線装置。
1. means for irradiating a sample with a charged particle beam, means for deflecting the particle beam on the sample, means for detecting a sample information signal as a result of the irradiation, display means for displaying an image based on the information signal, and In a charged particle beam device consisting of the above-mentioned sample micro-motion device, a portion of the sample image displayed as an image that includes at least a portion where a change in brightness has occurred is selected, and scanning up to the selected portion is performed. A means for detecting and holding the amount of movement of the charged particle beam from the starting point, and a means for detecting the amount of movement from the starting point of the scan to the above part after the holding, and a difference with respect to the held movement amount. What is claimed is: 1. A charged particle beam apparatus comprising: means for determining the difference; and means for correcting the relative positional relationship between the charged particle beam and the sample in accordance with the difference.
JP15221885A 1985-07-12 1985-07-12 Charged particle ray device Pending JPS6145549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15221885A JPS6145549A (en) 1985-07-12 1985-07-12 Charged particle ray device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15221885A JPS6145549A (en) 1985-07-12 1985-07-12 Charged particle ray device

Publications (1)

Publication Number Publication Date
JPS6145549A true JPS6145549A (en) 1986-03-05

Family

ID=15535658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15221885A Pending JPS6145549A (en) 1985-07-12 1985-07-12 Charged particle ray device

Country Status (1)

Country Link
JP (1) JPS6145549A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284483A (en) * 1985-06-11 1986-12-15 Dainippon Ink & Chem Inc Thermal recording body
WO2001069643A1 (en) * 2000-03-13 2001-09-20 Hitachi, Ltd. Charged particle beam scanning device
KR20150088202A (en) * 2014-01-23 2015-07-31 가부시키가이샤 히다치 하이테크 사이언스 Charged particle beam device, method for controlling charged particle beam device and observation apparatus of section for processing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284483A (en) * 1985-06-11 1986-12-15 Dainippon Ink & Chem Inc Thermal recording body
WO2001069643A1 (en) * 2000-03-13 2001-09-20 Hitachi, Ltd. Charged particle beam scanning device
KR20150088202A (en) * 2014-01-23 2015-07-31 가부시키가이샤 히다치 하이테크 사이언스 Charged particle beam device, method for controlling charged particle beam device and observation apparatus of section for processing

Similar Documents

Publication Publication Date Title
JP3101114B2 (en) Scanning electron microscope
US4020343A (en) Scanning electron device
JPS6145549A (en) Charged particle ray device
US4152599A (en) Method for positioning a workpiece relative to a scanning field or a mask in a charged-particle beam apparatus
JPS63116348A (en) View matching device of electron beam device
EP0087767A2 (en) Stroboscopic scanning electron microscope
JP2945945B2 (en) Electron beam device and image acquisition method thereof
JP4275786B2 (en) electronic microscope
JP2787299B2 (en) Charged particle beam equipment
JPS5914222B2 (en) Magnification control device for scanning electron microscopes, etc.
EP4120316A1 (en) Electron microscope and image generation method
JP2775812B2 (en) Charged particle beam equipment
JPH0343742B2 (en)
JP2001006588A (en) Scanning electron microscope
JPH0219682Y2 (en)
JP2838799B2 (en) Charged particle beam equipment
JP2918344B2 (en) Scanning electron microscope
SU920894A1 (en) Scanning device for reproducing specimen image
JPH0139394Y2 (en)
JPH0328016B2 (en)
JPH0765772A (en) Ion beam processing device
JPH11160054A (en) Pattern length measurement method
JPH1083782A (en) Scanning electron microscope
JPH01140627A (en) Position aligner using scanned image
JPH0997584A (en) Electron beam diffracting device