JPS6145370Y2 - - Google Patents

Info

Publication number
JPS6145370Y2
JPS6145370Y2 JP14760378U JP14760378U JPS6145370Y2 JP S6145370 Y2 JPS6145370 Y2 JP S6145370Y2 JP 14760378 U JP14760378 U JP 14760378U JP 14760378 U JP14760378 U JP 14760378U JP S6145370 Y2 JPS6145370 Y2 JP S6145370Y2
Authority
JP
Japan
Prior art keywords
set pin
rotating shaft
rotating
shaft
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14760378U
Other languages
Japanese (ja)
Other versions
JPS5564738U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14760378U priority Critical patent/JPS6145370Y2/ja
Publication of JPS5564738U publication Critical patent/JPS5564738U/ja
Application granted granted Critical
Publication of JPS6145370Y2 publication Critical patent/JPS6145370Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Testing Of Engines (AREA)
  • Snaps, Bayonet Connections, Set Pins, And Snap Rings (AREA)

Description

【考案の詳細な説明】 本考案は駆動系が種々変ることにより被動系と
の距離が変化するような上記両系間を連結するた
めの回転軸接手、殊に分割式回転軸接手に適した
回転軸の抜け止め装置に関する。 上記回転軸接手は、例えばエンジン台上試験等
において、定置した動力計(被動系)に大きさの
異なるエンジン(駆動系)を一時的に接続するの
に適するが、従来上記エンジン台上試験を行う場
合には、エンジンと動力計の間に「ダミーミツシ
ヨン」と称する接続装置を介在させるのが通例で
あつた。 上記ダミーミツシヨンは第1図に示す如く、エ
ンジンEのフライホイールハウジングHに取付け
られたクラツチCを内蔵するクラツチハウジング
1と、これに回転自在に支持され、先端がクラツ
チCにまた、後端がフランジにより動力計Dに
各々接続した回転軸2とから成るものであるが、
クラツチハウジング1のフライホイールハウジン
グHへの取付け面H1と、回転軸2の前端21と
の距離LはクラツチCの型式により定つているも
のであるから、例えばエンジンEの型式を変更す
ると、フライホイールF或いは同ハウジングHの
厚さFL、HLが変るので、今までの回転軸では長
さが合わず装着できなくなる。従つて従来このよ
うな場合には、エンジンに適合するダミーミツシ
ヨン全体を変えていたが、これではエンジンの種
類だけダミーミツシヨンの準備が必要で、保管場
所等管理面においても非常に不都合であり、また
コストも嵩む。 この問題を解決するものとして、エンジンの種
類が変つてもダミーミツシヨンの中の回転軸を交
換するだけで使用できる分割式回転軸接手があ
る。上記接手は両端に設けた接続手段(後記中間
軸6の先端部61、おすスプライン62,63及
小径部64の一端側)(前記61,62)を異種
駆動系E,C,Fの接続機構C,Hに対応せしめ
た複数種類の中間軸6と、支持部材1に回転自在
に支承され、一端を被動系Dと連結せしめ且つ前
記中間軸の他端側(前記63,64)と嵌脱しう
る接続手段(後記軸孔41並びにスプライン部4
2)及び抜け止め装置7とを備えた一種類の回転
円筒部材4からなり、駆動系E、C、Fの種類に
応じて前記中間軸6を選択することにより当該中
間軸6′を異種駆動系E、C、Fと被動系Dを連
結せしめるようにしてなるものである。 これによつて、被動系Dがそのままで、駆動系
E、C、Fを異種のものとするときは、駆動系E
又はその部品Hに固定された支持部材1を駆動系
E又は前記Hから外すか、或いは支持部材3を同
部材1から外し、且つ中間軸6の一端側(前記6
1.62)を駆動系E、C側より外した後、抜け
止め装置7を解除して中間軸6の他端側(前記6
3、64)を回転円筒部材4より引き抜き、変更
後の駆動系E、Fの寸度に適した駆動側長さを一
端側(前記61、62)を有する中間軸6を選択
してこの他端側(前記63、64)を回転円筒部
材4に嵌入し、抜け止め装置7によつてロツクす
るとともに、一端側(前記61、62)を変更後
の駆動系E、F、Cに支持又は係合し、且つ支持
部材1又は3を駆動系E又はCと係合固定し、更
に回転円筒部材4を被動系Dと連結すればよい。 これにより変更後の駆動系Eが被動系Dと本発
明回転軸接手を介して円滑に連結され、駆動系E
から被動系Dへの回転伝達も支障なく行われる。 ところで前記のような回転軸と回転体に分割し
得る分割式回転軸接手における回転軸の抜け止め
装置は、一般に回転体内において回転軸に向つて
あけた孔にセツトピンを挿入し、該ピンをばねで
回転軸方向に押圧してその先端を回転軸に係合せ
しめたのみであるので回転軸、回転体が高速回転
した場合、遠心力によつてセツトピンがばねに抗
して外方に移動しセツトピンと回転軸との係合が
外れてしまうおそれがあり甚だ危険である。この
ため前記ばねを強くしたり、セツトピンの逸出を
防止する機構を設けることが考えられるが、前者
は停止時セツトピンを操作するとき重く、後者は
操作を誤つたり複雑となるおそれがある。 本考案は上記問題点を解決した回転軸の抜け止
め装置を提供せんとするもので、その構成を実施
例に対応する第3図を用いて説明すると、本考案
は係合溝64を形成した回転軸6を着脱自在に嵌
入し得る回転体4内にセツトピン71を先端が前
記係合溝64に係合するようばね73で押圧して
配設するとともに、前記回転体4にセツトピン7
1と回転体4を遠心力で係止するロツク機構72
を設けたものである。 このような構成により、本考案は駆動系(E,
C,F)の回転中は、セツトピン71の先端が回
転軸6の係止溝64にあるよう前記ロツク機構
2がセツトピン71と回転体4をロツクするが、
回転軸6を交換するときは駆動系の停止時セツト
ピン71が第3図仮想線に示すように上方にあれ
ば、前記ロツク機構72がセツトピン71と回転
体4を解除するので、セツトピン71をばね73
に抗して外方に引いて前記係合溝64より脱出さ
せれば回転軸6を引き抜くことができる。ここ
で、再び駆動系側の長さを変えた他の回転軸を挿
入し、セツトピン71をばね73により戻してそ
の先端を外周溝64に嵌入すれば、該回転軸6の
回転体4からの抜け止めがなされる。 本案実施例を第2図、第3図により詳細に説明
すると、長さを異にする回転軸6の端部付近には
その周囲に係合溝64を形成し、一方該回転軸6
が挿入される回転体4には、回転軸6が挿入され
たとき上記係合溝64が位置する個所に対応して
回転軸6とほぼ直角に摺動孔45をあけ、また該
孔の外端付近44に、中心孔72aをもつロツク
機構72に用いる抜け止めナツト72を取付け
る。なお、該抜け止めナツト72は必ずしも必要
なく、ロツク機構72は直接回転体4に設けても
よい。71はセツトピンで上記2つの孔、即ち摺
動孔45及び中心孔72aに亙つて挿入するよう
先端71aとフランジ71cと基部71dが形成
され、ばね73が前記抜け止めナツト72下面と
セツトピン先端71a上縁との間に掛けられてセ
ツトピン71を前記係合溝64側へ付勢してい
る。上記セツトピン71には前記フランジ71c
と基部71dの間にロツク溝71bを形成し、一
方上記抜け止めナツト72内にはセツトピン71
の先端71aが回転軸6の係合溝64にあると
き、一端がセツトピンのロツク溝71bの位置で
中心孔72aに通じ、他端が斜めに抜け止めナツ
ト72の外側付近に達する複数の傾斜孔72bを
あけて、ここにボール74を収納し、ロツク機構
72を構成せしめる。 このような抜け止め装置を備えた回転軸接手に
おいては、エンジンEが回転すると、その動力が
フライホイールF、クラツチCを経てスプライン
62より回転軸6に伝えられ、後部のスプライン
63からこれに噛み合う回転体4のスプライン4
2を経て、回転体4のフランジ43と接続した動
力計Dに伝えられる。 このとき、回転軸6が回転体4内で軸方向に移
動して抜けようとしても、本案抜け止め装置7の
セツトピン71の先端71aが回転軸6の係合溝
64に嵌入してその位置を規制し、抜け止めを行
う。即ち上記セツトピン71は回転に伴う遠心力
によつて、ばね73に抗して摺動孔45及び中心
孔72a内で外方に移動せんとするが、ロツク機
72におけるボール74が逸早く遠心力により
傾斜孔72b内を外方に移動し、セツトピン71
のロツク溝71b内で前記フランジ71cと傾斜
孔72bの外側面72cとにはさまれてセツトピ
ン71がそれ以上外方へ移動することを阻止され
る。従つてセツトピン先端71aが前記係合溝6
4から抜け出すことはない。 別の機種のエンジン、例えばフライホイールF
の図中の厚さFLが変つたエンジンについて動力
測定しようとするときは、例えば固定外筒3を支
持部材1より外し、回転軸6の先端61及びスプ
ライン62を軸受P、クラツチCから外して引き
抜いた後、回転体4及び回転軸6を手で回転さ
せ、抜け止め装置7を第3図中二点鎖線で示す如
く、上側に位置させる。すると、回転していない
この状態では遠心力が作用しないので、セツトピ
ン71はばね73に付勢されて下(軸孔41)側
に押圧され、ボール74もセツトピンのロツク構
71bから離れて傾斜孔72bを下側に転動し、
落下する。この状態でセツトピン71を図中矢印
で示す方向に引き上げ、その先端71aを回転軸
6の係合溝64から抜き、、回転軸6を白抜き矢
印で示す方向に回転体4から引き抜く。その後、
新しいエンジンEに適合する長さをもつ回転軸6
を前記同様にセツトピン71を引き上げながら回
転体4の軸孔41に挿入し、セツトピンの先端7
1aを前記同様に係合溝64に嵌入させれば組み
換えは完了する。 以上のように本考案の軸の抜け止め装置は、係
合溝を形成した回転軸を着脱自在に嵌入し得る回
転体内にセツトピンを先端が前記係合溝に係合す
るようばねで押圧して配設するとともに、前記回
転体にセツトピンと回転体を遠心力で係止するロ
ツク機構を設けたので、回転停止時、セツトピン
を半径方向に抜き差しするのみで、セツトピン先
端と回転軸の溝との解放、固定ができ、きわめて
操作性がよい。 また本考案抜け止め装置では、前記回転体にセ
ツトピンと回転体を遠心力で係止するロツク機構
を備えることにより、セツトピンの外方への移動
が確実に係止され、安全で信頼性が高い回転軸用
の抜け止め装置を提供できる効果がある。
[Detailed description of the invention] The present invention is suitable for a rotating shaft joint for connecting the above-mentioned two systems, where the distance from the driven system changes due to various changes in the drive system, especially for a split type rotating shaft joint. This invention relates to a rotating shaft retaining device. The above-mentioned rotating shaft joint is suitable for temporarily connecting engines (drive systems) of different sizes to a stationary dynamometer (driven system) in, for example, engine bench tests. When this was done, it was customary to interpose a connecting device called a "dummy transmission" between the engine and the dynamometer. As shown in Fig. 1, the dummy transmission is rotatably supported by a clutch housing 1 that houses a clutch C attached to a flywheel housing H of an engine E, and has a tip attached to the clutch C and a rear end attached to the clutch housing H. are composed of rotating shafts 2 each connected to a dynamometer D by a flange,
The distance L between the mounting surface H1 of the clutch housing 1 to the flywheel housing H and the front end 21 of the rotating shaft 2 is determined by the model of the clutch C, so if the model of the engine E is changed, for example, the flywheel Since the thickness FL and HL of the wheel F or the same housing H will change, the length will not match with the existing rotating shaft and it will no longer be possible to mount it. Therefore, conventionally, in such cases, the entire dummy transmission to match the engine was changed, but this required preparation of a dummy transmission only for the type of engine, which was very inconvenient in terms of management such as storage space. Yes, and the cost is also high. To solve this problem, there is a split rotary shaft joint that can be used even if the type of engine changes by simply replacing the rotary shaft in the dummy transmission. The above-mentioned joint connects the connecting means (the tip 61 of the intermediate shaft 6, male splines 62, 63, and one end of the small diameter part 64 of the intermediate shaft 6 described later) (61, 62) to the connection mechanism of different drive systems E, C, F. A plurality of types of intermediate shafts 6 corresponding to C and H are rotatably supported by the support member 1, one end is connected to the driven system D, and the other end of the intermediate shaft (63, 64) is fitted and disengaged. connection means (shaft hole 41 and spline portion 4 described later)
2) and a retaining device 7, and by selecting the intermediate shaft 6 according to the type of drive system E, C, F, the intermediate shaft 6' can be driven by different types. The systems E, C, and F are connected to the driven system D. As a result, when driving system E, C, and F are different types while leaving driven system D as is, drive system E
Alternatively, the support member 1 fixed to the component H is removed from the drive system E or the H, or the support member 3 is removed from the same member 1, and one end side of the intermediate shaft 6 (the 6
1.62) from the drive system E and C sides, release the retaining device 7 and remove the other end of the intermediate shaft 6 (the 6
3, 64) from the rotating cylindrical member 4, and select the intermediate shaft 6 having one end (61, 62) with a drive side length suitable for the dimensions of the changed drive systems E, F, and then The ends (said 63, 64) are fitted into the rotating cylindrical member 4 and locked by the retainer 7, and the one end (said 61, 62) is supported or supported by the changed drive system E, F, C. What is necessary is to engage and fix the support member 1 or 3 with the drive system E or C, and further connect the rotating cylindrical member 4 with the driven system D. As a result, the changed drive system E is smoothly connected to the driven system D via the rotary shaft joint of the present invention, and the drive system E
Rotation is also transmitted from the drive system D to the driven system D without any problem. By the way, the rotating shaft retaining device in the split type rotating shaft joint that can be divided into the rotating shaft and the rotating body as described above is generally performed by inserting a set pin into a hole drilled in the rotating body toward the rotating shaft, and then tightening the pin with a spring. Since the set pin is simply pressed in the direction of the rotating shaft and its tip is engaged with the rotating shaft, when the rotating shaft and rotating body rotate at high speed, the set pin will move outward against the spring due to centrifugal force. There is a risk that the set pin and the rotating shaft may become disengaged, which is extremely dangerous. For this reason, it is conceivable to strengthen the spring or provide a mechanism to prevent the set pin from escaping, but the former method is heavy when operating the set pin when stopped, and the latter method may cause errors in operation or complicate operation. The present invention aims to provide a rotating shaft retaining device that solves the above-mentioned problems.The structure of the device will be explained with reference to FIG. 3 corresponding to the embodiment. A set pin 71 is pressed by a spring 73 so that its tip engages with the engagement groove 64 and is disposed inside the rotary body 4 into which the rotary shaft 6 can be removably inserted.
1 and the rotating body 4 by centrifugal force .
It has been established. With this configuration, the present invention has a drive system (E,
During the rotation of C and F), the lock mechanism 7 is rotated so that the tip of the set pin 71 is in the locking groove 64 of the rotating shaft 6.
2 locks the set pin 71 and rotating body 4,
When replacing the rotating shaft 6, when the drive system is stopped, if the set pin 71 is in the upper position as shown in the imaginary line in FIG. 73
The rotating shaft 6 can be pulled out by pulling it outward against the force to escape from the engagement groove 64. Here, if another rotating shaft with a different length on the drive system side is inserted again, the set pin 71 is returned by the spring 73, and its tip is inserted into the outer peripheral groove 64, the rotation shaft 6 is removed from the rotating body 4. It is prevented from coming off. This embodiment will be described in detail with reference to FIGS. 2 and 3. Engagement grooves 64 are formed around the ends of the rotating shafts 6 having different lengths, while the rotating shafts 6 have different lengths.
In the rotating body 4 into which the rotating shaft 6 is inserted, a sliding hole 45 is formed approximately at right angles to the rotating shaft 6, corresponding to the position where the engaging groove 64 is located when the rotating shaft 6 is inserted, and a sliding hole 45 is formed at the outside of the hole. A retaining nut 72 used for a lock mechanism 72 having a center hole 72a is attached near the end 44. Note that the retaining nut 72 is not necessarily necessary, and the locking mechanism 72 may be provided directly on the rotating body 4. Reference numeral 71 denotes a set pin, which has a tip 71a, a flange 71c, and a base 71d so as to be inserted into the two holes, that is, the sliding hole 45 and the center hole 72a. The set pin 71 is hung between the edges and urges the set pin 71 toward the engagement groove 64 side. The set pin 71 has the flange 71c.
A locking groove 71b is formed between the locking nut 71 and the base 71d, and a set pin 71 is provided in the retaining nut 72.
When the tip 71a is in the engagement groove 64 of the rotating shaft 6, one end of the locking groove 71b of the set pin communicates with the center hole 72a, and the other end diagonally reaches a plurality of inclined holes near the outside of the locking nut 72. Open 72b, store the ball 74 here, and lock the lock mechanism.
72 is configured. In a rotary shaft joint equipped with such a retaining device, when the engine E rotates, the power is transmitted to the rotary shaft 6 from the spline 62 via the flywheel F and clutch C, and is engaged with the rotary shaft 6 from the rear spline 63. Spline 4 of rotating body 4
2, it is transmitted to the dynamometer D connected to the flange 43 of the rotating body 4. At this time, even if the rotating shaft 6 moves in the axial direction within the rotating body 4 and attempts to come out, the tip 71a of the set pin 71 of the present retaining device 7 fits into the engagement groove 64 of the rotating shaft 6 and maintains its position. Regulate and prevent slippage. That is, the set pin 71 tries to move outward in the sliding hole 45 and the center hole 72a against the spring 73 due to the centrifugal force accompanying the rotation, but the ball 74 in the locking mechanism 72 quickly moves due to the centrifugal force. Move the set pin 71 outward in the inclined hole 72b.
In the lock groove 71b, the set pin 71 is sandwiched between the flange 71c and the outer surface 72c of the inclined hole 72b, and is prevented from moving further outward. Therefore, the set pin tip 71a fits into the engagement groove 6.
There's no getting out of 4. Engine of another model, e.g. flywheel F
When attempting to measure the power of an engine with a different thickness FL in the figure, for example, remove the fixed outer cylinder 3 from the support member 1, and remove the tip 61 of the rotating shaft 6 and the spline 62 from the bearing P and clutch C. After pulling it out, the rotating body 4 and rotating shaft 6 are rotated by hand to position the retaining device 7 on the upper side as shown by the two-dot chain line in FIG. Then, since no centrifugal force acts in this non-rotating state, the set pin 71 is biased by the spring 73 and pressed downward (toward the shaft hole 41), and the ball 74 also separates from the locking mechanism 71b of the set pin and moves into the inclined hole. Roll 72b downward,
Fall. In this state, the set pin 71 is pulled up in the direction shown by the arrow in the figure, its tip 71a is pulled out from the engagement groove 64 of the rotating shaft 6, and the rotating shaft 6 is pulled out from the rotating body 4 in the direction shown by the white arrow. after that,
Rotating shaft 6 with a length compatible with the new engine E
is inserted into the shaft hole 41 of the rotating body 4 while pulling up the set pin 71 in the same manner as described above, and the tip 7 of the set pin
The recombination is completed by fitting 1a into the engagement groove 64 in the same manner as described above. As described above, the shaft slip-off prevention device of the present invention includes a set pin that is pressed by a spring so that its tip engages with the engagement groove in a rotating body into which a rotating shaft having an engagement groove can be removably inserted. At the same time, the rotary body is provided with a locking mechanism that locks the set pin and the rotary body using centrifugal force, so that when the rotation stops, simply inserting and removing the set pin in the radial direction allows the tip of the set pin to connect with the groove of the rotating shaft. It can be released and fixed, and is extremely easy to operate. In addition, the locking device of the present invention is equipped with a locking mechanism that locks the set pin and the rotor using centrifugal force on the rotating body, so that the outward movement of the set pin is reliably stopped, making it safe and highly reliable. This has the effect of providing a retaining device for the rotating shaft.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の回転軸接手の縦断面図、第2図
は本考案抜け止め装置を備えた回転軸接手の縦断
面図、第3図は本考案装置の要部拡大図である。 4;回転体、6:回転軸、64;係合溝、7;
抜け止め装置、71;セツトピン、71b;ロツ
ク溝、72;ロツク機構、72;抜け止めナツ
ト、72b;傾斜孔、72;ばね、74;ボー
ル。
FIG. 1 is a longitudinal cross-sectional view of a conventional rotary shaft joint, FIG. 2 is a vertical cross-sectional view of a rotary shaft joint equipped with a retaining device of the present invention, and FIG. 3 is an enlarged view of a main part of the device of the present invention. 4; Rotating body, 6: Rotating shaft, 64; Engagement groove, 7;
Retaining device, 71; Set pin, 71b; Lock groove, 72 ; Lock mechanism, 72; Retaining nut, 72b; Slanted hole, 72; Spring, 74; Ball.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 係合溝を形成した回転軸を着脱自在に嵌入し得
る回転体内にセツトピンを先端が前記係合溝に係
合するようばねで押圧して配設するとともに、前
記回転体にセツトピンと回転体を遠心力で係止す
るロツク機構を設けてなる回転軸の抜け止め装
置。
A set pin is pressed by a spring so that its tip engages with the engagement groove in a rotating body into which a rotating shaft having an engagement groove can be removably inserted, and the set pin and the rotating body are attached to the rotating body. A rotating shaft locking device equipped with a locking mechanism that locks using centrifugal force.
JP14760378U 1978-10-26 1978-10-26 Expired JPS6145370Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14760378U JPS6145370Y2 (en) 1978-10-26 1978-10-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14760378U JPS6145370Y2 (en) 1978-10-26 1978-10-26

Publications (2)

Publication Number Publication Date
JPS5564738U JPS5564738U (en) 1980-05-02
JPS6145370Y2 true JPS6145370Y2 (en) 1986-12-20

Family

ID=29129218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14760378U Expired JPS6145370Y2 (en) 1978-10-26 1978-10-26

Country Status (1)

Country Link
JP (1) JPS6145370Y2 (en)

Also Published As

Publication number Publication date
JPS5564738U (en) 1980-05-02

Similar Documents

Publication Publication Date Title
US10480587B2 (en) Self-aligning driveshaft coupler
US4071105A (en) Coupling device for a power transmission shaft
BR102012026228B1 (en) device for connecting a gear motor to an aircraft wheel and method of detecting a bearing failure in the device
JPS6145370Y2 (en)
EP0299980A1 (en) Spline anti-backlash device
FR3059065A1 (en) RADIAL ASSEMBLY OF CLUTCH MECHANISM ON TRANSMISSION
FR2561343A1 (en) DRIVE SYSTEM FOR A MOTOR VEHICLE COMPRISING A HYDRODYNAMIC CLUTCH AND A MANUALLY CONTROLLED GEARBOX
EP3282141B1 (en) Self-aligning driveshaft coupler
US7513347B2 (en) Mechanical transmission device
JPS6131808B2 (en)
US4172504A (en) Bicycle engine
JPS6115337Y2 (en)
JPS5817129Y2 (en) clutch release device
JPH0129136Y2 (en)
JPS62502211A (en) A device that transmits torque from the drive shaft to the driven shaft, especially an overrunning clutch.
JPS5855067Y2 (en) Front PTO extraction device for power agricultural machinery
JPH0213773Y2 (en)
JP2510848Y2 (en) Shaft coupling device
JPH0623572B2 (en) Drive shaft
JPS58178867A (en) Inertia engagement type starter
KR20230106827A (en) power take off device on rear axle
JPS5821777Y2 (en) freewheel hub device
KR20230106826A (en) power take off device
JP2585472Y2 (en) Winch clutch lubricator
KR100390253B1 (en) Release bearing assembly