JPS6145048B2 - - Google Patents

Info

Publication number
JPS6145048B2
JPS6145048B2 JP57017820A JP1782082A JPS6145048B2 JP S6145048 B2 JPS6145048 B2 JP S6145048B2 JP 57017820 A JP57017820 A JP 57017820A JP 1782082 A JP1782082 A JP 1782082A JP S6145048 B2 JPS6145048 B2 JP S6145048B2
Authority
JP
Japan
Prior art keywords
intake
intake port
tangential
helical
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57017820A
Other languages
Japanese (ja)
Other versions
JPS58135323A (en
Inventor
Seiichi Sunami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP57017820A priority Critical patent/JPS58135323A/en
Publication of JPS58135323A publication Critical patent/JPS58135323A/en
Publication of JPS6145048B2 publication Critical patent/JPS6145048B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • F02B31/08Movable means, e.g. butterfly valves having multiple air inlets, i.e. having main and auxiliary intake passages
    • F02B31/085Movable means, e.g. butterfly valves having multiple air inlets, i.e. having main and auxiliary intake passages having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4228Helically-shaped channels 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B2031/006Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air intake valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/247Arrangement of valve stems in cylinder heads the valve stems being orientated in parallel with the cylinder axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】 本発明は、デイーゼルエンジンの吸気機構に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake mechanism for a diesel engine.

直接噴射式デイーゼルエンジンは、燃費や出力
等の性能を向上するには、燃焼室に噴射した燃料
の分散を良好にして空気と燃料の混合を充分に行
い、かつ、燃焼室に吸入する空気の量を多くして
体積効率を増加させることが必要である。従来、
燃焼室の燃料の分散を良好にするため、燃焼室の
吸気ポートをヘリカル形状にして、ヘリカル吸気
ポートから燃焼室に流入する空気にスワールを発
生させ、そのスワールによつて燃焼室の燃料を良
好に分散させることが行なわれている。ところ
が、ヘリカル吸気ポートは吸気の流動損失が多い
ため、燃焼室に吸入される空気の量が減少して体
積効率が低下し、また、エンジンの低速運転時に
はスワール速度が遅くて燃料の分散が不充分であ
り、逆に、高速運転時には、スワール速度が速す
ぎていわゆるオーバースワールとなり、スワール
に噴霧した燃料同志が干渉し、燃料の分散が却つ
て悪くなるという問題がある。そこで、この問題
を解決するため、燃焼室にスワール起生用の吸気
ポートとスワールを起生しない吸気ポートとをそ
れぞれ連通して設け、両吸気ポートにそれぞれ同
時に開閉する吸気弁を設け、両吸気ポートの始端
側分岐部にいずれか一方の吸気ポートの流路を絞
る流入制御弁を設け、エンジンの低速運転時には
スワールを起生しない吸気ポートの流路を絞つて
スワール起生用の吸気ポートに多くの空気を流入
させ、逆に、高速運転時にはスワール起生用の吸
気ポートの流路を絞つてスワールを起生しない吸
気ポートに多くの空気を流入させる吸気機構が発
明された。この吸気機構は、吸気の流動損失が多
いスワール起生用吸気ポートの使用率を低減し
て、エンジンの運転条件に応じた速度のスワール
を起生させることを意図しているが、しかし、両
吸気ポートの吸気弁の開閉時期をそれぞれ各吸気
ポートに適した時期に設定することができず、ま
た、両吸気ポートの流路を同時に絞ることができ
ないことから、まだ充分なものとは言い難い。
In order to improve performance such as fuel efficiency and output of a direct injection diesel engine, it is necessary to improve the dispersion of the fuel injected into the combustion chamber to ensure sufficient mixing of air and fuel, and to improve the air intake into the combustion chamber. It is necessary to increase the volumetric efficiency by increasing the amount. Conventionally,
In order to improve the dispersion of fuel in the combustion chamber, the intake port of the combustion chamber is made into a helical shape, and a swirl is generated in the air flowing into the combustion chamber from the helical intake port, and the swirl improves the fuel distribution in the combustion chamber. It is being dispersed into However, the helical intake port has a large flow loss of intake air, which reduces the amount of air taken into the combustion chamber and reduces volumetric efficiency.Furthermore, when the engine is running at low speed, the swirl speed is slow and fuel is not dispersed. On the other hand, during high-speed operation, the swirl speed is too high, resulting in so-called over-swirl, which causes the fuel sprayed in the swirl to interfere with each other, making the fuel dispersion worse. Therefore, in order to solve this problem, an intake port for generating swirl and an intake port that does not generate swirl are provided in communication with each other in the combustion chamber, and intake valves that open and close at the same time are provided for both intake ports. An inflow control valve that restricts the flow path of one of the intake ports is installed at the branch on the starting end side of the port, and when the engine is running at low speed, the flow path of the intake port that does not generate swirl is restricted and the intake port is used to generate swirl. An intake mechanism has been invented that allows a large amount of air to flow in, and conversely, during high-speed operation, constricts the flow path of the intake port for generating swirl so that a large amount of air flows into the intake port that does not generate swirl. This intake mechanism is intended to reduce the usage rate of the swirl-generating intake port, where there is a lot of intake air flow loss, and to generate swirl at a speed that matches the engine operating conditions. It is still difficult to say that this is sufficient because it is not possible to set the opening and closing timing of the intake valves of each intake port to the appropriate timing for each intake port, and it is not possible to narrow down the flow paths of both intake ports at the same time. .

このような従来の状況からして、本発明の目的
は、燃焼室に噴射した燃料の分散を良好にするス
ワールを起生させ、かつ、吸気の流動損失を低減
して燃焼室の体積効率を増加させることができる
デイーゼルエンジンの吸気機構を提供することで
ある。
In view of this conventional situation, an object of the present invention is to generate a swirl that improves the dispersion of fuel injected into the combustion chamber, and to reduce flow loss of intake air and improve the volumetric efficiency of the combustion chamber. It is an object of the present invention to provide an air intake mechanism for a diesel engine that can be increased.

本発明者は、上記の目的を達成するため、先
ず、燃焼室の吸気ポートに設けた吸気弁の開閉時
期に着眼したのである。吸気弁が一般に開放又は
閉鎖する上死点又は下死点付近においては、吸気
ポートから燃焼室に流入する吸気の速度が遅く、
スワールを起生させるのには適さないが、吸気の
流動損失が少く、逆に、上死点と下死点の中間付
近においては、吸気の速度が速く、吸気の流動損
失が多いが、スワールの起生に適することから、
強スワール起生用吸気ポートの吸気弁は弱スワー
ル起生用吸気ポートの吸気弁より遅く開弁して早
く閉弁することに考え及んだのである。
In order to achieve the above object, the present inventor first focused on the opening/closing timing of the intake valve provided at the intake port of the combustion chamber. Near top dead center or bottom dead center, where the intake valve is generally open or closed, the speed of intake air flowing into the combustion chamber from the intake port is slow;
Although it is not suitable for creating a swirl, the flow loss of intake air is small. Conversely, near the middle between top dead center and bottom dead center, the speed of intake air is high and there is a lot of flow loss of intake air, but swirl Because it is suitable for the occurrence of
The idea was that the intake valve of the intake port for generating strong swirls should open later and close earlier than the intake valves for the intake ports for generating weak swirls.

即ち、第1発明は、デイーゼルエンジンの燃焼
室に、強スワール起生用のヘリカル吸気ポート
と、弱スワール起生用タンジエンシヤル吸気ポー
トとをそれぞれ連通して設け、ヘリカル吸気ポー
トに設けた吸気弁をタンジエンシヤル吸気ポート
に設けた吸気弁より遅く開弁して早く閉弁するよ
うに設定し、タンジエンシヤル吸気ポートにデイ
ーゼルエンジンの運転条件に応じて作動する絞り
弁を設けたことを特徴とするデイーゼルエンジン
の吸気機構である。
That is, the first invention provides a combustion chamber of a diesel engine with a helical intake port for generating a strong swirl and a tangential intake port for generating a weak swirl in communication with each other, and an intake valve provided on the helical intake port. A diesel engine characterized in that the tangential intake port is set to open later and close earlier than the intake valve provided in the tangential intake port, and the tangential intake port is provided with a throttle valve that operates according to the operating conditions of the diesel engine. It is an intake mechanism.

第1発明の吸気機構においては、エンジンの低
速運転時に多くの空気が流入するヘリカル吸気ポ
ートに設けた吸気弁がスワールの起生に適した期
間にのみ開放するので、従来においてはスワール
の起生が充分ではなかつた低速運転時に、燃焼室
に燃料の分散を良好にする充分なスワールを起生
させることができ、また、高速運転時に多くの空
気が流入するタンジエンシヤル吸気ポートに設け
た吸気弁が吸気の流動損失の少ない期間に開放す
るので、従来においては吸気の流動損失が多かつ
た高速運転時に、吸気の流動損失を低減して燃焼
室の体積効率を増加させることができる。
In the intake mechanism of the first invention, the intake valve provided at the helical intake port through which a large amount of air flows in during low-speed operation of the engine opens only during a period suitable for generating swirl. It is possible to generate sufficient swirl to improve the dispersion of fuel in the combustion chamber during low-speed operation, which would otherwise be insufficient, and the intake valve installed at the tangential intake port, where a large amount of air flows in during high-speed operation, Since it is opened during a period when intake air flow loss is small, the intake air flow loss can be reduced and the volumetric efficiency of the combustion chamber can be increased during high-speed operation where intake air flow loss was conventionally large.

次に、本発明者は、タンジエンシヤル吸気ポー
トのみならず強スワール起生用のヘリカル吸気ポ
ートにも絞り弁を設ければ、ヘリカル吸気ポート
の流入空気量を制御することにより高速運転時の
オーバースワールを防止することができることに
考え及んだのである。
Next, the present inventor proposed that if a throttle valve is provided not only in the tangential intake port but also in the helical intake port for generating strong swirl, the amount of air flowing into the helical intake port can be controlled to reduce overswirl during high-speed operation. I thought about how this could be prevented.

即ち、第2発明は、デイーゼルエンジンの燃焼
室にヘリカル吸気ポートとタンジエンシヤル吸気
ポートとをそれぞれ連通して設け、ヘリカル吸気
ポートに設けた吸気弁をタンジエンシヤル吸気ポ
ートに設けた吸気弁より遅く開弁して早く閉弁す
るように設定し、タンジエンシヤル吸気ポートと
ヘリカル吸気ポートの両吸気ポートにそれぞれエ
ンジンの運転条件に応じて作動する絞り弁を設け
たことを特徴とするデイーゼルエンジンの吸気機
構である。
That is, in the second invention, a helical intake port and a tangential intake port are provided in communication with each other in a combustion chamber of a diesel engine, and the intake valve provided in the helical intake port opens later than the intake valve provided in the tangential intake port. This is an intake mechanism for a diesel engine, which is set to close quickly when the engine is closed, and is characterized in that both the tangential intake port and the helical intake port are provided with throttle valves that operate according to engine operating conditions.

第2発明の吸気機構においては、第1発明のそ
れと同様に、低速運転時に充分なスワールを起生
させることができると共に、高速運転時に吸気の
流動損失を低減させることができる上に、高速運
転時のオーバースワールを防止することができ
る。
In the intake mechanism of the second invention, as with the first invention, it is possible to generate sufficient swirl during low-speed operation, reduce flow loss of intake air during high-speed operation, and Time overswirl can be prevented.

次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.

第1実施例(第1図乃至第3図参照) 本例のデイーゼルエンジンの吸気機構は、直接
噴射式4気筒直列型デイーゼルエンジンの各燃焼
室1にヘリカル吸気ポート2とタンジエンシヤル
吸気ポート3とをそれぞれ連通して設け、各ヘリ
カル吸気ポート2と各タンジエンシヤル吸気ポー
ト3の上流端をそれぞれ吸気管5に接続したサー
ジタンク4に接続し、ヘリカル状に形成した各ヘ
リカル吸気ポート2の下流端と燃焼室1の周方向
に向つて彎曲した各タンジエンシヤル吸気ポート
3の下流端にそれぞれ吸気弁6,7を装置し、第
3図に両吸気弁6,7の弁リフト線図を示すよう
に、ヘリカル吸気ポート2の吸気弁6の開弁時期
を、タンジエンシヤル吸気ポート3の吸気弁7の
それより遅く、上死点乃至上死点後50゜の範囲に
設定し、かつ、ヘリカル吸気ポートの吸気弁6の
閉弁時期を、タンジエンシヤル吸気ポートの吸気
弁7のそれより早く、下死点乃至下死点後40゜の
範囲に設定し、各タンジエンシヤル吸気ポート3
の途中にそれぞれ絞り弁8を装置し、各絞り弁8
の弁軸をそれぞれリンク機構9を介して弁開度制
御装置10の出力回転軸11に接続し、エンジン
の燃料噴射量、吸気圧力や回転数等の運転条件か
ら最適な速度のスワールが形成される絞り弁8の
開度を算出してその開度を弁開度制御装置10に
指令する中央処理装置、いわゆるCPU12を設
けている。なお、各燃焼室1にはそれぞれ排気弁
付の2連の排気ポート13を連通して設けてい
る。
First Embodiment (See Figures 1 to 3) The diesel engine intake mechanism of this example has a helical intake port 2 and a tangential intake port 3 in each combustion chamber 1 of a direct injection 4-cylinder in-line diesel engine. The upstream ends of each helical intake port 2 and each tangential intake port 3 are connected to the surge tank 4 connected to the intake pipe 5, respectively, and the downstream end of each helical intake port 2 formed in a helical shape is connected to the combustion chamber. Intake valves 6 and 7 are installed at the downstream end of each tangential intake port 3 that is curved in the circumferential direction of the chamber 1, and as shown in the valve lift diagram of both intake valves 6 and 7 in FIG. The opening timing of the intake valve 6 of the intake port 2 is set later than that of the intake valve 7 of the tangential intake port 3, and is set in the range from top dead center to 50 degrees after top dead center, and the intake valve of the helical intake port The valve closing timing of each tangential intake port 3 is set earlier than that of the intake valve 7 of the tangential intake port and within a range of 40 degrees from bottom dead center to the bottom dead center.
A throttle valve 8 is installed in the middle of each throttle valve 8.
The valve shafts of the valves are connected to the output rotating shaft 11 of the valve opening control device 10 via the link mechanism 9, and a swirl of the optimum speed is formed based on the operating conditions such as the engine fuel injection amount, intake pressure and rotation speed. A central processing unit, so-called CPU 12, is provided which calculates the opening degree of the throttle valve 8 and instructs the valve opening degree control device 10 to determine the opening degree. Note that each combustion chamber 1 is provided with two exhaust ports 13 each having an exhaust valve in communication with each other.

本例の吸気機構においては、エンジンの低速運
転時に、弱い吸入スワールを起生する各タンジエ
ンシヤル吸気ポート3の絞り弁8が閉鎖し、強い
吸入スワールを起生する各ヘリカル吸気ポート2
から各燃焼室1に吸気が流入し、しかも、各ヘリ
カル吸気ポートの吸気弁6が遅く開いて早く閉ま
りスワールの起生に適した期間に開放するので、
強いスワールを起生する各ヘリカル吸気ポート2
から強いスワールを起生する期間に各燃焼室1に
吸気が流入し、各燃焼室1に強いスワールが発生
し、各燃焼室1に噴霧した燃料がその強いスワー
ルによつて良好に分散される。エンジンの高速運
転時には、各タンジエンシヤル吸気ポートの絞り
弁8が開放し、各燃焼室1に、吸気の流動損失の
少ないタンジエンシヤル吸気ポート3から多くの
吸気が、吸気の流動損失の多いヘリカル吸気ポー
ト2から少しの吸気がそれぞれ流入し、しかも、
各タンジエンシヤル吸気ポートの吸気弁7が早く
開いて遅く閉まり吸気の流動損失が少ない期間に
開放するので、各燃焼室1に流入する吸気の流動
損失が少なく各燃焼室1の体積効率が良い。
In the intake mechanism of this example, when the engine is operated at low speed, the throttle valve 8 of each tangential intake port 3 that causes a weak intake swirl closes, and the throttle valve 8 of each helical intake port 2 that causes a strong intake swirl closes.
Intake air flows into each combustion chamber 1 from the helical intake port, and the intake valve 6 of each helical intake port opens late and closes early, opening at a period suitable for generating swirl.
Each helical intake port 2 generates strong swirl
Intake air flows into each combustion chamber 1 during a period when a strong swirl is generated, a strong swirl is generated in each combustion chamber 1, and the fuel sprayed into each combustion chamber 1 is well dispersed by the strong swirl. . When the engine is running at high speed, the throttle valve 8 of each tangential intake port is opened, and a large amount of intake air is transferred to each combustion chamber 1 from the tangential intake port 3, which has a small intake air flow loss, and from the helical intake port 2, which has a large intake air flow loss. A small amount of intake air flows in from each, and
Since the intake valve 7 of each tangential intake port opens early and closes late, opening during a period when the flow loss of the intake air is small, the flow loss of the intake air flowing into each combustion chamber 1 is small, and the volumetric efficiency of each combustion chamber 1 is good.

第2実施例(第4図と第5図参照) 本例のデイーゼルエンジンの吸気機構は、前例
のそれと比較すると、各タンジエンシヤル吸気ポ
ート3のみならず各ヘリカル吸気ポート2にも絞
り弁14とその弁開度制御装置15を同様に設け
ている。その他の点は、前例のそれと同様である
ので、第4図と第5図に同一部分に同一符号を付
してその説明を省略する。
Second Embodiment (See Figures 4 and 5) Compared to the previous example, the intake mechanism of the diesel engine of this example has a throttle valve 14 and a throttle valve not only in each tangential intake port 3 but also in each helical intake port 2. A valve opening control device 15 is also provided. Other points are the same as those of the previous example, so the same parts are given the same reference numerals in FIGS. 4 and 5, and their explanation will be omitted.

本例の吸気機構においては、エンジンの高速運
転時に、各タンジエンシヤル吸気ポートの絞り弁
8が全開する一方、各ヘリカル吸気ポートの絞り
弁14が少し閉鎖し、強い吸入スワールを起生す
る各ヘリカル吸気ポート2から各燃焼室1に流入
する吸気の量が減少して、各燃焼室1にオーバー
スワールが発生するのが防止される。
In the intake mechanism of this example, when the engine is operated at high speed, the throttle valve 8 of each tangential intake port is fully opened, while the throttle valve 14 of each helical intake port is slightly closed, causing a strong intake swirl in each helical intake. The amount of intake air flowing into each combustion chamber 1 from the port 2 is reduced, and overswirl is prevented from occurring in each combustion chamber 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例のデイーゼルエン
ジンの吸気機構の平面図、第2図は同吸気機構の
一部斜視図、第3図は同吸気機構の両吸気弁の弁
リフト線図であり、第4図は第2実施例のデイー
ゼルエンジンの吸気機構の平面図、第5図は同吸
気機構の一部斜視図である。 1:燃焼室、2:ヘリカル吸気ポート、3:タ
ンジエンシヤル吸気ポート、6:吸気弁、7:吸
気弁、8:絞り弁、14:絞り弁。
Fig. 1 is a plan view of the intake mechanism of a diesel engine according to the first embodiment of the present invention, Fig. 2 is a partial perspective view of the same intake mechanism, and Fig. 3 is a valve lift diagram of both intake valves of the same intake mechanism. FIG. 4 is a plan view of the intake mechanism of the diesel engine of the second embodiment, and FIG. 5 is a partial perspective view of the intake mechanism. 1: Combustion chamber, 2: Helical intake port, 3: Tangential intake port, 6: Intake valve, 7: Intake valve, 8: Throttle valve, 14: Throttle valve.

Claims (1)

【特許請求の範囲】 1 デイーゼルエンジンの燃焼室にヘリカル吸気
ポートとタンジエンシヤル吸気ポートとをそれぞ
れ連通して設け、ヘリカル吸気ポートに設けた吸
気弁の開弁時期をタンジエンシヤル吸気ポートに
設けた吸気弁のそれより遅く、かつ、ヘリカル吸
気ポートの吸気弁の閉弁時期をタンジエンシヤル
吸気ポートの吸気弁のそれより早く設定し、タン
ジエンシヤル吸気ポートにデイーゼルエンジンの
運転条件に応じて作動する絞り弁を設けたことを
特徴とするデイーゼルエンジンの吸気機構。 2 デイーゼルエンジンの燃焼室にヘリカル吸気
ポートとタンジエンシヤル吸気ポートとをそれぞ
れ連通して設け、ヘリカル吸気ポートに設けた吸
気弁の開弁時期をタンジエンシヤル吸気ポートに
設けた吸気弁のそれより遅く、かつ、ヘリカル吸
気ポートの吸気弁の閉弁時期をタンジエンシヤル
吸気ポートの吸気弁のそれより早く設定し、タン
ジエンシヤル吸気ポートとヘリカル吸気ポートに
それぞれデイーゼルエンジンの運転条件に応じて
作動する絞り弁を設けたことを特徴とするデイー
ゼルエンジンの吸気機構。
[Scope of Claims] 1. A helical intake port and a tangential intake port are provided in communication with each other in the combustion chamber of a diesel engine, and the opening timing of the intake valve provided in the helical intake port is determined by the opening timing of the intake valve provided in the tangential intake port. The closing timing of the intake valve of the helical intake port is set later than that and earlier than that of the intake valve of the tangential intake port, and the tangential intake port is provided with a throttle valve that operates according to the operating conditions of the diesel engine. A diesel engine intake mechanism featuring: 2. A helical intake port and a tangential intake port are provided in communication with each other in the combustion chamber of a diesel engine, and the opening timing of the intake valve provided in the helical intake port is later than that of the intake valve provided in the tangential intake port, and The closing timing of the intake valve of the helical intake port is set earlier than that of the intake valve of the tangential intake port, and the tangential intake port and the helical intake port are each equipped with a throttle valve that operates according to the operating conditions of the diesel engine. A distinctive feature of the diesel engine intake mechanism.
JP57017820A 1982-02-05 1982-02-05 Air inlet device for diesel engine Granted JPS58135323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57017820A JPS58135323A (en) 1982-02-05 1982-02-05 Air inlet device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57017820A JPS58135323A (en) 1982-02-05 1982-02-05 Air inlet device for diesel engine

Publications (2)

Publication Number Publication Date
JPS58135323A JPS58135323A (en) 1983-08-11
JPS6145048B2 true JPS6145048B2 (en) 1986-10-06

Family

ID=11954362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57017820A Granted JPS58135323A (en) 1982-02-05 1982-02-05 Air inlet device for diesel engine

Country Status (1)

Country Link
JP (1) JPS58135323A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175861U (en) * 1984-04-28 1985-11-21 いすゞ自動車株式会社 Diesel engine EGR device
DE3507767A1 (en) * 1985-03-05 1986-09-11 Knorr-Bremse AG, 8000 München Charge swirl and / or turbulence device for internal combustion engines
JPS61277815A (en) * 1985-05-31 1986-12-08 Ishikawajima Shibaura Kikai Kk Intake apparatus of direct injection type diesel engine
US5429086A (en) * 1994-02-14 1995-07-04 Cummins Engine Company, Inc. Shared runner intake ports for I.C. engine
GB2332709A (en) * 1997-12-24 1999-06-30 Ford Global Tech Inc I.c. engine inlet port with flat wall portion
EP1270924A3 (en) * 2001-06-28 2004-01-07 Delphi Technologies, Inc. Integrated intake manifold assembly for an internal combustion engine
KR100513449B1 (en) * 2002-09-27 2005-09-09 현대자동차주식회사 Swirl control system
US8555853B2 (en) * 2010-03-08 2013-10-15 GM Global Technology Operations LLC Internal combustion engine port design layout for enhanced in-cylinder swirl generation

Also Published As

Publication number Publication date
JPS58135323A (en) 1983-08-11

Similar Documents

Publication Publication Date Title
GB2283058A (en) I.c. engine charge tumble intake system
JPS6011205B2 (en) internal combustion engine
JPH0235133B2 (en)
JP2682694B2 (en) Engine intake system
JPS58187519A (en) Intake device of engine
JPS6035533B2 (en) engine intake system
JPS6145048B2 (en)
JPS5845574B2 (en) Internal combustion engine intake passage device
JPS5848712A (en) Air inlet device of internal-combustion engine
JPS6026185Y2 (en) Internal combustion engine intake system
JPS5845573B2 (en) Internal combustion engine intake passage device
US5060616A (en) Intake system for multiple-valve engine
JP2639720B2 (en) Intake control device for internal combustion engine
JPS5925877B2 (en) Cylinder swirl control device
JPH03199627A (en) Intake air device for engine
JPH0415939Y2 (en)
JPS6242101Y2 (en)
JPH0531219Y2 (en)
JPS61104119A (en) Intake device of internal-combustion engine
JPS60125723A (en) Intake apparatus for internal combustion engine
JPS61190115A (en) Intake air device for internal-combustion engine
JPS585082Y2 (en) Intake system for internal combustion engines
KR200154444Y1 (en) Swirl generating intake system
JPS60219414A (en) Intake device for engine
JPH0338411Y2 (en)