JPS58135323A - Air inlet device for diesel engine - Google Patents

Air inlet device for diesel engine

Info

Publication number
JPS58135323A
JPS58135323A JP57017820A JP1782082A JPS58135323A JP S58135323 A JPS58135323 A JP S58135323A JP 57017820 A JP57017820 A JP 57017820A JP 1782082 A JP1782082 A JP 1782082A JP S58135323 A JPS58135323 A JP S58135323A
Authority
JP
Japan
Prior art keywords
intake
air inlet
valve
combustion chamber
helical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57017820A
Other languages
Japanese (ja)
Other versions
JPS6145048B2 (en
Inventor
Seiichi Sunami
清一 須浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP57017820A priority Critical patent/JPS58135323A/en
Publication of JPS58135323A publication Critical patent/JPS58135323A/en
Publication of JPS6145048B2 publication Critical patent/JPS6145048B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • F02B31/08Movable means, e.g. butterfly valves having multiple air inlets, i.e. having main and auxiliary intake passages
    • F02B31/085Movable means, e.g. butterfly valves having multiple air inlets, i.e. having main and auxiliary intake passages having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4228Helically-shaped channels 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B2031/006Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air intake valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/247Arrangement of valve stems in cylinder heads the valve stems being orientated in parallel with the cylinder axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To enable satisfactory swirl motion in air flow to be produced and achieve an increase in the volumetric efficiency of the combustion chamber in a Diesel engine by an arrangement wherein the combustion chamber is formed with a helical air inlet port and a tangential air inlet port and the timings of an air inlet valve opening and closing the air inlet valves are predetermined properly. CONSTITUTION:A combustion chamber 1 of each cylinder of a Diesel engine is formed with a helical air inlet port 2 and a tangential air inlet port 3, the upstream sides of both of which being connected to a surge tank 4 that is connected to an air intake pipe. Air inlet valves 6 and 7 are mounted in the downstream ends of the air inlet ports 2 and 3, respectively. The air inlet valve 6 is set to open later than the air inlet valve 7, i.e., in the range of crank angle from top dead center to 50 deg. after it, and close earlier than the valve 7, i.e., in the range of crank angle from bottom dead center to 40 deg. after it. Further, located at a proper position in the air inlet port 3 is a throttle valve 8 whose degree of opening is controlled by a device 10 for controlling the degree of opening of the valve so that swirl flow with an optimum velocity may be produced.

Description

【発明の詳細な説明】 本発明は、ディーゼルエンジンの吸気機構に関する。[Detailed description of the invention] The present invention relates to an intake mechanism for a diesel engine.

直接噴射式ディーゼルエンジンは、燃費や出力等の性能
を向上するには、燃焼室に噴射した燃料の分散を良好に
して空気と燃料の混合を充分に行い、かつ、燃焼室に吸
入する空電の量を多くして体積効率を増加させることが
必要である。従来、燃焼室の燃料の分散を良好にするた
め、燃焼室の吸気ポートをヘリカル形状にして、ヘリカ
ル吸気ホー)から燃焼室に流入する空気にスワールを発
生させ、そのスワールによって燃焼室の燃料を良好に分
散させることが行なわれている。ところが、ヘリカル吸
気ポートは吸気の流動損失が多いため、燃焼室に吸入さ
れる空気の量が減少して体積効率が低下し、また、エン
ジンの低速運転時にはスワール速度が遅くて燃料の分散
が不充分であり、逆に、高速運転時には、スワール速度
が速すぎていわゆるオーバースワールとなり、スワール
に噴霧した燃料同志が干渉し、燃料の分散が却って懸く
なるという問題がある。そこで、この問題を解決するた
め、燃焼室にスワール起生用の吸気ポートとスワールを
起生じない吸気ポートとごそれぞれ連通して設け、両吸
気ポートにそれぞれ同時に開閉する吸気弁を設け、両吸
気ボートの始端側分岐部にいずれか一方の吸気ポートの
流路を絞る流入制御弁を設け、エンジンの低速運転時に
はスワールを起生じない吸気ポートの流路を絞ってスワ
ール起生用の吸気ポートに多くの空気を流入させ、逆に
、高速運転時にはスワール起生用の吸気ポートの流路を
絞ってスワー)Vを起生じない吸気ポートに多くの空気
を流入させる吸気機構が発明された。この吸気機構は、
吸気の流動損失が多いスワール起生用吸気ポートの使用
率を低減して、エンジンの運転条件に応じた速度のスワ
ールを起生させることを意図しているが、しかし、両吸
気ポートの吸気弁の開閉時期をそれぞれ各吸気ポートに
適した時期に設定することができず、また、両吸気ポー
トの流路を同時に絞ることができないことから、まだ充
分なものとは言い難い。
In order to improve performance such as fuel efficiency and output, a direct injection diesel engine requires good dispersion of the fuel injected into the combustion chamber to ensure sufficient mixing of air and fuel, and static electricity sucked into the combustion chamber. It is necessary to increase the volumetric efficiency by increasing the amount of . Conventionally, in order to improve the dispersion of fuel in the combustion chamber, the intake port of the combustion chamber was made into a helical shape, and a swirl was generated in the air flowing into the combustion chamber from the helical intake hole.The swirl caused the fuel in the combustion chamber to be dispersed. Good dispersion has been achieved. However, the helical intake port has a large flow loss of intake air, which reduces the amount of air taken into the combustion chamber and reduces volumetric efficiency.Furthermore, when the engine is running at low speed, the swirl speed is slow and fuel is not dispersed. On the other hand, during high-speed operation, the swirl speed is too high, resulting in so-called over-swirl, which causes the fuel sprayed in the swirl to interfere with each other, making it more difficult to disperse the fuel. Therefore, in order to solve this problem, an intake port for generating swirl and an intake port that does not cause swirl are provided in the combustion chamber to communicate with each other, and intake valves that open and close at the same time are installed in both intake ports. An inflow control valve that restricts the flow path of one of the intake ports is installed at the branch on the starting end side of the boat, and when the engine is running at low speed, the flow path of the intake port that does not cause swirl is restricted and the flow path of the intake port is used to generate swirl. An intake mechanism has been invented that allows a large amount of air to flow in, and conversely, during high-speed operation, narrows the flow path of the intake port for generating swirl so that a large amount of air flows into the intake port that does not cause swirl. This intake mechanism is
The intention is to reduce the usage rate of the swirl-generating intake ports, which have a high flow loss of intake air, and to generate swirl at a speed that matches the engine operating conditions. It is not possible to set the opening/closing timing of each intake port to a timing suitable for each intake port, and the flow paths of both intake ports cannot be narrowed at the same time, so it is still far from sufficient.

このような従来の状況からして、本発明の目的は、燃焼
室に噴射した燃料の分散?良好にするスワールを起生さ
せ、かつ、吸気の流動損失を低減して燃焼室の体積効率
を増加させることができるディーゼルエンジンの吸気機
構を提供することである。
Considering this conventional situation, the purpose of the present invention is to disperse the fuel injected into the combustion chamber. An object of the present invention is to provide an intake mechanism for a diesel engine that can generate a good swirl, reduce flow loss of intake air, and increase the volumetric efficiency of a combustion chamber.

本発明者は、上記σl目的を達成するため、先ず、燃焼
室の吸気ポートに設けた吸気弁の開閉時期に着眼したの
である。吸気弁が一般に開放又は閉鎖する上死点又は下
死点付近においては、吸気ポートから燃焼室に流入する
吸気の速度が遅く、スワールを起生させるのには適さな
いが、吸気の流動損失が少く、逆に、上死点と下死点の
中間付近においては、吸気の速度が速く、吸気σ)流動
損失が多いが、スワールの起生に適することから、強ス
ワール起生用吸気ポートの吸気弁は弱ヌワール起生用吸
気ボートの吸気弁より遅く開弁じて早く閉弁することに
考え及んだのである。
In order to achieve the above-mentioned object σl, the present inventor first focused on the opening/closing timing of the intake valve provided at the intake port of the combustion chamber. Near top dead center or bottom dead center, where the intake valve generally opens or closes, the speed of intake air flowing into the combustion chamber from the intake port is slow, which is not suitable for generating swirl, but the flow loss of intake air is On the other hand, near the middle between top dead center and bottom dead center, the intake speed is high and there is a lot of intake air flow loss, but this is suitable for generating swirl, so the intake port for strong swirl generation is The idea was to open the intake valve later and close it earlier than the intake valve of the intake boat for generating weak noise.

即ち、第1発明は、ディーゼルエンジンの燃焼室に、強
スワール起生用のヘリカル吸気ポートと、弱ヌワーμ起
生月タンジエンシャル吸気ポートとをそれぞれ連通して
設け、ヘリカル吸気ポートに設けた吸気弁をタンジエン
シャμ吸気ポートに設けた吸気弁より遅く開弁して早く
閉弁するように設定し、タンジエンシャp吸気ポートに
ディーゼルエンジンの運転条件に応じて作動する絞り弁
を設けたことを特徴とするディーゼルエンジンの吸気機
構である。
That is, the first invention provides a combustion chamber of a diesel engine with a helical intake port for generating a strong swirl and a tangential intake port for generating a weak swirl, which are connected to each other, and are provided in the helical intake port. The intake valve is set to open later and close earlier than the intake valve installed in the Tangiensha μ intake port, and the Tangiensha P intake port is equipped with a throttle valve that operates according to the operating conditions of the diesel engine. This is the intake mechanism of a diesel engine.

第1発明の吸気機構においては、エンジンの低速運転時
に多くの空気が流入するヘリカル吸気ポートに設けた吸
気弁がスワールの起生に適した期間にのみ開放するので
、従来においてはスワールの起生が充分ではなかった低
速運転時に、燃焼室算 燃料の分散を良好にする充分なスワ−/L’を起生させ
ることができ、また、高速運転時に多くの空気 5− が流入するタンジエンシャル吸気ポートに設けた吸気弁
が吸気の流動損失の少ない期間に開放するので、従来に
おいては吸気の流動損失が多かった高速運転時に、吸気
の流動損失を低減して燃焼室の体積効率を増加させるこ
とができる。
In the intake mechanism of the first invention, the intake valve provided at the helical intake port through which a large amount of air flows in during low-speed operation of the engine opens only during a period suitable for generating swirl. It is possible to generate sufficient swath/L' to improve the dispersion of the fuel in the combustion chamber during low-speed operation, where the amount of air is insufficient, and to create a tangential flow that allows a large amount of air to flow during high-speed operation. The intake valve installed at the intake port opens during periods when intake air flow loss is low, reducing intake air flow loss and increasing the volumetric efficiency of the combustion chamber during high-speed operation, where intake air flow loss was conventionally high. be able to.

次に1本発明者は、タンジエンシャル吸気ポートのみな
らず強スワール起生用のヘリカル吸気ポートにも絞り弁
を設ければ5ヘリカル吸気ボートの流入空気量を制御す
ることにより高速運転時のオーバースワールを防止する
ことができることに考え及んだのである。
Next, the inventor proposed that if a throttle valve is provided not only at the tangential intake port but also at the helical intake port for generating strong swirl, the amount of air flowing into the helical intake boat can be controlled during high-speed operation. The idea was to prevent overswirl.

即ち、第2発明は、ディーゼルエンジンの燃焼室にヘリ
カル吸気ポートとタンジエンシャル吸気ポートとをそれ
ぞれ連通して設け、ヘリカル吸気ポートに設けた吸気弁
をタンジエンシャル吸気ポートに設けた吸気弁より遅く
開弁して早く閉弁するように設定し、タンジエンシャル
吸気ポートとヘリカル吸気ポートの両吸気ポートにそれ
ぞれエンジンの運転条件に応じて作動する絞り弁を設け
たことを特徴とするディーゼルエンジンの吸気機 6− 構である。
That is, in the second invention, a helical intake port and a tangential intake port are provided in a combustion chamber of a diesel engine so as to communicate with each other, and the intake valve provided in the helical intake port is configured to be lower than the intake valve provided in the tangential intake port. A diesel engine that is set to open late and close early, and that both tangential intake ports and helical intake ports are provided with throttle valves that operate according to engine operating conditions. This is the intake machine 6- structure.

第2発明の吸気機構においては、第1発明のそれと同様
に、低速運転時に充分なスワール2起生させることがで
きると共に、高速運転時に吸気の流動損失を低減させる
ことができる上に、高速運転時のオーバースワールを防
止することができる。
In the intake mechanism of the second invention, as in the first invention, it is possible to generate sufficient swirl 2 during low-speed operation, reduce the flow loss of intake air during high-speed operation, and also reduce the flow loss during high-speed operation. Time overswirl can be prevented.

次に、本発明の実施例について説明する。Next, examples of the present invention will be described.

第1実施例(第1図乃至第3図参照) 本例のディーゼルエンジンの吸気機構は、KM噴射式j
気筒直列型ディーゼルエンジンの各燃焼室(1)にヘリ
カル吸気ポート(2)とタンジエンシャル吸気ポート(
3)とをそれぞれ連通して設け、各ヘリカル吸気ポート
(2)と各タンジエンシャル吸気ボート(3)の上流端
をそれぞれ吸気管(5)に接続したサージタンク(4)
Gこ接続し、ヘリカル状に形成した各ヘリカル吸気ポー
ト(2)の下流端と燃焼室(1)の周方向に向って彎曲
した各タンジエンシャル吸気ポート(3)の下流端にそ
れぞれ吸気弁(6) 、 (7)を装置し、第3図に両
吸気弁(6) 、 (7)の弁リフト線図を示すように
、ヘリカル吸気ポート(2)の吸気弁(6)の開弁時期
P、タンジエンシャル吸気ボート(3)の吸気弁(7)
のそれより遅く、上死点乃至上死点後SOoの範囲に設
定し、かつ、ヘリカル吸気ポートの吸気弁(6)の閉弁
時期を、タンジエンシャル吸気ポートの吸気弁(7)の
それより早く、下死点乃至下死点後グσの範囲に設定し
、各タンジエンシャル吸気ボート(3)の途中にそれぞ
れ絞り弁(8)を装置し、各絞り弁(8)の弁軸をそれ
ぞれリンク機構、9)を介して弁開度制御装置−の出力
回転軸0υに接続し、エンジンの燃料噴射量、吸気圧力
や回転数等の運転条件から最適な速度のスワールが形成
される絞り弁(8)の開度2算出してその開度を弁開度
制御装置00に指令する中央処理装置、いわゆるCPU
Q4を設けている。
First embodiment (see Figures 1 to 3) The intake mechanism of the diesel engine of this example is a KM injection type j
A helical intake port (2) and a tangential intake port (
3) are provided in communication with each other, and the upstream ends of each helical intake port (2) and each tangential intake boat (3) are respectively connected to the intake pipe (5).
Intake valves are installed at the downstream end of each helical intake port (2) that is connected in a helical shape and at the downstream end of each tangential intake port (3) that is curved in the circumferential direction of the combustion chamber (1). (6) and (7) are installed, and the intake valve (6) of the helical intake port (2) is opened as shown in the valve lift diagram of both intake valves (6) and (7) in Figure 3. Period P, intake valve (7) of tangential intake boat (3)
The closing timing of the intake valve (6) of the helical intake port is later than that of the intake valve (7) of the tangential intake port. The throttle valve (8) is installed in the middle of each tangential intake boat (3), and the valve stem of each throttle valve (8) are connected to the output rotation axis 0υ of the valve opening control device through a link mechanism (9), respectively, and a swirl of the optimum speed is formed based on operating conditions such as engine fuel injection amount, intake pressure and rotation speed. A central processing unit, so-called CPU, which calculates the opening degree 2 of the throttle valve (8) and commands the opening degree to the valve opening degree control device 00.
Q4 has been established.

なお、各燃焼室(1)にはそれぞれ排気外付の2連の排
気ホー)Q3を連通して設けている。
In addition, each combustion chamber (1) is provided with two external exhaust hoses Q3 in communication with each other.

本例の吸気機構においては、エンジンの低速運転時に、
弱い吸入スワールを起生ずる各タンジエンシャル吸気ポ
ート(3)の絞り弁(8)が閉鎖し、強い吸入スワール
を起生ずる各ヘリカル吸気ポート(2)から各燃焼室(
1)に吸気が流入し、しかも、各ヘリカル吸気ポートの
吸気弁(6)が遅く開いて早く閉まりスワールの起生に
適した期間に開放するので、強いスワールを起生ずる各
ヘリカ/l/吸気ボート(2)から強いスワー#を起生
する期間に各燃焼室(1)に吸気が流入し、各燃焼室(
1)に強いスワールが発生し、各燃焼室(1)に噴霧し
た燃料がその強いスワールによって良好に分散される。
In the intake mechanism of this example, when the engine is operating at low speed,
The throttle valve (8) of each tangential intake port (3), which generates a weak intake swirl, closes, and the throttle valve (8) of each tangential intake port (3), which generates a weak intake swirl, closes, and the flow from each helical intake port (2), which generates a strong intake swirl, to each combustion chamber (
1), and since the intake valve (6) of each helical intake port opens late and closes early, opening at a period suitable for generating a swirl, each helical/l/intake generates a strong swirl. During the period when a strong swirl # occurs from the boat (2), intake air flows into each combustion chamber (1), and each combustion chamber (
A strong swirl is generated in 1), and the fuel sprayed into each combustion chamber (1) is well dispersed by the strong swirl.

エンジンの高速運11F[には、各タンジエンシャル吸
気ボートの絞り弁(8)が開放し、各燃焼室(1)に、
吸気の流動損失の少ないタンジエンシャル吸気ポート(
3)から多くの吸気が、吸気の流動損失の多いヘリカル
吸気ポート(2)から少しの吸気がそれぞれ流入し、し
かも、各タンジエンシャル吸気ボートの吸気弁(7)が
早く開いて遅く閉fv吸俄の流動損失が少ない期間に開
放するので、各燃焼室(1)に流入する吸気の流動損失
が少なく各燃焼室(1)の体積効率が良い。
During engine high-speed operation 11F, the throttle valve (8) of each tangential intake boat is opened, and each combustion chamber (1) is
Tangential intake port with less flow loss of intake air (
A large amount of intake air flows from 3), and a small amount of intake air flows from the helical intake port (2), which has a large flow loss of intake air, and the intake valves (7) of each tangential intake boat open early and close late fv. Since it is opened during a period when the flow loss during intake is small, the flow loss of the intake air flowing into each combustion chamber (1) is small and the volumetric efficiency of each combustion chamber (1) is good.

第、2実施例(第1図と第5図参照) 本例のディーゼルエンジンの吸気機構ハ、前例のそれと
比較すると、各タンジエンシャル吸気ポート(3)のみ
ならず各ヘリカル吸気ポート(2)にも絞 9− り弁04とその弁開度制御装置(li’9を同様に設け
ている。その他の点は、前例のそれと同様であるので、
第を図と第S図に同一部分に同一符号を付してその説明
【省略する。
Second Embodiment (See Figures 1 and 5) The intake mechanism of the diesel engine of this example is compared with that of the previous example. The throttle valve 04 and its valve opening control device (li'9) are also provided in the same way.Other points are the same as those in the previous example, so
Identical parts in Figures 1 and 5 are denoted by the same reference numerals and their explanations are omitted.

本例の吸気機構においては、エンジンの高速運転時に、
各タンジエンシャル吸気ボートの絞り弁(8)が全開す
る一方、各ヘリカル吸気ポートの絞す弁0弔が少し閉鎖
し、強い吸入スワールを起生ずる各ヘリカル吸気ポート
(2)から各燃焼室(1)に流入する吸気の量が減少し
て、各燃焼室(1)にオーバースワールが発生するのが
防止される。
In the intake mechanism of this example, when the engine is running at high speed,
While the throttle valve (8) of each tangential intake boat is fully open, the throttle valve 0 of each helical intake port is slightly closed, causing a strong intake swirl from each helical intake port (2) to each combustion chamber ( The amount of intake air flowing into the combustion chambers (1) is reduced, thereby preventing overswirl from occurring in each combustion chamber (1).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例のディーゼルエンジンの吸
気機構の平面図、第2図は同吸気機構の一部斜視図、第
3図は同吸気機構の両吸気弁の弁リフト線図であり、第
1図は第2実施例のディーゼルエンジンの吸気機構の平
面図、第5図は同吸気機構の一部斜視図である。 1:燃焼室    2:ヘリカル吸気ポート3:タンジ
エンシャル吸気ボート  10− 6:吸気弁    7:吸気弁 8:絞り弁    14:絞り弁 特許出願人  株式会社豊田中央研究所 11− 第1図 第2図 61 第3図 TDC4080120160BDC200クランク角度
(0)
Fig. 1 is a plan view of an intake mechanism of a diesel engine according to a first embodiment of the present invention, Fig. 2 is a partial perspective view of the same intake mechanism, and Fig. 3 is a valve lift diagram of both intake valves of the same intake mechanism. FIG. 1 is a plan view of an intake mechanism of a diesel engine according to a second embodiment, and FIG. 5 is a partial perspective view of the intake mechanism. 1: Combustion chamber 2: Helical intake port 3: Tangential intake boat 10- 6: Intake valve 7: Intake valve 8: Throttle valve 14: Throttle valve Patent applicant Toyota Central Research Institute Co., Ltd. 11- Fig. 1, 2 Figure 61 Figure 3 TDC4080120160BDC200 crank angle (0)

Claims (2)

【特許請求の範囲】[Claims] (1)  ディーゼルエンジンの燃焼室にヘリカル吸気
ポートとタンジエンシャル吸気ポートとをそれぞれ連通
して設け、ヘリカル吸気ボートトに設けた吸気弁の開弁
時期をタンジエンシャル吸気ボートに設けた吸気弁のそ
れより遅く、かつ、ヘリカル吸気ポートの吸気弁の閉弁
時期をタンジエンシャル吸気ポートの吸気弁のそれよジ
早く設定し、タンシエンシャル吸気ポートにディーゼル
エンジンの運転条件に応じて作動する絞・ジ弁を設けた
ことを特徴とするディーゼルエンジンの吸気機構。
(1) A helical intake port and a tangential intake port are provided in communication with each other in the combustion chamber of a diesel engine, and the opening timing of the intake valve provided on the helical intake boat is adjusted to the opening timing of the intake valve provided on the tangential intake boat. The closing timing of the intake valve of the helical intake port is set later than that and earlier than that of the intake valve of the tangential intake port. -A diesel engine intake mechanism characterized by the provision of a di-valve.
(2)  ディーゼルエンジンの燃焼室にヘリカル吸気
ポートとタンジエンシャル吸気ポートとをそれぞれ連通
して設け、ヘリカル吸気ポートに設けた吸気弁の開弁時
期をタンジエンシャル吸気ポートに設けた吸気弁のそれ
より遅く、かつ、ヘリカル吸気ポートの吸気弁の閉弁時
期をタンジエンシャル吸気ポートの吸気弁のそれより早
く設定し、タンジエンシャル吸気ボートとヘリカル吸気
ポートにそれぞれディーゼルエンジンの運転条件に応じ
て作動する絞り弁を設けたことを特徴とするディーゼル
エンジンの吸気機構。
(2) A helical intake port and a tangential intake port are provided in communication with each other in the combustion chamber of a diesel engine, and the opening timing of the intake valve provided on the helical intake port is determined by the opening timing of the intake valve provided on the tangential intake port. The closing timing of the intake valve of the helical intake port is set later than that and earlier than that of the intake valve of the tangential intake port, and the tangential intake boat and helical intake port are set respectively according to the operating conditions of the diesel engine. An intake mechanism for a diesel engine, characterized by being provided with a throttle valve that is operated by the engine.
JP57017820A 1982-02-05 1982-02-05 Air inlet device for diesel engine Granted JPS58135323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57017820A JPS58135323A (en) 1982-02-05 1982-02-05 Air inlet device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57017820A JPS58135323A (en) 1982-02-05 1982-02-05 Air inlet device for diesel engine

Publications (2)

Publication Number Publication Date
JPS58135323A true JPS58135323A (en) 1983-08-11
JPS6145048B2 JPS6145048B2 (en) 1986-10-06

Family

ID=11954362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57017820A Granted JPS58135323A (en) 1982-02-05 1982-02-05 Air inlet device for diesel engine

Country Status (1)

Country Link
JP (1) JPS58135323A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175861U (en) * 1984-04-28 1985-11-21 いすゞ自動車株式会社 Diesel engine EGR device
JPS61277815A (en) * 1985-05-31 1986-12-08 Ishikawajima Shibaura Kikai Kk Intake apparatus of direct injection type diesel engine
US5429086A (en) * 1994-02-14 1995-07-04 Cummins Engine Company, Inc. Shared runner intake ports for I.C. engine
JPH0765514B2 (en) * 1985-03-05 1995-07-19 モト−レン−ヴエルケ マンハイム アクチエンゲゼルシヤフト フオ−ルマ−ルス ベンツ アプタイルング シユタツイオネ−レル モト−レンバウ Diesel engine
US6047473A (en) * 1997-12-24 2000-04-11 Ford Global Technologies, Inc. Inlet port flat wall section
US6772729B2 (en) * 2001-06-28 2004-08-10 Delphi Technologies, Inc. Swirl port system for a diesel engine
KR100513449B1 (en) * 2002-09-27 2005-09-09 현대자동차주식회사 Swirl control system
CN102191995A (en) * 2010-03-08 2011-09-21 通用汽车环球科技运作有限责任公司 Internal combustion engine port design layout for enhanced in-cylinder swirl generation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175861U (en) * 1984-04-28 1985-11-21 いすゞ自動車株式会社 Diesel engine EGR device
JPH0332771Y2 (en) * 1984-04-28 1991-07-11
JPH0765514B2 (en) * 1985-03-05 1995-07-19 モト−レン−ヴエルケ マンハイム アクチエンゲゼルシヤフト フオ−ルマ−ルス ベンツ アプタイルング シユタツイオネ−レル モト−レンバウ Diesel engine
JPS61277815A (en) * 1985-05-31 1986-12-08 Ishikawajima Shibaura Kikai Kk Intake apparatus of direct injection type diesel engine
US5429086A (en) * 1994-02-14 1995-07-04 Cummins Engine Company, Inc. Shared runner intake ports for I.C. engine
US6047473A (en) * 1997-12-24 2000-04-11 Ford Global Technologies, Inc. Inlet port flat wall section
US6772729B2 (en) * 2001-06-28 2004-08-10 Delphi Technologies, Inc. Swirl port system for a diesel engine
KR100513449B1 (en) * 2002-09-27 2005-09-09 현대자동차주식회사 Swirl control system
CN102191995A (en) * 2010-03-08 2011-09-21 通用汽车环球科技运作有限责任公司 Internal combustion engine port design layout for enhanced in-cylinder swirl generation

Also Published As

Publication number Publication date
JPS6145048B2 (en) 1986-10-06

Similar Documents

Publication Publication Date Title
US4827883A (en) Variable swirl inlet port
JPH03264727A (en) Intake system for multiple valve engine
JPH07119472A (en) Intake device for engine
JP2682694B2 (en) Engine intake system
JPS58187519A (en) Intake device of engine
US4308829A (en) Vane in the inlet passage of an internal combustion engine
JPS58135323A (en) Air inlet device for diesel engine
JPS5845574B2 (en) Internal combustion engine intake passage device
JPS5848712A (en) Air inlet device of internal-combustion engine
JPH057555B2 (en)
JPS5845573B2 (en) Internal combustion engine intake passage device
US5060616A (en) Intake system for multiple-valve engine
JP2663723B2 (en) Intake device for double intake valve type internal combustion engine
JP2639720B2 (en) Intake control device for internal combustion engine
JPS5925877B2 (en) Cylinder swirl control device
JPH0415939Y2 (en)
EP1088155B1 (en) Engine intake system
JPS60125723A (en) Intake apparatus for internal combustion engine
KR100222520B1 (en) The structure for generating of intake swirl in an internal combustion engine
JPS61190115A (en) Intake air device for internal-combustion engine
KR200154444Y1 (en) Swirl generating intake system
JPS6093121A (en) Suction device of engine
JPS60219414A (en) Intake device for engine
JPH0247238Y2 (en)
JP3264749B2 (en) Intake control structure for two-valve engine