JPS6144972B2 - - Google Patents

Info

Publication number
JPS6144972B2
JPS6144972B2 JP17565082A JP17565082A JPS6144972B2 JP S6144972 B2 JPS6144972 B2 JP S6144972B2 JP 17565082 A JP17565082 A JP 17565082A JP 17565082 A JP17565082 A JP 17565082A JP S6144972 B2 JPS6144972 B2 JP S6144972B2
Authority
JP
Japan
Prior art keywords
fibers
bundle
fiber
crevasse
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17565082A
Other languages
Japanese (ja)
Other versions
JPS5966519A (en
Inventor
Yasuo Tango
Makoto Kanezaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP17565082A priority Critical patent/JPS5966519A/en
Publication of JPS5966519A publication Critical patent/JPS5966519A/en
Publication of JPS6144972B2 publication Critical patent/JPS6144972B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は連続繊維の束、例えばトウやマルチフ
イラメントから抗ピリング特性にすぐれたクレバ
ス状裂け目部を有する不連続繊維の束を製造する
方法に関する。 更に詳しくは、連続繊維の束を−5℃以下の媒
体に接触させつつ、または接触後直ちに、単繊維
が切れない程度に剪断力を与えて繊維束を構成す
る各単繊維内部にV字形に切れ込んだクレバス状
の裂け目部を発生させる。これは通常の力学的性
質にすぐれた連続繊維の束に新しい機能を付与す
るもので各単繊維の力学的性質を部分的に低下せ
しめ抗ピリング特性にすぐれた連続繊維の束とし
た後、連続繊維の束に延伸力および/または剪断
力を与えて繊維束を構成する各単繊維を切断する
ことによつて、紡績糸を製造する中間製品である
不連続繊維の束、つまり抗ピリング特性にすぐれ
た不連続繊維の束を工業的有利に得ることを可能
にするものである。 化学繊維はすぐれた力学的性能、発色性、良好
な風合いを有しており衣料をはじめ種々の繊維製
品に広く用いられている。一方、繊維素材に対す
る要求は近年きわめて広汎多様であつて外観の美
しさ、機能性が要求されてきている。 しかし、衣材料、インテリア用等に広く用いら
れる場合、化学繊維はその力学的性能に基づくピ
リングが発生し易すく、著しくその外観の美しさ
を損う問題がある。従来より化学繊維の抗ピリン
グ性を向上させる方法が種々提案されている。大
部分は繊維の製造段階において、特殊なポリマ
ー、重合、紡糸、後処理を施して、繊維の力学的
性質を均質に低下させるものであり、製造工程が
複雑になるとともに生産性が低い等、工業的にメ
リツトが極めて小さいものであつた。一方、繊維
製品に物理的に傷を与えて抗ピリング性を付与し
ようとするものに、特公昭38−5863号公報、特開
昭56−128324号公報があり、これらはいずれもア
クリロニトリル重合体に関するもので繊維を加熱
し軟化させた後スタツフアー・ボツクス型クリン
パー等を用いて圧力をかけ、事実上その引張強度
を保持しつつ、引掛強度を低下せしめるものであ
る。しかし、この方法で強度を低下させるにはク
リンパーのニツプ圧及びボツクス圧を非常に強く
する必要があり、繊維同志の融着、切れ糸等が生
じ、トウの形態が悪くなり、特にパーロツク方
式、ターボ方式等のトウから始まる紡績工程にお
いて集団切れ、スラブやネツプ等が発生する問題
がある。また、トウやマルチフイラメント等の連
続繊維の束の強力を低下させた後延伸力等によつ
て切断を行ない抗ピリング特性にすぐれた不連続
繊維の束を連続的に製造する方法はなかつた。 本発明はこのような従来法の欠点を解決すべく
全く新規な抗ピリング繊維の製造方法を提供する
ものである。すなわち、繊維の製造段階において
特殊なポリマー、重合、紡糸にて繊維の力学的性
質を均質に低下させるのではなく、通常の力学的
特性が良好な連続繊維の束に物理加工を施しラン
ダムに弱い部分を発生させることによつて熱融着
等がなく品質が良好でかつ紡績性、抗ピリング特
性にすぐれた不連続繊維の束を高速にて製造する
方法を提供するものである。 本発明の連続繊維の束としては、トウ、マルチ
フイラメントが一般に用いられる。連続繊維とし
てはポリアミド系、ポリエステル系、ポリアクリ
ル系、ポリ変性アクリル系、ポリウレタン系、ポ
リ塩化ビニル系、ポリビニルアルコール系等の合
成繊維、アセテート系等の半合成繊維、レーヨン
系等の再生人造繊維等が用いられるが、アクリル
系合成繊維が特に好ましく用いられる。繊維の束
としては例えば単繊維デニール0.1d〜100dから構
成されるトータル、デニール30d〜200万dにい
たるフイラメント、ラージフイラメントおよびト
ウが一般に使用される。更に、上記連続繊維の束
と短繊維からなる繊維束との混合体、他種繊維と
の混合体にも適用できる。この連続繊維の束は−
5℃以下の媒体に接触させることによつて、繊維
の伸度が極めて低い状態となる。本発明では、こ
のような状態で単繊維が切れない程度の剪断力を
与えて繊維の束を構成する各単繊維の繊維軸方向
にクレバス状裂け目部を発生させる。裂け目部は
−5℃以下の媒体に接触させつつ、または接触後
直ちに、剪断力を与えて発生させる。 −5℃をこえ、常温(20℃近辺)に近づくに従
つて、繊維の伸度が高くなり、そのため、剪断力
を与えて剪断変形を生じせしめても繊維に裂け目
部は発生しない。また、切断に際しても、繊維の
残留ひずみが増大し、低収縮率の紡績糸を得るこ
とが困難となる。 本発明の効果をより十分に発揮させるために
は、−20℃以下が好ましく、より好ましくは−40
℃以下である。 ここで、従来の抗ピリング特性をもつ繊維は引
掛強度伸度が均一に低いため、紡績工程をはじめ
とする後工程での繊維切断、フライの発生が多く
なるとともに、そのステーブル、ダイヤグラムが
悪くなる等の問題がある。本発明はこれらの問題
を解決するためにも伸度特性の高い原綿を用いて
も第5図に示すように−5℃以下で行うことによ
つて繊維にクレバス状裂け目部を発生させること
が可能となつた。その後延伸力を与えて切断し不
連続繊維の束を製造することができた。また、−
20℃以下にすると、その発生量が増加し、剪断応
力が小さくても容易に用途、目的に応じたクレバ
ス状裂け目部を有する繊維を得ることが可能とな
つた。その後延伸力を与えて切断することによつ
て低収縮の不連続繊維の束を得ることが可能とな
つた。 更に、−40℃以下にすることによつてクレバス
状の裂け目部の発生量は高くなり、きわめて安定
した状態で抗ピリング特性をもつ不連続繊維の束
を得ることが可能となる。また、温度の下限は絶
対零度まであるが、それでは使用媒体のコスト、
装置に問題があり、−20℃〜−195℃が好ましい。 本発明に使用される冷却媒体としては、−5℃
以下のものであれば使用可能であるがアンモニ
ア、二酸化炭素、空気、酸素、窒素等の液体また
は気化ガスおよび寒剤として、アルコールやエー
テル等と固体無水炭酸との混合物のほか、氷と塩
化亜鉛、塩化ナトリウム等の塩化、硝酸、硫酸化
合物を使用することができる。また、電気的に冷
却する方法を使用することもできる。 この冷却媒体に接触させる時間は繊維の種類、
供給方法、媒体の種類や温度等により異なるが、
一般には0.1秒〜10分程度が用いられる。 冷却媒体との接触方法は特に限定されないが、
冷却物体の表面に連続繊維の束を接触させる方
法、気体雰囲気中の液体中に連続繊維の束を通過
させる方法、冷却媒体を連続繊維の束に滴下させ
る方法等がある。 剪断力はある接圧をもつた上下対をなす表面速
度の異なるローラー間を通過させる方法、一対の
加圧ローラーの間をスリツプさせながら通過させ
る方法、ある接圧をもつた上下対をなすラビン
グ・ローラーの間を通過させる方法等を用いるこ
とができる。これらの他に別の剪断力を併用して
も差しつかえない。 このような条件で繊維に剪断力を与えることに
より、単繊維表面に第4図A,Bの如き、繊維内
部へV字形に切れ込んだクレバス状の裂け目部が
発生する。 第4図Aは単繊維30の側面図でクレバス状裂
け目部31が存在する。BはA−A′断面図であ
り、裂け目部31は繊維内部にV字形に切れ込ん
でいる。 裂け目部31の長さ、幅、深さ、数は、剪断力
の大きさ、冷却媒体の温度により変化する。一般
には裂け目部が大きく、多くなるに従つて抗ピリ
ング特性が向上するが、ある限度を越えると紡績
時に繊維切断、フライの発生が多くなる。従つ
て、必要に応じて所望の剪断力、剪断方法、冷却
媒体の温度は実験的に決めることが望ましい。 本発明においては、単繊維の表面に長さ1〜
100μ、最大幅0.1〜3μの裂け目をランダムに発
生させる条件を選択することが望ましい。 このクレバス状裂け目部を有する単繊維の試料
長20mmにおける引張強伸度、引掛強伸度について
調べると、その引張強伸度の低下は少ないが裂け
目部が内部までV字形に切れ込んでいるため、引
掛強伸度の低下が著しく現われる。この裂け目部
の発生量は本発明の方法で製造された不連続繊維
の少なくとも半数に単繊維1本当り1〜10ケの裂
け目部を有することが好ましい。抗ピリング特性
からみると20mm当り1個以上が好ましく、連続繊
維束の任意の20mmに対して少くとも半数は裂け目
部を有することが好ましい。紡績工程における繊
維切断及びフライの多発を考えると10個以下がよ
り好ましい。 連続繊維の束の切断は、低収縮率の紡績糸を得
る為には、クレバス状の裂け目部を発生させた後
直ちに行うのが好ましいが所望の収縮率に応じて
冷却媒体に接触させつつ行つてもよいし、接触後
行つてもよい。中〜高収縮率の紡績糸を得たい場
合は、前以つて連続繊維の束を熱延伸し収縮を付
与した後、冷却媒体に接触させクレバス状の裂け
目部を発生させた後直ちに切断してもよいし、ま
た、必要に応じてクレバス状の裂け目部を発生さ
せた後、常温または加熱雰囲気中において切断す
ることもできる。 切断は、連続繊維の束に延伸力及び/または剪
断力を与えて、各単繊維を切断する。これらの他
に別の切断力を併用しても差しつかえない。かく
してえられた不連続繊維の束としては、具体的に
は、スライバー、粗糸、直紡糸、紡績糸等があ
る。 第7図は実施例2の結果をグラフ化したもの
で、クレバス状裂け目部を有する単繊維を100
mg/dの荷重下で各温度の媒体に接触させつつ切
断を行つた場合の冷却媒体の温度と単繊維の収縮
率の関係を示す図である。このグラフから明らか
なように本発明によれば低収縮率から高収縮率迄
任意に達成が可能である。(グラフA) 切断に際して、所望の媒体温度が設定された場
合、第7図に示す如く、その温度に対応した単繊
維の収縮率が決定される。 第6図Aはこの時の冷却媒体の温度とクレバス
状裂け目部を有する単繊維の切断時の強力を示す
図である。Bはクレバス状の裂け目部を与える前
の単繊維の切断強力を示す曲線である。これから
わかるように、常温でもクレバス状の裂け目部を
与えたものAは、与えないものBに比べて約20%
の切断に要する張力が減少する。−20℃以下の媒
体に接触させることによつて、半分以下という少
ない張力で切断することが可能となる。また切断
された繊維の先端の形状は20℃以上の雰囲気温度
下で切断しても尖端を有することがわかつた。こ
こでは断面が円型を用いたので斜切円柱形であつ
た。 次に、本発明の例を図面により説明する。第1
図は本発明にかかる一実施態様例を示す工程図で
ある。一定の幅に均一に単繊維を分繊しながら厚
みを整えた連続繊維の束1を供給し、バツク・ロ
ーラー3と上下の表面速度比が異なる1対のミド
ル・ローラー4,4′の間に設けて低温槽2にお
いて−5℃以下の冷却媒体に接触させることによ
つて繊維の伸度が極めて低い状態に保ちつつ、ミ
ドル・ローラー4,4′にて加圧すると同時に上
下の速度比によつて剪断力を与えることによつて
連続繊維の束1を構成する各単繊維にクレバスを
発生させ後、ミドル・ローラー4,4′とフロン
ト・ローラー5の間で繊維の束に引張応力を与え
て切断し、不連続繊維の束6とした後、コイラー
7にてケンス8に収納するものである。第2図は
ミドル・ローラー4,4′とフロント・ローラー
5の間に補助切断装置10を設けたものであり、
ミドル・ローラー4,4′で連続繊維の束1を構
成する各単繊維にクレバスを発生させた後、補助
切断装置10にて切断し不連続繊維の束6にする
ものである。第3図は任意の収縮をもつ不連続繊
維の束6を製造するに適した工程図であり、ミド
ル・ローラー4,4′で連続繊維の束1を構成す
る各単繊維にクレバスを発生させた後、恒温槽1
1にて所望の収縮に応じて、冷却または加熱を行
うと同時に引張応力を与えて切断し、不連続繊維
の束6とするものである。より高い収縮を得たい
場合はフイード・ローラー12とバツク・ローラ
ー3の間に熱板13を設けて熱延伸を与えること
もできる。 実施例 1 アクリル系合成繊維3デニールdで構成される
50万dのトウを第1図の装置に仕掛けて、25〜
120℃の冷却媒体に接触させ下記条件にて紡出し
た後の単繊維の特性を第1表に示す。 冷却媒体 窒素ガス 低温槽内雰囲気温度 25〜−120℃ フロント・ローラー 1.05 上下の速度比 ブレーク・ドラフト 2.04(−20〜−120
℃) 2.56(0〜25℃) 紡出速度 50m/min
The present invention relates to a method for producing a discontinuous fiber bundle having crevasses with excellent anti-pilling properties from a continuous fiber bundle, such as a tow or a multifilament. More specifically, while a bundle of continuous fibers is brought into contact with a medium at -5°C or lower, or immediately after contact, a shearing force is applied to an extent that the single fibers do not break, thereby forming a V-shape inside each single fiber constituting the fiber bundle. Generates a crevice-like fissure. This gives a new function to a bundle of continuous fibers with excellent mechanical properties.The mechanical properties of each single fiber are partially reduced to create a bundle of continuous fibers with excellent anti-pilling properties. By applying drawing force and/or shearing force to the fiber bundle to cut each single fiber that makes up the fiber bundle, a bundle of discontinuous fibers, which is an intermediate product for producing spun yarn, has anti-pilling properties. This makes it possible to obtain excellent bundles of discontinuous fibers with industrial advantage. Synthetic fibers have excellent mechanical performance, color development, and good texture, and are widely used in various textile products including clothing. On the other hand, in recent years, demands on textile materials have become extremely wide-ranging and diverse, with demands for beauty in appearance and functionality. However, when widely used for clothing materials, interior decorations, etc., chemical fibers are susceptible to pilling due to their mechanical performance, which significantly impairs the beauty of their appearance. Various methods have been proposed to improve the anti-pilling properties of chemical fibers. In most cases, special polymers, polymerization, spinning, and post-processing are applied at the fiber manufacturing stage to uniformly reduce the mechanical properties of the fibers, which complicates the manufacturing process and lowers productivity. The industrial merit was extremely small. On the other hand, there are Japanese Patent Publication No. 38-5863 and Japanese Patent Application Laid-open No. 128324-1983 which attempt to impart anti-pilling properties by physically damaging textile products, both of which relate to acrylonitrile polymers. After the fibers are heated and softened with a material, pressure is applied using a stuffer box type crimper or the like to reduce the hooking strength while maintaining the tensile strength. However, in order to reduce the strength with this method, it is necessary to make the nip pressure and box pressure of the crimper extremely strong, which causes fusion of fibers and breakage, resulting in poor tow shape. In the spinning process starting from the tow, such as in the turbo method, there is a problem that group breakage, slabs, neps, etc. occur. Furthermore, there has been no method for continuously producing bundles of discontinuous fibers with excellent anti-pilling properties by reducing the strength of a bundle of continuous fibers such as tow or multifilament, and then cutting the bundle by drawing force or the like. The present invention provides a completely new method for producing anti-pilling fibers in order to solve the drawbacks of the conventional methods. In other words, rather than uniformly lowering the mechanical properties of fibers using a special polymer, polymerization, or spinning during the fiber manufacturing process, a bundle of continuous fibers that normally have good mechanical properties is physically processed to randomly weaken them. The object of the present invention is to provide a method for producing a bundle of discontinuous fibers at high speed, which is free from heat fusion, has good quality, and has excellent spinnability and anti-pilling properties by generating sections. As the continuous fiber bundle of the present invention, tow or multifilament is generally used. Continuous fibers include synthetic fibers such as polyamide, polyester, polyacrylic, polymodified acrylic, polyurethane, polyvinyl chloride, and polyvinyl alcohol, semi-synthetic fibers such as acetate, and recycled artificial fibers such as rayon. etc., but acrylic synthetic fibers are particularly preferably used. As fiber bundles, for example, filaments, large filaments and tows with a total denier of 30 d to 2,000,000 d, consisting of single fibers with a denier of 0.1 d to 100 d, are generally used. Furthermore, it can also be applied to a mixture of the above continuous fiber bundle and a fiber bundle made of short fibers, or a mixture with other types of fibers. This bundle of continuous fibers is −
By bringing the fiber into contact with a medium at 5° C. or lower, the elongation of the fiber becomes extremely low. In the present invention, in such a state, a shearing force that does not break the single fibers is applied to generate a crevasse-like tear in the fiber axis direction of each single fiber constituting the fiber bundle. The cracks are generated by applying shearing force while contacting with a medium at −5° C. or lower, or immediately after contact. As the temperature exceeds -5°C and approaches room temperature (around 20°C), the elongation of the fibers increases, and therefore, even if shearing force is applied to cause shear deformation, no tears occur in the fibers. Furthermore, upon cutting, the residual strain of the fiber increases, making it difficult to obtain a spun yarn with a low shrinkage rate. In order to more fully exhibit the effects of the present invention, the temperature is preferably -20°C or lower, more preferably -40°C or lower.
below ℃. Here, conventional fibers with anti-pilling properties have uniformly low hooking strength and elongation, which increases the occurrence of fiber breakage and fly in subsequent processes including the spinning process, as well as poor stability and diagram. There are problems such as: In order to solve these problems, the present invention is designed to prevent crevasse-like tears from occurring in the fibers by using raw cotton with high elongation properties at temperatures below -5°C, as shown in Figure 5. It became possible. Thereafter, it was possible to produce a bundle of discontinuous fibers by applying a drawing force and cutting the fibers. Also, -
When the temperature is lower than 20°C, the amount of cracks generated increases, and even if the shear stress is small, it becomes possible to easily obtain fibers with crevasse-like cracks that suit the intended use and purpose. By applying a drawing force and cutting the fibers, it became possible to obtain a bundle of discontinuous fibers with low shrinkage. Furthermore, by lowering the temperature to -40°C, the amount of crevasse-like fissures is increased, making it possible to obtain a bundle of discontinuous fibers with anti-pilling properties in an extremely stable state. In addition, the lower limit of temperature is up to absolute zero, but this reduces the cost of the medium used,
Due to equipment problems, -20°C to -195°C is preferred. The cooling medium used in the present invention is -5°C
The following can be used, but liquid or vaporized gases such as ammonia, carbon dioxide, air, oxygen, and nitrogen, as well as mixtures of solid carbonic anhydride with alcohols, ethers, etc., as well as ice and zinc chloride, Chloride, nitric acid, and sulfuric compounds such as sodium chloride can be used. It is also possible to use electrical cooling methods. The time of contact with this cooling medium depends on the type of fiber,
It varies depending on the supply method, type of medium, temperature, etc.
Generally, a time of about 0.1 seconds to 10 minutes is used. The method of contact with the cooling medium is not particularly limited, but
There are methods such as bringing a bundle of continuous fibers into contact with the surface of a cooling object, passing the bundle of continuous fibers through a liquid in a gas atmosphere, and dropping a cooling medium onto the bundle of continuous fibers. Shearing force can be measured by passing it between a pair of upper and lower rollers with different surface speeds with a certain contact pressure, by passing it while slipping between a pair of pressure rollers, or by rubbing with a pair of upper and lower rollers with a certain contact pressure. - A method such as passing between rollers can be used. In addition to these, other shearing forces may be used in combination. By applying shearing force to the fibers under these conditions, crevasse-like crevices that cut into the interior of the fibers in a V-shape, as shown in FIGS. 4A and 4B, are generated on the surface of the single fibers. FIG. 4A is a side view of a single fiber 30 in which a crevice-like fissure 31 is present. B is a sectional view taken along line A-A', and the tear portion 31 is cut into the inside of the fiber in a V-shape. The length, width, depth, and number of the fissures 31 vary depending on the magnitude of the shearing force and the temperature of the cooling medium. Generally, the anti-pilling properties improve as the number of cracks increases, but beyond a certain limit, fiber breakage and fly-off occur more frequently during spinning. Therefore, it is desirable to determine the desired shearing force, shearing method, and temperature of the cooling medium experimentally as necessary. In the present invention, the surface of the single fiber has a length of 1 to
It is desirable to select conditions that randomly generate cracks of 100μ and a maximum width of 0.1 to 3μ. When examining the tensile strength and elongation and hooking strength and elongation of a single fiber having this crevasse-like tear at a sample length of 20 mm, it was found that although the decrease in tensile strength and elongation was small, the crevice cut into the interior in a V-shape. A significant decrease in hooking strength and elongation appears. It is preferable that at least half of the discontinuous fibers produced by the method of the present invention have 1 to 10 tears per single fiber. From the viewpoint of anti-pilling properties, it is preferable to have one or more tears per 20 mm, and it is preferable that at least half of the continuous fiber bundles have tears in any 20 mm. Considering the frequent occurrence of fiber breakage and fly-off during the spinning process, the number is more preferably 10 or less. In order to obtain a spun yarn with a low shrinkage rate, it is preferable to cut the bundle of continuous fibers immediately after creating a crevasse-like fissure, but depending on the desired shrinkage rate, cutting the bundle of continuous fibers may be carried out while in contact with a cooling medium. You can do this after contact, or you can do it after contact. If you want to obtain a spun yarn with a medium to high shrinkage rate, first heat-draw a bundle of continuous fibers to give them shrinkage, then contact them with a cooling medium to generate crevasse-like fissures, and then cut them immediately. Alternatively, after creating a crevasse-like fissure as necessary, cutting can be performed at room temperature or in a heated atmosphere. In cutting, each single fiber is cut by applying a drawing force and/or a shearing force to the bundle of continuous fibers. There is no problem in using other cutting forces in addition to these. Specifically, the bundle of discontinuous fibers thus obtained includes slivers, rovings, straight spun yarns, spun yarns, and the like. Figure 7 is a graph of the results of Example 2, in which 100 single fibers with crevasse-like fissures were
It is a figure which shows the relationship between the temperature of a cooling medium and the contraction rate of a single fiber when cutting is performed while contacting with the medium of each temperature under the load of mg/d. As is clear from this graph, according to the present invention, it is possible to achieve any desired shrinkage rate from a low shrinkage rate to a high shrinkage rate. (Graph A) When a desired medium temperature is set during cutting, the shrinkage rate of the single fiber corresponding to that temperature is determined as shown in FIG. FIG. 6A is a diagram showing the temperature of the cooling medium at this time and the strength when cutting a single fiber having a crevasse-like fissure. B is a curve showing the cutting strength of a single fiber before forming a crevasse-like tear. As you can see, even at room temperature, type A with crevasse-like fissures is about 20% larger than type B without it.
The tension required for cutting is reduced. By bringing it into contact with a medium at -20°C or lower, it is possible to cut it with less tension, which is less than half. It was also found that the tip of the cut fiber remained pointed even when cut at an ambient temperature of 20°C or higher. Here, a circular cross section was used, so it was a diagonally cut cylindrical shape. Next, an example of the present invention will be explained with reference to the drawings. 1st
The figure is a process diagram showing one embodiment of the present invention. A bundle 1 of continuous fibers with a uniform thickness divided into single fibers with a constant width is supplied, and the bundle 1 is fed between a back roller 3 and a pair of middle rollers 4 and 4' with different upper and lower surface speed ratios. The elongation of the fibers is kept extremely low by placing them in contact with a cooling medium of -5°C or lower in the cryostat 2, and at the same time applying pressure with the middle rollers 4 and 4', the upper and lower speed ratios are adjusted. After creating a crevasse in each single fiber constituting the continuous fiber bundle 1 by applying shearing force, tensile stress is applied to the fiber bundle between the middle rollers 4, 4' and the front roller 5. The discontinuous fibers are cut into a bundle 6 of discontinuous fibers, which is then stored in a can 8 by a coiler 7. FIG. 2 shows an auxiliary cutting device 10 provided between the middle rollers 4, 4' and the front roller 5.
After creating crevasses in each single fiber constituting the bundle 1 of continuous fibers using middle rollers 4 and 4', the fibers are cut by an auxiliary cutting device 10 to form a bundle 6 of discontinuous fibers. FIG. 3 is a process diagram suitable for producing a bundle 6 of discontinuous fibers with arbitrary shrinkage, in which crevasses are created in each single fiber constituting the bundle 1 of continuous fibers using middle rollers 4, 4'. After that, thermostatic bath 1
At step 1, depending on the desired shrinkage, the fibers are cooled or heated and simultaneously applied with tensile stress and cut to form a bundle 6 of discontinuous fibers. If higher shrinkage is desired, a hot plate 13 may be provided between the feed roller 12 and the back roller 3 to provide hot stretching. Example 1 Composed of acrylic synthetic fiber 3 denier d
A tow of 500,000 d is attached to the device shown in Figure 1, and 25~
Table 1 shows the properties of the single fibers after contacting them with a cooling medium at 120°C and spinning them under the following conditions. Cooling medium Nitrogen gas Atmosphere temperature inside cryostat 25 to -120℃ Front roller 1.05 Top and bottom speed ratio Break draft 2.04 (-20 to -120
℃) 2.56 (0~25℃) Spinning speed 50m/min

【表】 この表から明らかなように、トータル・デニー
ル50万の通常の均質な断面をもつたトウを冷却さ
せるとともに表面速度の異なる上下一対のフロン
ト・ローラーにて加圧・剪断することにより、繊
維に容易にクレバス状裂け目を発生させることが
できた。その後直ちに引張応力を与えて切断した
が、従来のストレツチ・ブレーキング方式に比べ
て、2.04と小さいブレークドラフトで切断でき
た。得られたスライバーも収縮率が少なく、平行
度、ネツプ、U%とも優れた品質をもつスライバ
ーを高速にて製造することができた。またクレバ
ス状裂け目のはいつた繊維の切断された先端は尖
端を有しており、その発生率は−20℃でも80%を
越えるものであつた。 次に、上記スライバーを通常の紡績工程を経
て、1/40メートル番手、撚数500T/mのリング
紡績糸を得、これを2本合わせてジヤージを編成
し、JISL−1076 ICI法(5h)にて測定した。結
果を第2表で示す。
[Table] As is clear from this table, by cooling a tow with a total denier of 500,000 and a normal homogeneous cross section, and pressing and shearing it with a pair of upper and lower front rollers with different surface speeds, Crevasse-like fissures could be easily generated in the fibers. Immediately after that, tensile stress was applied to cut the material, and the break draft was 2.04 mm smaller than that of the conventional stretch-braking method. The obtained sliver also had a low shrinkage rate and was able to be produced at high speed with excellent quality in terms of parallelism, neps, and U%. In addition, the cut ends of the fibers with crevasse-like fissures had sharp edges, and the incidence of such fissures exceeded 80% even at -20°C. Next, the above sliver is subjected to a normal spinning process to obtain a ring-spun yarn with a count of 1/40 meter and a number of twists of 500 T/m, and two yarns are knitted into a jersey using the JISL-1076 ICI method (5h). Measured at The results are shown in Table 2.

【表】 常温(25℃)および0℃に対して−20℃以下で
は小さな剪断変形で容易にクレバス状裂け目が発
生し、単繊維の引掛強度が低下する。−120℃に関
しては剪断変形量が相対的に高く、物性低下によ
るフライが多かつた。この場合、フロント・ロー
ラー上下の速度比はさらに低くするのが望まし
い。紡績糸の物性は十分な強力、伸度を有するも
のであり、でき上つた製品のピリング特性は−20
℃以下では4〜5級と良好であつた。このよう
に、紡績性、糸物性並びにピリング特性のすぐれ
た製品を工業的有利に得ることが可能となつた。 実施例 2 本発明と従来法とで、切断に要する引張張力を
比較する為に、アクリル系合成繊維3dからなる
300dの繊維束Bと上記3dで構成される50万dの
トウを第1図の装置に仕掛けて、下記条件にて紡
出しミドル・ローラー4,4′の出口で取り出し
たクレバス状裂け目を有するトウから得られた
300dの繊維束Aを下記雰囲気温度にてテンシロ
ン引張試験機で引張り、切断に要する引張張力の
温度分散並びに、その温度による収縮率を検討し
た。結果は第6,7図に示す。 装置条件 冷却媒体 窒素ガス 低温槽内雰囲気温度 −40℃ 滞留時間 12秒 フロント・ローラー 1.05 上下の速度比 テンシロン条件 冷却媒体 窒素ガス 雰囲気温度 50℃〜−120℃ 滞留時間 30秒 初期荷重 100mg/d 本発明はこのように−5℃以下の媒体に接触さ
せつつ、または接触後直ちに連続繊維の束に剪断
力を与えてクレバス状裂け目部を発生させた後、
延伸力及び/または剪断力を与えて各単繊維を切
断することによつてクレバス状裂け目部を有する
不連続繊維の束を製造するものであるから、 1 冷却媒体の温度および剪断力を変えることに
より、用途、目的に応じて任意のクレバス状裂
け目部を発生させることができる。 2 通常のすぐれた力学的性能をもつた連続繊維
の束にクレバス状裂け目を発生させ、抗ピリン
グ特性を付与することができる。 3 クレバスを発生させた後切断することによつ
て、容易に低収縮の紡績糸を得ることができ
る。 4 クレバスを発生させた後切断して不連続繊維
の束を製造する場合、切断に伴うエネルギーが
極めて少ない。 5 冷却媒体の温度を変えることにより低収縮か
ら高収縮に至る任意の収縮率をもつ紡績糸の製
造が可能となる。 6 切断に先立つて、熱延伸処理を行うことによ
り、収縮率を任意に変更することが可能とな
る。 7 捲縮のある連続繊維の束を−5℃以下で切断
することによつて切断后も捲縮を有する不連続
繊維の束を得ることができる。 という顕著な作用効果を示す。
[Table] Compared to room temperature (25°C) and 0°C, at temperatures below -20°C, small shear deformations easily cause crevasse-like fissures and the hooking strength of single fibers decreases. At -120℃, the amount of shear deformation was relatively high, and there were many fries due to deterioration of physical properties. In this case, it is desirable to further reduce the speed ratio between the top and bottom of the front roller. The spun yarn has sufficient strength and elongation, and the pilling properties of the finished product are -20
At temperatures below 0.degree. C., it was good at grade 4-5. In this way, it has become possible to advantageously obtain products with excellent spinnability, yarn properties, and pilling properties. Example 2 In order to compare the tensile force required for cutting between the present invention and the conventional method, a sample made of acrylic synthetic fiber 3D was
A 500,000 d tow consisting of the 300 d fiber bundle B and the above 3 d was placed in the device shown in Figure 1 and spun under the following conditions, with a crevasse-like fissure taken out at the exit of the middle rollers 4 and 4'. obtained from tow
A 300 d fiber bundle A was pulled using a Tensilon tensile tester at the following ambient temperature, and the temperature distribution of the tensile force required for cutting and the shrinkage rate depending on the temperature were investigated. The results are shown in Figures 6 and 7. Equipment conditions Cooling medium Nitrogen gas Atmosphere temperature in the cryostat -40℃ Residence time 12 seconds Front roller 1.05 Top and bottom speed ratio Tensilon conditions Cooling medium Nitrogen gas Atmosphere temperature 50℃~-120℃ Residence time 30 seconds Initial load 100mg/d Book In this way, the invention applies a shearing force to the bundle of continuous fibers while contacting with a medium at -5°C or lower or immediately after contact to generate a crevasse-like fissure, and then
Since a bundle of discontinuous fibers having crevasse-like fissures is produced by cutting each single fiber by applying drawing force and/or shearing force, 1. Changing the temperature and shearing force of the cooling medium. Accordingly, any crevasse-like crevice can be generated depending on the use and purpose. 2. It is possible to create crevasse-like tears in a bundle of continuous fibers that normally have excellent mechanical performance, thereby imparting anti-pilling properties. 3. By cutting the crevasses after generating them, a spun yarn with low shrinkage can be easily obtained. 4. When producing a bundle of discontinuous fibers by cutting after creating a crevasse, the energy involved in cutting is extremely small. 5. By changing the temperature of the cooling medium, it is possible to produce a spun yarn with any desired shrinkage rate, from low shrinkage to high shrinkage. 6. By performing hot stretching treatment prior to cutting, it becomes possible to change the shrinkage rate as desired. 7 By cutting a crimped continuous fiber bundle at -5°C or lower, a discontinuous fiber bundle that also has crimps after cutting can be obtained. It shows remarkable action and effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は、本発明を実施するに適した態様
の一例を示す工程図である。第4図は本発明によ
つて得られるクレバス状裂け目部を示すモデル図
でAは側面図、BはAのA−A′断面図である。
第5図は実施例1の結果をグラフ化したもので冷
却媒体温度とクレバス状裂け目部の発生量を示す
図、第6,7図は実施例2の結果であり、第6図
は切断に際しての冷却媒体温度と切断強力との関
係、第7図は切断に際しての冷却媒体温度と切断
させた単繊維の煮沸後の収縮率との関係を示す図
である。 1……連続繊維の束、2……低温槽、3……バ
ツク・ローラー、4,4′……ミドル・ローラ
ー、5……フロント・ローラー、6……不連続繊
維の束、7……コイラー、8……ケンス、10…
…補助切断装置、11……恒温槽、12……フイ
ード・ローラー、13……熱板、30……単繊
維、31……クレバス状裂け目部。
1 to 3 are process diagrams showing an example of a mode suitable for carrying out the present invention. FIG. 4 is a model diagram showing a crevasse-like crevice obtained by the present invention, where A is a side view and B is a sectional view taken along line A-A' of A.
Fig. 5 is a graph showing the results of Example 1, showing the cooling medium temperature and the amount of crevasse-like fissures generated, Figs. 6 and 7 are the results of Example 2, and Fig. 6 shows the results of cutting. FIG. 7 is a diagram showing the relationship between the cooling medium temperature during cutting and the cutting strength, and the relationship between the cooling medium temperature during cutting and the shrinkage rate of the cut single fiber after boiling. DESCRIPTION OF SYMBOLS 1...Bundle of continuous fibers, 2...Cryogenic bath, 3...Back roller, 4, 4'...Middle roller, 5...Front roller, 6...Bundle of discontinuous fibers, 7... Coiler, 8... Kens, 10...
... Auxiliary cutting device, 11 ... Constant temperature bath, 12 ... Feed roller, 13 ... Hot plate, 30 ... Monofilament, 31 ... Crevasse-like tear portion.

Claims (1)

【特許請求の範囲】[Claims] 1 連続繊維の束を−5℃以下の媒体に接触させ
つつ、または接触後直ちに、連続繊維の束に単繊
維が切れない程度の剪断力を与えて、繊維の束を
構成する単繊維にV字形をなし内部に切れ込んだ
クレバス状裂け目部を発生させた後、延伸力及
び/または剪断力を与えて繊維の束を構成する各
単繊維を切断することを特徴とするクレバス状裂
け目部を有する不連続繊維の束を製造する方法。
1 While bringing the bundle of continuous fibers into contact with a medium at -5°C or lower, or immediately after contact, apply a shearing force to the bundle of continuous fibers to the extent that the single fibers do not break, and apply V to the single fibers constituting the bundle of fibers. It has a crevasse-like crevice characterized by generating a crevasse-like crevice that is shaped like a letter and cutting into the inside, and then applying a stretching force and/or a shearing force to cut each single fiber constituting the fiber bundle. A method of producing bundles of discontinuous fibers.
JP17565082A 1982-10-06 1982-10-06 Production of bundles of discontinuous filaments having crevasse-like cracks Granted JPS5966519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17565082A JPS5966519A (en) 1982-10-06 1982-10-06 Production of bundles of discontinuous filaments having crevasse-like cracks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17565082A JPS5966519A (en) 1982-10-06 1982-10-06 Production of bundles of discontinuous filaments having crevasse-like cracks

Publications (2)

Publication Number Publication Date
JPS5966519A JPS5966519A (en) 1984-04-16
JPS6144972B2 true JPS6144972B2 (en) 1986-10-06

Family

ID=15999801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17565082A Granted JPS5966519A (en) 1982-10-06 1982-10-06 Production of bundles of discontinuous filaments having crevasse-like cracks

Country Status (1)

Country Link
JP (1) JPS5966519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152402A (en) * 2013-02-05 2014-08-25 Japan Vilene Co Ltd Method for manufacturing nonwoven fabric and web drafter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152402A (en) * 2013-02-05 2014-08-25 Japan Vilene Co Ltd Method for manufacturing nonwoven fabric and web drafter

Also Published As

Publication number Publication date
JPS5966519A (en) 1984-04-16

Similar Documents

Publication Publication Date Title
US20090183487A1 (en) Staple yarn manufacturing process
US4583266A (en) Process for preparation of discontinuous filament bundles and sharp-ended filaments
EP0352331A1 (en) Ultra-soft flat multifilament yarn and production method thereof
JPS6144972B2 (en)
DE19956008A1 (en) Method for false twist texturing of a synthetic thread to a crimped yarn
JPH0341573B2 (en)
KR850001305B1 (en) Multi-filament making method and the same kind of other part
JPS5953370B2 (en) Manufacturing method of untwisted spun yarn
JPH0341574B2 (en)
JP2783603B2 (en) Manufacturing method of special bulked yarn
JPS59187625A (en) Preparation of fiber having thin and sharp tip
JP3181794B2 (en) False twist processing method and false twist device
JP2732785B2 (en) Random-like pongee-like composite processed yarn and method for producing the same
JP3236211B2 (en) False twisted yarn
JPS59168130A (en) Production of discontinuous fiber bundle
JPS5947050B2 (en) Manufacturing method of textured polyester multifilament yarn
JP2951847B2 (en) Method for producing polyester bulky yarn
JPH0466927B2 (en)
JPS6144973B2 (en)
JPS5860021A (en) Production of bundle of discontinuous filament yarn
JPS607053B2 (en) Loop yarn manufacturing method
JPS5912771B2 (en) Spun yarn and its manufacturing method
JPH041092B2 (en)
JPS59187613A (en) Fiber having tapered sharp end
JPH06240527A (en) Production of highly stretchable spun-like dyed yarn