JPH041092B2 - - Google Patents

Info

Publication number
JPH041092B2
JPH041092B2 JP3601683A JP3601683A JPH041092B2 JP H041092 B2 JPH041092 B2 JP H041092B2 JP 3601683 A JP3601683 A JP 3601683A JP 3601683 A JP3601683 A JP 3601683A JP H041092 B2 JPH041092 B2 JP H041092B2
Authority
JP
Japan
Prior art keywords
fibers
fiber bundle
spinning
fiber
bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3601683A
Other languages
Japanese (ja)
Other versions
JPS59163430A (en
Inventor
Yasuo Tango
Makoto Kanezaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP3601683A priority Critical patent/JPS59163430A/en
Publication of JPS59163430A publication Critical patent/JPS59163430A/en
Publication of JPH041092B2 publication Critical patent/JPH041092B2/ja
Granted legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H1/00Spinning or twisting machines in which the product is wound-up continuously
    • D01H1/11Spinning by false-twisting
    • D01H1/115Spinning by false-twisting using pneumatic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Preliminary Treatment Of Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、繊維束、例えばトウやマルチフイラ
メント等の連続繊維の束を牽切することによつ
て、繊維束から直接、一工程で紡績する紡績糸の
製造方法に関するものである。 更に詳しくは、捲縮を有するアクリル系合成繊
維からなる繊維束を、捲縮を維持した状態で−5
℃以下の媒体に接触させつつ、または接触させた
後、該繊維束を複数本に分割するとともに、繊維
束に延伸力及び/または剪断力を与えて切断する
ことによつて、捲縮を有するアクリル系合成繊維
からなる複数本の不連続繊維の束となした後、連
続して精紡機の各錐に供給して紡績することを特
徴とする紡績糸の製造方法に関するものである。 原料から一工程で紡績糸を製造する方法とし
て、短繊維群をカードに供給し、カード・ウエブ
を分割して繊維束とし、その繊維束を回転紡糸室
を有するオープンエンド精紡機に供給する方法、
特公昭50−26656号公報、特公昭52−27727号公報
等が提案されている。しかし、これらはカード工
程を経る為 カード工程では均斉度の高い繊維束をつくる
ことはできず、ネツプ、フツク等が発生する
上、単繊維の平行度が悪い為、精紡機において
糸切れ、及び紡績糸の糸斑、糸欠点が多く品質
の良好な紡績糸を得られない。 また、カード工程を長くするとともに、メタ
リツクワイヤの如くコーミング機能を有する開
繊装置を設けてもカード方式における上記の欠
点がそれ程、改良されないばかりか、設置面積
が大きくなり、構造的にも少量多品種生産シス
テムには不適当である。 また、もろい繊維、クリンプの弱い繊維、繊
維間マサツの少ない繊維を供給した場合、繊維
切断、ウエブの耳がたれる為の問題があり、使
用する繊維及びその形態に制限がある。 原綿製造工程において紡績目的に応じた繊維
長に切断し短繊維を製造する必要がある。 紡績工程で紡績糸に収縮性を付与できない。 といつた問題があつた。 一方、トウ、マルチフイラメント等の連続繊維
の束から一工程で紡績糸を製造する方法として、
表面速度の異なる2組のローラに供給し、繊維束
を延伸して繊維束を構成する各単繊維を切断する
とともに所定の重量にまでドラフトした後、加撚
して紡績糸を製造する方法が知られている。しか
し、この方法は室温(20℃)近辺において延伸力
を与えて切断する為 ○イ 大きな塑性変形を伴つて切断されるために、
繊維内部に残留歪が生じ、低収縮の紡績糸が得
られない。 ○ロ 精紡機上で粘弾性領域で且つ高速で牽切する
ので、切断時に単繊維の先端が大きくハネ返る
とともに、気流によつて乱れ易く、糸斑が悪
く、糸切れも多い。 ○ハ 切断后、単繊維の捲縮が消える為、紡績糸の
表面が毛羽つぽくなる。 また、直接紡績方法とオープンエンド紡績法を
連結せしめるに際し、従来法の直紡方式では繊維
が十分に塑性変形した後、切断されるので原綿に
おいて付与された捲縮が消え、開繊ローラーへの
捲付や開繊が悪くなり紡出が困難であつた。これ
に対して、牽切スライバーに一対の加熱歯車方式
にて捲縮加工を施こすものとして、特公昭48−
25372号公報に記載の方法がある。しかし、この
方法で十分な捲縮を付与することは困難であり、
できたとしてもスライバーに折りたたむような捲
縮が付与されるため、単繊維が捲縮によつて拘束
され、単繊維がズレにくい。後で開繊ローラーに
て分繊、開繊しても十分でなく、糸切れ、糸斑が
増加する。また、この方法では発生した収縮を十
分に緩和することはできないばかりか、不均一性
を増加させる等問題が多い。 また、連続繊維の束を圧断して回転紡糸室を有
するオープンエンド精紡機に供給する方法として
特公昭51−23611号公報に記載の方法がある。こ
れはオープンエンド精紡機の供給管の直前におい
て連続繊維の束をカツター等の圧断ローラにてカ
ツトした後、回転紡糸室の回転によつて生じる気
流によつて繊維を分離しようとするものである
が、カツターにより圧断されたものは繊維の先端
が一本一本に分離されず、糸切れが多いとともに
糸斑、糸欠点等が悪く、糸質の良好な紡績糸は得
られない。 本発明はこのような従来法の欠点を解決する方
法を提供するものであり、紡績工程において、上
記欠点がない上、低収縮率から中収縮率の紡績糸
を製造でき、極めて優れた品質の紡績糸を一工程
にて製造する方法を提供するものである。 連続繊維の束から低収縮の不連続繊維の束を製
造する方法としては、例えば特開昭58−60021号
公報に記載の方法があげられる。これは、繊維束
の−5℃以下に冷却し、伸度が非常に低い弾性領
域近傍において牽切するものであるが(以下、凍
結牽切法と呼ぶ。)この凍結牽切法は、低収縮で
平行性にすぐれた不連続繊維の束、また、低収縮
で平行性にすぐれている上に、切断后も捲縮を有
している不連続繊維の束を効率的に生産できる点
において極めて有効なものである。この為、従来
法では考えられない程、平行性、開繊性にすぐれ
た繊維束を精紡工程に供給することが可能になり
可紡性、品質ともすぐれた紡績糸を生産すること
が可能になつた。 従来法では前紡工程と精紡機を連結する場合、
生産量が相違する為にオープンエンド精紡機の如
く紡出速度の高い機種で、太番手を生産する場合
に限定されていたが、本発明法では前紡工程の速
度を自由に変更できるとともに、速度が遅い程、
冷却装置が小型となり設置面積が少なくてよい。
また、トウ等の連続繊維の束を用いることが出来
るので少量多品種生産型の紡績糸製造方法として
すぐれている。 即ち、本発明は−5℃以下に冷却した捲縮を有
するアクリル系合成繊維からなる繊維束を、デイ
バイダーにて複数本の繊維束に分割するとともに
切断し、連続して既存の精紡機に供給するもので
あり、トウ、マルチフイラメント等の繊維束より
一工程で紡績糸を生産することを特徴とする。 繊維束としては、トウ、マルチフイラメント等
の連続繊維の束が一般に用いられる。連続繊維と
してはアクリル系合成繊維が特に好ましく用いら
れる。連続繊維の束としては単繊維の繊度が、
0.1〜100デニール(d)から構成されるトータルデニ
ール30d〜200万dにいたるマルチフイラメント
やトウが一般に使用される。更に、上記連続繊維
の束と短繊維からなる繊維束との混合体、他繊維
との混合体にも適用できる。 本発明において使用する冷却媒体の温度の下限
は絶対零度まであがるがそれでは使用媒体のコス
ト、装置に問題があり−5℃〜−195℃が好まし
い。冷却媒体としては−5℃以下のものであれば
使用可能であるがアンモニア、二酸化炭素、空
気、酸素、窒素、フロン系冷媒等の固体、液体ま
たは気化ガスおよび寒剤等を使用することができ
る。また、電気的に冷却する方法を使用すること
もできる。 この冷却媒体に接触させる時間は、繊維の種
類、供給方法、媒体の種類や温度等により異なる
が、一般には0.1秒〜100分程度が用いられる。 冷却媒体との接触方法は繊維束を構成する繊維
の捲縮を維持した状態であれば特に限定されない
が、冷却媒体の表面に繊維束を接触させる方法、
気体雰囲気中や液体中に繊維束を通過させる方
法、冷却媒体を繊維束に滴下させる方法等があ
る。 切断は、繊維束を−5℃以下の媒体に接触させ
つつ、または接触させた後、繊維束に延伸力及
び/または剪断力を与えて、単繊維を切断する。
これらの他に別の切断力を併用しても差しつかえ
ない。また、本発明者らが先に提案した特開昭59
−66519号公報に記載の如く、単繊維にクレバス
状裂け目部を与えた後、延伸力及び/または剪断
力を与えて、単繊維が切断しても差しつかえな
い。 冷却域に供給する繊維束の状態は一定の巾に均
一に単繊維を分繊しながら厚みを整えたものが好
ましい。 分割は繊維束を−5℃以下の媒体に接触させつ
つ、または接触させた後、行なう。分割方法は、
複数本のマルチフイラメントの場合は単に、複数
本のマルチフイラメントの場合は単に、複数本の
ガイドを設ければよいが、トウ等の非常に構成本
数が多い繊維束の場合は−5℃以下に冷却し、伸
度が非常に低い状態で、所定の巾にデバイダーに
て斜向した単繊維を切断し複数本の繊維束に分割
する。この時、繊維束が冷却されており、各単繊
維の剛性が増加するので、カツター等による融着
や繊維束の乱れも少なく、容易に分割できる。ま
た、切断后、フリース状態においてデバイデイン
グ・ローラ等によつて分割しても差しつかえな
い。 本発明では牽切と精紡を分離したので、冷却と
切断を一ケ所に集中して行うことができ、冷却装
置の構造が簡単になる上に、冷却コストが減少す
る。一方、品質面においても、牽切域での速度が
遅くなるとともに、繊維束の構成本数が多くなる
ので牽切時の単繊維のハネ返り及び気流による乱
れによつて生じる斑が少ない。また、このよう
に、牽切と精紡を分離することによつて精紡機の
高速化も可能となる。 このようにして、分割した繊維束を送りローラ
によつて既存の精紡機に供給する。また、分割
后、繊維束の集束性を上げるためラビング・ロー
ラを通してから既存の精紡機に供給してもよい。 精紡機はリング精紡機をはじめロータ型オープ
ンエンド機、空気渦流方式オープンエンド機、結
束紡績法、空気渦流式コアヤーン法、吸着加撚
法、セルフツイスト法、無撚紡績法等各種の紡績
機を用いることができるが、できるだけ高生産性
の精紡機が好ましい。 次に、本発明を図面により説明する。第1,3
図は本発明を実施するに適した態様例を示す工程
図である。第1図は一定の巾に均一に単繊維を分
繊しながら厚みを整えた繊維束1をバツク・ロー
ラー2および、低温槽7の送り出しローラー8に
て低温槽7内へ供給する。送り出しローラー8は
低温槽7の入口をシールするとともに、繊維束1
に含まれる外気を圧搾する。この時、出口の引き
取りローラー9に対してオーバー・フイードする
ことにより冷却効率を向上するとともに低温槽7
内での繊維収縮等による繊維切断を防止できる。
低温槽7内を回転ローラー10により蛇行し、十
分に冷却された繊維束1は、出口をシールする引
き取りローラー9により冷気を圧搾される。繊維
束1を低温槽7において−5℃以下の冷却媒体に
接触させることによつて繊維の剛性を増し、伸度
の少ない状態とした後ミドル・ローラー3とブレ
ーク・ローラー4にて延伸力を与え繊維を切断
し、不連続繊維の束とするとともに、この状態に
おいてカツター11にて複数本の繊維束12に分
割する。次に、ガイド12にて分割しながらフロ
ント・ローラー5で、所定の重量、ステープル・
ダイヤグラムにした後、チユーブ14にてスライ
バーの集束性を高め、デリベリ・ローラー6にて
吸着加撚精紡機15の各錐に供給して紡績糸16
とするものである。第2図は第1図の平面図であ
る。第3は低温槽の出口で、カツター11にて複
数本の繊維束1に分割した後、切断して不連続繊
維の束とし、連続して、ロータ型オープンエンド
機17の各錐に供給して紡績糸を製造するもので
ある。 実施例 1 ポリアクリル系合成繊維3dで構成される56万
デニールのトウを第3図の装置に仕掛けて下記条
件にて紡出した。 単繊維の捲縮状態 捲縮数12(ケ/インチ) 捲縮度12(%) オーバーフイード率 5(%) 冷却媒体 窒素ガス 低温槽内雰囲気温度 −100(℃) オープンエンド条件 糸規格 番手 1/15(Nm) 撚数 450(T/m) 紡出速度 100(m/min) この比較例として直紡方式にて室温(20℃)に
てトウを牽切して、捲縮を付与した後、オープン
エンド紡績に供給し同様の条件で紡出した。 更に、フラツト・カードに同じく3dを60mmの
スケアーにカツトしたステープル・フアイバーを
供給し、得られたスライバーの物性について比較
した結果を次表に示す。
The present invention relates to a method for producing a spun yarn, in which a fiber bundle, for example, a bundle of continuous fibers such as tow or multifilament, is spun directly from the fiber bundle in one step by tension-cutting the fiber bundle. More specifically, a fiber bundle made of acrylic synthetic fibers having crimps is heated to -5 with the crimps maintained.
Crimped by dividing the fiber bundle into a plurality of fiber bundles and cutting them by applying a stretching force and/or shearing force to the fiber bundle while or after contacting with a medium at a temperature of ℃ or lower. The present invention relates to a method for producing a spun yarn, characterized in that a plurality of discontinuous fibers made of acrylic synthetic fibers are formed into a bundle and then continuously fed to each cone of a spinning machine for spinning. A method for producing spun yarn from raw materials in one step is to feed short fibers to a card, divide the carded web into fiber bundles, and feed the fiber bundles to an open-end spinning machine with a rotating spinning chamber. ,
Japanese Patent Publication No. 50-26656, Japanese Patent Publication No. 52-27727, etc. have been proposed. However, since these go through a carding process, it is not possible to create highly uniform fiber bundles in the carding process, which causes neps and hooks, and because the parallelism of single fibers is poor, thread breakage and Spun yarn has many yarn irregularities and yarn defects, making it difficult to obtain spun yarn of good quality. Furthermore, even if the carding process is lengthened and a fiber opening device with a combing function such as a metallic wire is installed, the above-mentioned drawbacks of the carding method cannot be improved much, and the installation area becomes large, and the structure is also small and bulky. It is unsuitable for variety production systems. Furthermore, if brittle fibers, weakly crimped fibers, or fibers with little interfiber stiffness are supplied, there are problems such as fiber breakage and web sag, and there are restrictions on the fibers and their forms that can be used. In the process of producing raw cotton, it is necessary to produce short fibers by cutting the fibers into lengths according to the purpose of spinning. Shrinkage cannot be imparted to the spun yarn during the spinning process. I had a problem. On the other hand, as a method for producing spun yarn in one step from a bundle of continuous fibers such as tow and multifilament,
A method is to produce a spun yarn by feeding the fiber bundle to two sets of rollers with different surface speeds, drawing the fiber bundle, cutting each single fiber constituting the fiber bundle, drafting it to a predetermined weight, and then twisting it. Are known. However, since this method cuts by applying a stretching force at around room temperature (20℃), the cutting is performed with large plastic deformation.
Residual strain occurs inside the fibers, making it impossible to obtain a spun yarn with low shrinkage. ○B Since tension cutting is carried out in the viscoelastic range and at high speed on the spinning machine, the tips of the single fibers bounce back a lot during cutting, are easily disturbed by air currents, have poor thread unevenness, and often break. ○C After cutting, the crimp of the single fibers disappears, so the surface of the spun yarn becomes fluffy. In addition, when connecting the direct spinning method and the open-end spinning method, in the conventional direct spinning method, the fibers are cut after being sufficiently plastically deformed, so the crimp imparted to the raw cotton disappears, and the fibers are cut by the opening roller. Winding and opening were poor and spinning was difficult. On the other hand, in the 48th year of the Special Publication, the crimping process was applied to the tension-cut sliver using a pair of heating gears.
There is a method described in Publication No. 25372. However, it is difficult to provide sufficient crimp with this method;
Even if it is possible, the sliver is crimped to make it fold, so the single fibers are restrained by the crimps, making it difficult for the single fibers to shift. Even if the fibers are separated and opened later using a fiber opening roller, it is not sufficient and yarn breakage and yarn unevenness increase. Furthermore, this method not only cannot sufficiently alleviate the shrinkage that has occurred, but also has many problems such as increased non-uniformity. Further, as a method of compressing a bundle of continuous fibers and supplying the bundle to an open-end spinning machine having a rotating spinning chamber, there is a method described in Japanese Patent Publication No. 51-23611. This is a method in which a bundle of continuous fibers is cut with a pressure roller such as a cutter immediately before the supply pipe of an open-end spinning machine, and then the fibers are separated by airflow generated by the rotation of a rotating spinning chamber. However, when the fibers are cut by a cutter, the ends of the fibers are not separated one by one, and there are many breakages, unevenness, yarn defects, etc., and spun yarn with good quality cannot be obtained. The present invention provides a method to solve the drawbacks of such conventional methods, and in addition to being free of the above drawbacks in the spinning process, it is possible to produce spun yarn with a low to medium shrinkage percentage and of extremely excellent quality. The present invention provides a method for producing spun yarn in one step. An example of a method for producing a bundle of low shrinkage discontinuous fibers from a bundle of continuous fibers is the method described in JP-A-58-60021. In this method, the fiber bundle is cooled to -5°C or lower, and tension-cutting is performed near the elastic region where the elongation is extremely low (hereinafter referred to as the "freezing tension-cutting method"). In that it is possible to efficiently produce bundles of discontinuous fibers with excellent parallelism due to shrinkage, and bundles of discontinuous fibers with low shrinkage and excellent parallelism, which also have crimps after cutting. It is extremely effective. For this reason, it is possible to supply fiber bundles with excellent parallelism and spreadability to the spinning process, which is unimaginable with conventional methods, making it possible to produce spun yarn with excellent spinnability and quality. It became. In the conventional method, when the pre-spinning process and spinning machine are connected,
Due to the difference in production volume, it was limited to machines with high spinning speeds such as open-end spinning machines to produce thick yarns, but with the method of the present invention, the speed of the pre-spinning process can be changed freely, and The slower the speed,
The cooling device is small and requires less installation space.
In addition, since bundles of continuous fibers such as tow can be used, this method is excellent as a method for manufacturing spun yarn for small-lot, high-mix production. That is, in the present invention, a fiber bundle made of crimped acrylic synthetic fiber cooled to -5°C or lower is divided into a plurality of fiber bundles using a divider, cut, and continuously supplied to an existing spinning machine. It is characterized by producing spun yarn in one process from fiber bundles such as tow and multifilament. As the fiber bundle, a continuous fiber bundle such as tow or multifilament is generally used. Acrylic synthetic fibers are particularly preferably used as the continuous fibers. As a bundle of continuous fibers, the fineness of a single fiber is
Multifilaments and tows consisting of 0.1 to 100 denier (d) with a total denier of 30 d to 2,000,000 d are commonly used. Furthermore, it can be applied to a mixture of the above-mentioned continuous fiber bundle and a fiber bundle made of short fibers, or a mixture with other fibers. The lower limit of the temperature of the cooling medium used in the present invention is up to absolute zero, but this poses problems in the cost of the medium used and the equipment, so -5°C to -195°C is preferred. Any cooling medium can be used as long as it has a temperature of -5 DEG C. or lower, and solid, liquid or vaporized gases such as ammonia, carbon dioxide, air, oxygen, nitrogen, fluorocarbon refrigerants, and cryogens can be used. It is also possible to use electrical cooling methods. The time of contact with this cooling medium varies depending on the type of fiber, feeding method, type of medium, temperature, etc., but is generally about 0.1 seconds to 100 minutes. The method of contacting with the cooling medium is not particularly limited as long as the fibers constituting the fiber bundle are kept crimped, but include methods of bringing the fiber bundle into contact with the surface of the cooling medium;
There are methods such as passing the fiber bundle through a gas atmosphere or liquid, and dropping a cooling medium onto the fiber bundle. For cutting, single fibers are cut by applying drawing force and/or shearing force to the fiber bundle while or after contacting the fiber bundle with a medium at −5° C. or lower.
There is no problem in using other cutting forces in addition to these. In addition, the inventors of the present invention proposed JP-A-59
As described in Japanese Patent No. 66519, it is possible to cut the single fibers by providing a crevasse-like tear portion to the single fibers and then applying a drawing force and/or a shearing force. It is preferable that the fiber bundle supplied to the cooling zone is in a state in which single fibers are uniformly divided into a constant width and the thickness is adjusted. The splitting is performed while or after the fiber bundle is brought into contact with a medium at -5°C or lower. The division method is
In the case of multiple multifilaments, it is sufficient to simply provide multiple guides, but in the case of fiber bundles with a very large number of fibers such as tows, the temperature should be kept at -5℃ or below. After cooling, the diagonally oriented single fibers are cut to a predetermined width using a divider and divided into a plurality of fiber bundles while the elongation is very low. At this time, the fiber bundle is cooled and the rigidity of each single fiber increases, so there is less fusion and disturbance of the fiber bundle by cutters, etc., and it can be easily divided. Further, after cutting, it may be divided by a dividing roller or the like in the fleece state. In the present invention, since the tension cutting and spinning are separated, cooling and cutting can be concentrated in one place, which not only simplifies the structure of the cooling device but also reduces cooling costs. On the other hand, in terms of quality, since the speed in the tension cutting region is slow and the number of fiber bundles is increased, there are fewer irregularities caused by bounce of single fibers and turbulence caused by airflow during tension cutting. In addition, by separating tension cutting and spinning in this way, it is also possible to increase the speed of the spinning machine. In this way, the divided fiber bundles are fed to the existing spinning machine by the feed rollers. Further, after being divided, the fiber bundle may be passed through rubbing rollers to improve the cohesiveness of the fiber bundle before being fed to an existing spinning machine. We use a variety of spinning machines including ring spinning machines, rotor-type open-end machines, air vortex open-end machines, bundled spinning methods, air vortex core yarn methods, suction twisting methods, self-twisting methods, and non-twist spinning methods. However, a spinning machine with the highest possible productivity is preferred. Next, the present invention will be explained with reference to the drawings. 1st, 3rd
The figure is a process diagram showing an example of a mode suitable for carrying out the present invention. In FIG. 1, a fiber bundle 1 whose thickness is adjusted while uniformly splitting single fibers into a constant width is fed into a low temperature chamber 7 by a back roller 2 and a delivery roller 8 of the low temperature chamber 7. The delivery roller 8 seals the inlet of the cryostat 7 and the fiber bundle 1.
The outside air contained in the air is compressed. At this time, cooling efficiency is improved by overfeeding the take-up roller 9 at the outlet, and the cryogenic chamber 7
It is possible to prevent fiber breakage due to fiber shrinkage inside.
The fiber bundle 1, which has been sufficiently cooled by meandering through the low-temperature chamber 7 by a rotating roller 10, is compressed of cold air by a take-up roller 9 that seals the outlet. The fiber bundle 1 is brought into contact with a cooling medium of −5° C. or lower in a low-temperature bath 7 to increase the stiffness of the fibers and reduce elongation, and then a drawing force is applied by a middle roller 3 and a break roller 4. The fed fibers are cut to form a bundle of discontinuous fibers, and in this state are divided into a plurality of fiber bundles 12 using a cutter 11. Next, while dividing with the guide 12, the front roller 5 is used to hold the staples with a predetermined weight.
After forming the sliver into a diagram, the tube 14 improves the convergence of the sliver, and the delivery roller 6 feeds the sliver to each cone of the suction-twisting spinning machine 15 to form a spun yarn 16.
That is. FIG. 2 is a plan view of FIG. 1. The third is at the exit of the cryostat, where the cutter 11 divides the fiber bundles into multiple fiber bundles 1, which are then cut into discontinuous fiber bundles, which are continuously fed to each cone of the rotor-type open-end machine 17. This process produces spun yarn. Example 1 A 560,000 denier tow made of polyacrylic synthetic fiber 3D was placed in the apparatus shown in Figure 3 and spun under the following conditions. Crimped state of single fiber Number of crimp 12 (keys/inch) Degree of crimp 12 (%) Overfeed rate 5 (%) Cooling medium Nitrogen gas Temperature inside the cryogenic chamber -100 (℃) Yarn specifications for open end condition Count 1 /15 (Nm) Number of twists: 450 (T/m) Spinning speed: 100 (m/min) As a comparative example, crimps were added to the tow by straight spinning at room temperature (20°C). After that, it was fed to an open-end spinning machine and spun under the same conditions. Furthermore, a staple fiber cut into a 60 mm square of 3D was supplied to the flat card, and the physical properties of the obtained sliver were compared, and the results are shown in the table below.

【表】 従来の直紡方法では繊維を室温(20℃)にて十
分に塑性変形させるために、切断后の捲縮が消え
てしまう。収縮の発現が大きく、低収縮率が得ら
れない。更に、単繊維の引掛強伸度が低下する等
の問題がある。これに対して、本発明法で得られ
たスライバーは収縮率が少ないうえに、元の捲縮
が維持されており、同じく収縮発現のないカー
ド・スライバーに比べて、U%、平行度、ネツプ
ともすぐれたスライバーを製造することができ
た。 また、上記スライバーを連続して、オープン・
エンド精紡機に仕掛け、その工程性能、紡績糸に
ついて比較した。 結果、直紡方法では捲縮がないので開繊が困難
であり、開繊ローラーに巻付く等、紡出不良であ
つた。また、スタツフイング・ボツクスにて捲縮
を付与しても、糸の収縮率が高い、非常に毛羽が
多い紡績糸しか得られない。また、カード方法で
はスライバーのU%、平行度、ネツプ等の欠点よ
り、糸切れ、糸斑糸欠点が多く、可紡性、品質と
も不良であつた。これに対し、本発明法では、上
記のような巻付、糸切れ、糸斑、糸欠点毛羽、収
縮率等の欠点がなく、可紡性、品質とも良好な紡
績糸を得ることが可能となつた。 本発明は、このように、−5℃以下という冷却
媒体に接触させて不連続繊維の束を製造した後、
連続して精紡機の各錐に供給して紡績糸とするも
のであるから、 (1) 冷却媒体の温度を変えることによつて低収縮
から中収縮に至る任意の収縮率をもつ紡績糸の
製造が可能である。 (2) 切断后も(ほとんど原綿と同等元の)捲縮を
有しているとともに、平行度、U%にすぐれて
おり精紡での可紡性、紡績糸の品質が良好であ
る。 (3) 設置面積が少ないとともに、構造がシンプル
であることより少量多品種生産に適している。 (4) カツターで分割する際にも、繊維同志の融
着、乱れがなく容易に分割できる。 (5) また、平行性、開繊性、U%がすぐれている
ので、特に、開繊機構を有さない精紡機にも連
続して供給できる。
[Table] In the conventional direct spinning method, the fibers are sufficiently plastically deformed at room temperature (20°C), so the crimp disappears after cutting. The onset of shrinkage is large and a low shrinkage rate cannot be obtained. Furthermore, there are problems such as a decrease in the hook strength and elongation of the single fibers. On the other hand, the sliver obtained by the method of the present invention not only has a low shrinkage rate but also maintains its original crimp. We were able to produce an excellent sliver. Also, open the above sliver continuously.
We installed it on an end spinning machine and compared its process performance and spun yarn. As a result, in the direct spinning method, since there was no crimp, it was difficult to open the fibers, resulting in poor spinning, such as wrapping around the opening roller. Further, even if the yarn is crimped using a stuffing box, only a spun yarn with a high shrinkage rate and a very large amount of fluff can be obtained. In addition, in the carding method, there were more defects such as thread breakage and thread irregularities than defects such as U%, parallelism, and neps of the sliver, and both spinnability and quality were poor. In contrast, the method of the present invention does not have the above-mentioned drawbacks such as wrapping, yarn breakage, yarn unevenness, yarn defects, fuzz, shrinkage rate, etc., and it is possible to obtain a spun yarn with good spinnability and quality. Ta. According to the present invention, after producing a bundle of discontinuous fibers by contacting with a cooling medium of −5° C. or lower,
Since the yarn is continuously supplied to each cone of the spinning machine, (1) By changing the temperature of the cooling medium, it is possible to create a spun yarn with any shrinkage rate from low to medium shrinkage. Manufacture is possible. (2) Even after cutting, it has crimps (almost the same as the original cotton), has excellent parallelism and U%, and has good spinnability and quality of spun yarn. (3) The small footprint and simple structure make it suitable for high-mix, low-volume production. (4) Even when dividing with a cutter, the fibers can be easily divided without fusion or disorder. (5) Furthermore, since the fibers have excellent parallelism, fiber spreading properties, and U%, they can be continuously supplied to spinning machines that do not have a fiber spreading mechanism.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を実施する工程を示す側面
図、第2図は、第1図の平面図、第3図は、本発
明を実施する他の例を示す側面図である。
FIG. 1 is a side view showing the process of implementing the present invention, FIG. 2 is a plan view of FIG. 1, and FIG. 3 is a side view showing another example of implementing the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 捲縮を有するアクリル系合成繊維からなる繊
維束を、捲縮を維持した状態で−5℃以下の媒体
に接触させつつ、または、接触させた後、該繊維
束を複数本に分割するとともに、繊維束に延伸力
及び/または剪断力を与えて切断することによつ
て、捲縮を有するアクリル系合成繊維からなる複
数本の不連続繊維の束となした後、連続して精紡
機の各錐に供給して紡績することを特徴とする紡
績糸の製造方法。
1 A fiber bundle made of acrylic synthetic fibers having a crimp is brought into contact with a medium at -5°C or lower while maintaining the crimp, or after contacting the fiber bundle, the fiber bundle is divided into a plurality of fibers, and the fiber bundle is divided into a plurality of fibers. The fiber bundle is cut by applying drawing force and/or shearing force to form a bundle of multiple discontinuous fibers made of crimped acrylic synthetic fibers, and then continuously passed through a spinning machine. A method for producing a spun yarn, characterized in that spinning is performed by feeding the yarn to each cone.
JP3601683A 1983-03-07 1983-03-07 Manufacture of spun yarn Granted JPS59163430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3601683A JPS59163430A (en) 1983-03-07 1983-03-07 Manufacture of spun yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3601683A JPS59163430A (en) 1983-03-07 1983-03-07 Manufacture of spun yarn

Publications (2)

Publication Number Publication Date
JPS59163430A JPS59163430A (en) 1984-09-14
JPH041092B2 true JPH041092B2 (en) 1992-01-09

Family

ID=12457942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3601683A Granted JPS59163430A (en) 1983-03-07 1983-03-07 Manufacture of spun yarn

Country Status (1)

Country Link
JP (1) JPS59163430A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005009212A1 (en) * 2005-02-25 2006-08-31 Philipps-Universität Marburg Method for dimensioning of preparation of meso- and nano structures with dimensions in region of 1 nm to 1000 microns, using cutting edge and suitable cooling

Also Published As

Publication number Publication date
JPS59163430A (en) 1984-09-14

Similar Documents

Publication Publication Date Title
US3978648A (en) Helically wrapped yarn
US3429018A (en) Method of converting waste filamentary material into staple fiber
US4484436A (en) Process for producing a twisted yarn
US3079746A (en) Fasciated yarn, process and apparatus for producing the same
US4003194A (en) Method and apparatus for producing helically wrapped yarn
US4124972A (en) Process and apparatus for producing yarns
US3380131A (en) Method and apparatus deflecting and drawing tow
US4356690A (en) Fasciated yarn
US3945188A (en) Method of spinning synthetic textile fibers
CA2286735A1 (en) Spinning apparatus, method of producing yarns, and resulting yarns
US4489542A (en) Spun like fiber yarn produced by interlacing
US4583266A (en) Process for preparation of discontinuous filament bundles and sharp-ended filaments
CA2147870C (en) Making textile strands
JPH041092B2 (en)
US4062177A (en) Spun yarn and process for manufacturing the same
US3466861A (en) Converting crimped filamentary material to continuous elongated body
EP0505641B1 (en) Short and long fiber composite yarn and process and apparatus for producing same
US3259954A (en) Apparatus for jet processing multifilaments
JPS5953370B2 (en) Manufacturing method of untwisted spun yarn
JP2550132B2 (en) Hemp / rayon / polyester blended yarn by false twisting method
JPS5857528B2 (en) Spun yarn and its manufacturing method
JPS60126340A (en) Production of core yarn
JPH07126944A (en) Composite yarn and its production
JP3128950B2 (en) Manufacturing method of false twisted yarn
JPS5824526B2 (en) Staple no Seizouhouhou