JPS6144935B2 - - Google Patents

Info

Publication number
JPS6144935B2
JPS6144935B2 JP55079367A JP7936780A JPS6144935B2 JP S6144935 B2 JPS6144935 B2 JP S6144935B2 JP 55079367 A JP55079367 A JP 55079367A JP 7936780 A JP7936780 A JP 7936780A JP S6144935 B2 JPS6144935 B2 JP S6144935B2
Authority
JP
Japan
Prior art keywords
magnetic
alloy
content
wear
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55079367A
Other languages
Japanese (ja)
Other versions
JPS575845A (en
Inventor
Kyoshi Takayanagi
Tokuo Uejima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP7936780A priority Critical patent/JPS575845A/en
Publication of JPS575845A publication Critical patent/JPS575845A/en
Publication of JPS6144935B2 publication Critical patent/JPS6144935B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、磁気テープ、磁気カード等の記録媒
体との接触摺動に優れた耐摩耗性を示す磁気ヘツ
ドコア用磁性合金に関するものである。 一般にFe―Si系合金は、コストの安い高透磁
率の磁心材料として知られており、特にSi含有量
が1〜4.5重量%(以下重量%をを単に%と略
記)のものは、硅素鋼と呼ばれ、トランスのコア
に多量に使用されている。最近磁気記録技術、特
に磁気テープの急速な進歩にともない、磁気ヘツ
ドコアに安価で高い飽和磁束密度と優れた機械的
強度を有するFe―Si系合金を用いることが検討
されている。 しかしながら磁気ヘツドコアはヘツド組立時に
樹脂に埋込まれて用いられるため、磁歪がゼロ又
はゼロに近いことが要求される。即ち磁歪がゼロ
又はゼロに近いものでないと、樹脂に埋込まれた
時に実効透磁率が保磁力などの磁気特性が著しく
低下する所謂モールド劣化を起す。 前記硅素鋼(Si1〜4.5%)はプラスの磁歪を有
しており、磁気ヘツドコアには使用できないが、
Fe―Si系合金の内Si含有量が6.5%近傍のものは
磁歪がゼロ又はゼロに近いことが知られており、
この組成近傍の合金が磁気ヘツドコアとして有望
視されている。 しかし磁気ヘツドコアには、モールド歪が小さ
いことと、磁気テープや磁気カードなどの記録媒
体との摺動摩耗が少ないことが要求され、Si含有
量が6.5%近傍のFe―Si系合金は、この耐摩耗性
が不充分であるところから、耐摩耗性の改善が望
まれている。 本発明はこれに鑑み、種々検討の結果、Fe―
Si合金にTiと白金族元素を小量添加することによ
り、磁気特性を低下せしめることなく、耐摩耗性
を著しく向上し得ることを知見し、磁気ヘツドコ
ア用磁性合金を開発したもので、Si4.5〜8.5%、
Ti0.1〜7%、白金族元素の何れか1種又は2種
以上を合計0.05〜5.0%、残部Feからなることを
特徴とするものである。 即ち本発明は、Si含有量が6.5%近傍のFe―Si
合金に、種々の元素を添加して耐摩耗性を調べた
ところ、少量のTiと白金族元素の何れか1種又
は2種以上とを添加したものが優れた磁気特性と
耐摩耗性を示すことを知り、更に検討を重さねた
結果、Si含有量が4.5〜8.5%のFe―Si二元合金に
Ti0.1〜7.0%と白金族元素例えばRu,Rh,Pd,
Os,Ir及びPtの何れか1種又は2種以上を全量
で0.05〜5.0%含有せしめることにより、優れた
耐摩耗性と磁気特性を有し、かつ磁歪がゼロに近
く、ほとんどモールド劣化を起さない磁気ヘツド
コア用磁性合金を開発したものである。 しかして本発明磁性合金において、Si含有量を
4.5〜8.5%の範囲に限定した理由は、Si含有量が
4.5%未満では磁歪が大きくなり、樹脂埋込みに
より磁気特性、特に実効透磁率μeの低下が著し
く、また8.5%を越えると再び磁歪が大きくな
り、樹脂埋込みによる磁気特性の低下が著しく、
かつ合金の塑性変形能が低下して圧延等の加工が
困難となるためである。またTi含有量を0.1〜7.0
%、白金族元素の何れか1種又は2種以上の含有
量を全量で0.05〜5.0%の範囲に限定した理由
は、Tiと白金族元素との相乗効果により磁気特
性、特に磁歪を大きくすることなく耐摩耗性を向
上させるものであるが、何れも下限未満では耐摩
耗性の改善効果が顕著でなく、上限を越えると、
白金族元素の場合には磁気特性、特に実効透磁率
μeの低下が著しく、保磁力Hcの増大が顕著と
なり、またTiの場合には合金が脆化して塑性加
工が困難となるためである。 次に本発明磁性合金の実施例について説明す
る。 純度99.99%の電解鉄に純度99.99%のSiと、純
度99.9%のTiと純度99.9%のRu,Pd,Ptを種々
の割合で配合し、これをアルミナルツボを用い
て、高周波真空溶解炉により溶成し、鋳鉄製鋳型
に鋳造して、第1表に示す合金組成の1吋角、長
さ200mmの鋳塊を得た。これを1100℃で6時間均
熱焼鈍した後1100〜850℃の温度範囲で熱間圧延
し、厚さ0.7mmの薄板とし、これを切断、研削加
工により厚さ0.6mm、巾3.2mm、長さ8.5mmの角板に
仕上げた。 この角板を水素気流中1150℃×2hrの熱処理を
施したのち7枚重さね合せたものを2組巾方向に
厚さ1.2μのTi箔を介して対向せしめ、これを第
1図に示す半径10mmの曲面aに巾6.4mm、高さ4.2
mmの方形空穴bを設けた黄銅製固定枠に挿入し、
樹脂により固定し、曲面aをGC、2000番で研摩
して摩耗試験用ダミーヘツドを作成した。尚図に
おいてcは薄板より切断、研削加工により仕上げ
た角板、dはTi箔を示す。 この摩耗試験用ダミーヘツドをカセツトデツキ
(TEAC,AC―9)に装着し、温度30±1℃、湿
度75±1%の高温高湿槽内で、300時間磁気テー
プ(TDK,Normal C―90)と摺動させ、摩耗
減量を測定した。 また、前記薄板(0.7m/m厚)を0.2m/m厚
迄ラツピングしたものから、内径6m/m、外径
10m/mのリングを放電加工で打抜き、これに
1150℃×2hrの熱処理を施した測定試料につき樹
脂埋込(モールド)前後の実効透磁率(Me)、及
び保磁力(Hc)を測定し、従来合金とモールド
劣化の度合を比較した。摩耗減量については第1
表に、またモールド前後のMeとHcの測定結果の
一例を第2表に示す。
The present invention relates to a magnetic alloy for magnetic head cores that exhibits excellent abrasion resistance in sliding contact with recording media such as magnetic tapes and magnetic cards. In general, Fe-Si alloys are known as low-cost magnetic core materials with high magnetic permeability, and in particular, those with a Si content of 1 to 4.5% by weight (hereinafter, % by weight is simply abbreviated as %) are made of silicon steel. It is used in large quantities in transformer cores. With recent rapid advances in magnetic recording technology, particularly magnetic tape, the use of Fe--Si alloys, which are inexpensive, have high saturation magnetic flux density, and excellent mechanical strength, are being considered for magnetic head cores. However, since the magnetic head core is embedded in resin during head assembly, it is required that the magnetostriction be zero or close to zero. That is, if the magnetostriction is not zero or close to zero, so-called mold deterioration occurs in which magnetic properties such as effective magnetic permeability and coercive force are significantly reduced when embedded in resin. The silicon steel (Si1-4.5%) has positive magnetostriction and cannot be used for magnetic head cores, but
It is known that Fe-Si alloys with a Si content of around 6.5% have magnetostriction of zero or close to zero.
Alloys with compositions close to this are considered promising as magnetic head cores. However, magnetic head cores are required to have low mold distortion and low sliding wear with recording media such as magnetic tapes and magnetic cards, and Fe-Si alloys with a Si content of around 6.5% are suitable for this purpose. Since the abrasion resistance is insufficient, it is desired to improve the abrasion resistance. In view of this, the present invention was developed as a result of various studies.
We discovered that by adding small amounts of Ti and platinum group elements to Si alloys, wear resistance could be significantly improved without deteriorating magnetic properties, and we developed a magnetic alloy for magnetic head cores.Si4. 5-8.5%,
It is characterized by consisting of 0.1 to 7% Ti, a total of 0.05 to 5.0% of one or more platinum group elements, and the balance Fe. That is, the present invention uses Fe-Si with a Si content of around 6.5%.
When various elements were added to the alloy and the wear resistance was investigated, it was found that those containing a small amount of Ti and one or more of the platinum group elements had excellent magnetic properties and wear resistance. After learning this and further considering it, we developed a Fe-Si binary alloy with a Si content of 4.5 to 8.5%.
Ti0.1~7.0% and platinum group elements such as Ru, Rh, Pd,
By containing one or more of Os, Ir, and Pt in a total amount of 0.05 to 5.0%, it has excellent wear resistance and magnetic properties, has close to zero magnetostriction, and hardly causes mold deterioration. We have developed a magnetic alloy for use in magnetic head cores that does not require a magnetic head. However, in the magnetic alloy of the present invention, the Si content is
The reason for limiting the range to 4.5 to 8.5% is that the Si content is
If it is less than 4.5%, the magnetostriction becomes large, and the magnetic properties, especially the effective magnetic permeability μe, decreases significantly due to resin embedding.If it exceeds 8.5%, the magnetostriction becomes large again, and the magnetic properties decrease significantly due to resin embedding.
This is also because the plastic deformability of the alloy decreases, making processing such as rolling difficult. In addition, the Ti content is 0.1 to 7.0.
%, the reason why the content of one or more platinum group elements is limited to the range of 0.05 to 5.0% in total is that the synergistic effect between Ti and platinum group elements increases magnetic properties, especially magnetostriction. However, below the lower limit, the effect of improving wear resistance is not significant, and when the upper limit is exceeded,
This is because in the case of platinum group elements, the magnetic properties, particularly the effective magnetic permeability μe, decreases significantly and the coercive force Hc increases significantly, and in the case of Ti, the alloy becomes brittle and plastic working becomes difficult. Next, examples of the magnetic alloy of the present invention will be described. Electrolytic iron with a purity of 99.99% is mixed with Si with a purity of 99.99%, Ti with a purity of 99.9%, and Ru, Pd, and Pt with a purity of 99.9% in various proportions, and this is mixed in an alumina crucible and a high frequency vacuum melting furnace. The ingots were melted and cast into cast iron molds to obtain ingots having the alloy composition shown in Table 1 and having a length of 1 inch and 200 mm. This was soaked and annealed at 1100℃ for 6 hours, then hot rolled at a temperature range of 1100 to 850℃ to form a thin plate with a thickness of 0.7mm, which was then cut and ground to a thickness of 0.6mm, a width of 3.2mm, and a length of 3.2mm. Finished in a square plate with a diameter of 8.5 mm. After heat-treating these square plates in a hydrogen stream at 1150°C for 2 hours, two sets of 7 stacked plates were placed facing each other in the width direction with a 1.2μ thick Ti foil interposed between them, as shown in Figure 1. Curved surface a with a radius of 10 mm as shown has a width of 6.4 mm and a height of 4.2
Insert it into a brass fixed frame with a rectangular hole b of mm,
It was fixed with resin and the curved surface a was polished with GC No. 2000 to create a dummy head for wear tests. In the figure, c indicates a square plate cut from a thin plate and finished by grinding, and d indicates a Ti foil. This dummy head for abrasion test was attached to a cassette deck (TEAC, AC-9), and was placed with a magnetic tape (TDK, Normal C-90) for 300 hours in a high-temperature, high-humidity tank at a temperature of 30 ± 1°C and a humidity of 75 ± 1%. It was slid and the wear loss was measured. In addition, from the thin plate (0.7 m/m thickness) wrapped to a thickness of 0.2 m/m, an inner diameter of 6 m/m and an outer diameter of
A 10m/m ring was punched out using electrical discharge machining, and this
The effective magnetic permeability (Me) and coercive force (Hc) before and after resin embedding (mold) were measured for a measurement sample heat-treated at 1150℃ x 2 hours, and the degree of mold deterioration was compared with that of conventional alloys. Regarding wear loss, the first
An example of the measurement results of Me and Hc before and after molding is shown in Table 2.

【表】【table】

【表】【table】

【表】【table】

【表】 第1表から判るように、Si―Fe二元系合金
(No.1,No.3,No.5)ではSiの増加と共に摩耗減
量は減少する傾向を示すも、その量はSi8%(No.
5)で9.4μ程度である。またこれにTiを添加
(No.2,No.4,No.6)しても摩耗減量はほとんど
変らない。これに対し、Tiと共にPt族元素の何
れか1種又は2種以上添加した本発明合金(No.7
〜24)では摩耗量が著しく減少し、特にSi6.5
%、Ti1.0%、Pd2.0%,残部Fe(No.14)の摩耗
減量は1.1μ、Si6.5%、Ti1.0%,Ru3.0%、残部
Fe(No.17)の摩耗減量は0.4μ,Si8.0%,Ti0.2
%,Pd5.0%,残部Fe(No.21)の摩耗減量は0.3
μと耐摩耗性が著しく優れている。 一方第2表の樹脂埋込み前後の実効透磁率及び
保磁力測定結果からモールド劣化は、Si含有量が
6.5%前後で最も小さく、4.5%未満でも8.5%を越
えてもモールド劣化は著しく増大するようにな
り、またTi及びPt族元素の何れか1種又は2種
以上の影響は、Ti7%未満、Pt族元素5%未満で
あれば比較的小さく実用上問題はない。ただし
Ti含有量が7%を超えても、またPt族元素が5
%を越えてもモールド劣化は著しく増大して磁気
ヘツドコアには使用できない。 このように本発明は、従来耐摩耗性の点で磁気
ヘツドコアには使用できなかつたFe―Si系合金
の耐摩耗性を著しく向上し、磁気ヘツドコアとし
ての使用を可能にし、安価に磁気ヘツドコアを提
供し得るもので工業上顕著な効果を奏するもので
ある。
[Table] As can be seen from Table 1, the wear loss tends to decrease with increasing Si in the Si-Fe binary alloys (No. 1, No. 3, No. 5), but the amount of Si8 % (No.
5) is about 9.4μ. Furthermore, even if Ti is added to this (No. 2, No. 4, No. 6), the wear loss hardly changes. On the other hand, the alloy of the present invention (No. 7
~24), the wear amount is significantly reduced, especially for Si6.5
%, Ti1.0%, Pd2.0%, balance Fe (No.14) wear loss is 1.1μ, Si6.5%, Ti1.0%, Ru3.0%, balance
Wear loss of Fe (No.17) is 0.4μ, Si8.0%, Ti0.2
%, Pd5.0%, balance Fe (No.21) wear loss is 0.3
Excellent μ and wear resistance. On the other hand, from the effective magnetic permeability and coercive force measurement results before and after resin embedding in Table 2, mold deterioration is caused by Si content.
It is smallest at around 6.5%, and mold deterioration increases significantly even when it is less than 4.5% or exceeds 8.5%. Also, the influence of one or more of Ti and Pt group elements is less than 7% Ti, If the Pt group element content is less than 5%, it is relatively small and poses no practical problem. however
Even if the Ti content exceeds 7%, the Pt group elements
%, mold deterioration increases significantly and it cannot be used for magnetic head cores. In this way, the present invention significantly improves the wear resistance of the Fe-Si alloy, which could not previously be used in magnetic head cores due to its wear resistance, making it possible to use it as a magnetic head core, and making it possible to manufacture magnetic head cores at low cost. This is something that can be provided and has significant industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は摩耗試験用ダミーヘツドを示す斜視図
である。 a……ダミーヘツドの曲面、b……方形空穴、
c……試験用角板、d……Ti箔。
FIG. 1 is a perspective view showing a dummy head for wear testing. a... Curved surface of dummy head, b... Square hole,
c... Square plate for testing, d... Ti foil.

Claims (1)

【特許請求の範囲】[Claims] 1 Si4.5〜8.5重量%、Ti0.1〜7.0重量%、白金
族元素の何れか1種又は2種以上を全量で0.05〜
5.0重量%、残部Feからなる磁気ヘツドコア用磁
性合金。
1 4.5 to 8.5% by weight of Si, 0.1 to 7.0% by weight of Ti, and a total amount of 0.05 to 0.05% of one or more of the platinum group elements
A magnetic alloy for magnetic head cores consisting of 5.0% by weight and the balance Fe.
JP7936780A 1980-06-12 1980-06-12 Magnetic alloy for use as core of magnetic head Granted JPS575845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7936780A JPS575845A (en) 1980-06-12 1980-06-12 Magnetic alloy for use as core of magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7936780A JPS575845A (en) 1980-06-12 1980-06-12 Magnetic alloy for use as core of magnetic head

Publications (2)

Publication Number Publication Date
JPS575845A JPS575845A (en) 1982-01-12
JPS6144935B2 true JPS6144935B2 (en) 1986-10-06

Family

ID=13687898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7936780A Granted JPS575845A (en) 1980-06-12 1980-06-12 Magnetic alloy for use as core of magnetic head

Country Status (1)

Country Link
JP (1) JPS575845A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3465661D1 (en) * 1983-11-02 1987-10-01 Hitachi Ltd Ferromagnetic material, ferromagnetic laminate and magnetic head

Also Published As

Publication number Publication date
JPS575845A (en) 1982-01-12

Similar Documents

Publication Publication Date Title
KR910009974B1 (en) High saturated magnetic flux density alloy
JPS6144935B2 (en)
US3837844A (en) Wear resisting magnetic material having high permeability
JPH0219962B2 (en)
JPS6144933B2 (en)
JPS6144932B2 (en)
JPS6212302B2 (en)
JPH0138862B2 (en)
JP3251899B2 (en) Wear-resistant high permeability alloy and magnetic recording / reproducing head
JPS6232267B2 (en)
JP2907899B2 (en) Method for producing molded article of high magnetic permeability alloy and magnetic head constituted by members of molded article obtained by this method
JP2549145B2 (en) Magnetic head
JPS589140B2 (en) Corrosion resistant high permeability alloy
JPS5867845A (en) High permeability alloy thin strip
JPS5923851A (en) Alloy with high magnetic permeability
JPS59145760A (en) Free cutting alloy with high magnetic permeability
JPH02118056A (en) Magnetic material and magnetic head by using it
JPH0971847A (en) High permeability alloy
JPH02172005A (en) Magnetic head having excellent wear resistance and production thereof
JPS642184B2 (en)
JP3019400B2 (en) Amorphous soft magnetic material
JPS5935660A (en) High permeability alloy
JPS6151023B2 (en)
JPS6128010B2 (en)
JPS6299439A (en) Free-cutting high permeability alloy