JPS5923851A - Alloy with high magnetic permeability - Google Patents
Alloy with high magnetic permeabilityInfo
- Publication number
- JPS5923851A JPS5923851A JP57132002A JP13200282A JPS5923851A JP S5923851 A JPS5923851 A JP S5923851A JP 57132002 A JP57132002 A JP 57132002A JP 13200282 A JP13200282 A JP 13200282A JP S5923851 A JPS5923851 A JP S5923851A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- wear resistance
- flux density
- magnetic
- magnetic flux
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Soft Magnetic Materials (AREA)
Abstract
Description
本発明は高い実効透磁率(Fe)と、高い飽和磁束密度
(Bs)と、優れた耐摩耗性を有し、特に磁気へラドコ
ア材として狭いギャップでも強い漏洩磁束が得られ、か
つ加工及び組立時(二おける欠け、割れ、剥離等の欠陥
発生の少ない高透磁率合金C1関するものである。
近年、磁気記録技術の進歩に伴い、記録密度向上の必要
性から磁気ヘッドギャップ巾が益々小さくなる傾向(二
ある。か\る傾向(二対応して狭いギャップでも強い漏
洩磁束を得ることが可能な飽和磁束密度CBS)の高い
磁気ヘッドコア材が要求されるようになった。
このためA15wt%(以下w t %、を単に%と略
記)Si10%、 Fe85%からなるセンダストと呼
ばれる高透磁率合金が注目された。この合金は優れた磁
気特性を有し、特に飽和磁束密度(Bりが高いが、磁気
へラドコアとしては耐摩耗性が不十分であった。
そこで、特殊金属の何種類かを微量添加して耐摩耗性を
改善したセンダスト系合金が実用化され、急速に普及し
つつあるが、やはり耐摩耗性はフェライトc及ばず十分
とはいえない。
−万、フェライトの耐摩耗性はセンダスト、パーマロイ
(二比べ格段に優れているが理論的にもBsは6000
程t8゛と極めて低い。
しかる(−最近記録密用を一層向上させるため、記録媒
体として従来の金属酸化物に代り、保磁力の高い金属の
超微粉を使用した磁気テープや磁気カードが実用化され
るよう(二なり、磁気へラドコア(二も更(=高い飽和
磁束密度CBS)を有する高透磁率合金が望まれるよう
(二なった。
またセンダストは磁気へラドコア祠として耐摩耗性が不
十分なため、特殊元素の何種類かを微量添加しているが
、これ等特殊元素の添加は何れもセンダストの実効透磁
率(μe)や飽和磁束密度に有害なものであり、耐摩耗
性を付与したセンダスト系合金の飽和磁束密度(Bs)
の低下は避けられず、その結果高い飽和磁束密度を有す
る磁気へラドコア材を得ることは極めて円錐であった。
またこのようにして耐摩耗性を付与したセンダスト系合
金は加工及び組立時(二欠け1割れ、剥離等の欠陥が生
じやすい欠点があった。
一方、磁訊ヘッドコア祠としてフェライトが知られてお
り、この実効透磁率はセンダストと比較して同等であり
、また耐摩耗性は現在用いられている磁2ヘッドコア材
料の中で一番優れているが飽和磁束密り隻“が低く 5
000程度である。また磁気へラドコア材として一番多
く用いられているパーマロイは実効透磁率−飽和磁束密
IWともセンダスト合金に近い性能を示すが、耐摩耗↑
住が梅めて低い。
本発明はこれ(1鑑みなされたもので、飽和磁束密度は
フェライトと同等或いはこれ以上であり耐摩耗性がフェ
ライトより優れた高透磁率合金を得得たものでA13〜
10%、Si4〜11%、Ru2.1〜20%。
Tio、2〜5.0%残部peからなることを特徴とす
るものである。
即ち、本発明者等はフェライトより耐摩耗性が優れ、か
つフェライト以上の飽和磁束密度の材料を得るべく種々
検討を重ねた結果、Si4〜11%、A13〜10%、
Fe残部よりなるP’e−8i−AI三元合金(二。
J(uを21〜20.0%添加すると、合金の実施透磁
率(μe)と、飽和磁束密度(BS)を低下させること
が少tc<、少量の添加では逆(=これらの磁気特性を
改善し、また保磁力の増加も僅かであるという従来の常
識を覆す実車を知県し、またRuを21%以上添加する
と磁気テープや磁気カードなどの記録媒体との耐摩耗性
が飛躍的に向上することを見出し、更に本発明者等はR
uを含有するFe−8i−A、l系合金にTiを02〜
5.0%添加すると合金の結晶粒界が著しく強化され、
その結果研削、切断研摩等の加工の際、及びヘッドの組
立ての際の欠け、割れ、剥離等の欠陥が大巾に抑[トさ
れることを見出し、高い飽和磁束密度(Bs)と、優れ
た耐摩耗性を有する高透磁率合金を開発したものである
。
しかして本発明合金の組成を上記の如く限定したのは次
の理由によるものである。
即ちAI含有率を3〜10%、Si含有率を4〜11%
としたのは、AIとSiの何れかが下限未満でも、北限
を越えても磁気特性、特(=実効透磁率が著しく低下し
、磁父ヘッドコア等に使用することができなくなるため
である。またRuの含有率を2.1〜20.0%とした
のはRu含有率が2・1%未満では飽和磁束密度(13
s)及び耐摩耗性に対I“る改善効果が顕著でなく−R
N含有率が20.0%を越えると有害な相が晶出し、飽
和磁束密度()3s)−実効透磁率(μり及び耐摩耗性
の急激な低下を来たすためであり、望ましくはRuを3
0%以上、15.0%以上の範囲で添加するトヨイ。更
にTiの含有率を0.2〜5.0%としたのは、′l+
i含有率が0.2%未満では粒界強化が不十分で加工
及び組立時の欠け1割れ、剥離などの欠陥発生を抑止す
ることができず、5.0%を越えると磁気特性全般が低
下し、磁気へラドコア材としての適性かうしなわれるた
めであり、望ましくは0.7%以上、40%以下の範囲
内で添加するとよい。
このように本発明のRuの添加(−よる効果は全く異例
かつ特異な現象であり、一般にセンダスト系合@(二お
いては、殆んどの場合Fe、AI、Si以外]第4元素
の添加は飽和磁束密If (138)を低下するばかり
か、実効透磁率(μe)の急激な低Fと、保磁力(Hり
の著しい増大をもたらし、合金の硬さ向上のための第4
元素のfa加は、合金の硬さを向上し、耐摩耗性を増大
するも、殆んど例外なくセンダスト系合金の磁気特性を
損なうものであった。これ(二対し本発明のRuの添加
は成る範囲内で逆(二実効透磁率(μりの改善が認られ
る異例の効果な奏する。
このよう(二本発明合金(二よれば従来の磁気へラドコ
ア用材料であるフェライトの限界を打ち破る高い飽和磁
束密度(1−30と優れた耐摩耗1イトを1′−1する
もので、磁気記録技術の発展に大きく貢献し得るもので
ある。
以下、本発明合金を実施例(二ついて説明する。
純度99.9%の確解鉄、純度99.99%のAI、純
度99.99%のSi、純度99.9%のRu、純度9
9.9%ノTiを4Φ/J (7)割合で配合し、これ
をアルミナルツボを用いて高周波真空溶解炉(真空度3
〜7X10−3mHg+二より溶成し、鋳鉄製鋳型C二
鋳造して第1表に示す組成からなる厚さ25闘、巾25
WIA、長さ160**の鋳塊を得た。これ等を放心加
工、ワイヤ切断、ラッピング≦二より外径8順、内径4
鰭、厚さ2fiの磁気特性測定用リングと厚さQ6+x
、中3.211M、長さ85鮎の耐摩4ミシ性測定用試
験片を作成した。これ等(二ついてτ、゛(空中100
0℃の温度で1時間加熱処理した後磁気特性と耐1v粍
性を測定した。その結果を第1表Cニイ井4己した。
磁気特性測定用リング(二ついては、B−H)レーザー
(二上り[3−Hlll線を1苗かせ、これから飽和磁
束密度(13S)と保磁力(11りを求めると共に、ベ
クトルインヒ゛−ダンスメーター(二よりIKHzl二
おける実効透磁率(zle)を測定した。
また耐摩耗性≦二ついては、試験片(二ついてマイクロ
ビッカース(二より硬度を測定した後、第1図C二示す
よう(−試験片+11を7枚重ね合せたものを厚さ1.
2μのTi箔(2)を介して対向せしめ、これを半径1
0鯖の曲面(4)C1巾6.4 fl、高さ4.2鰭の
方形空孔(5)を設けた黄銅製固定枠(3)に挿°入し
て樹脂により固定し、曲面(4)をGC2000番で研
摩して耐摩耗性試験用ダミーヘッドを作成し、これをカ
セットデツキに袋層し、温度30℃、湿度75%の雰四
見The present invention has high effective magnetic permeability (Fe), high saturation magnetic flux density (Bs), and excellent wear resistance, and can be used as a magnetic herad core material in particular to obtain strong leakage magnetic flux even in a narrow gap, and can be processed and assembled. This relates to high magnetic permeability alloy C1, which has fewer defects such as chipping, cracking, and peeling.In recent years, with the advancement of magnetic recording technology, the magnetic head gap width has become smaller due to the need to improve recording density. A magnetic head core material with a high saturation magnetic flux density CBS that can obtain strong leakage magnetic flux even with a correspondingly narrow gap has become required. A high magnetic permeability alloy called Sendust, which consists of 10% Si and 85% Fe (hereinafter referred to as wt %), has attracted attention.This alloy has excellent magnetic properties, and has a particularly high saturation magnetic flux density (B However, the wear resistance was insufficient as a magnetic herad core.Therefore, sendust alloys with improved wear resistance by adding small amounts of special metals were put into practical use and are rapidly becoming popular. However, the wear resistance of ferrite is still not as good as that of ferrite c, so it cannot be said to be sufficient.
It is extremely low at about t8゛. However, recently, in order to further improve recording density, magnetic tapes and magnetic cards that use ultrafine metal powder with high coercive force as recording media instead of conventional metal oxides have been put into practical use. A high magnetic permeability alloy with a magnetic herad core (high saturation magnetic flux density CBS) is desired (2).In addition, since Sendust has insufficient wear resistance as a magnetic herad core, it is necessary to use special elements. Although trace amounts of several types of elements are added, the addition of these special elements is harmful to the effective magnetic permeability (μe) and saturation magnetic flux density of Sendust, and the saturation of Sendust alloys that impart wear resistance. Magnetic flux density (Bs)
A decrease in the magnetic flux density was inevitable, and as a result it was extremely difficult to obtain a magnetic herad core material with a high saturation magnetic flux density. Additionally, Sendust alloys that have been given wear resistance in this way have the disadvantage of being prone to defects such as two chips, one cracks, and peeling during processing and assembly.On the other hand, ferrite is known as a magnetic head core abrasion. Its effective magnetic permeability is the same as that of Sendust, and its wear resistance is the best among the currently used magnetic head core materials, but its saturation magnetic flux density is low.
It is about 000. Permalloy, which is the most commonly used magnetic herad core material, exhibits performance similar to Sendust alloy in both effective permeability and saturation magnetic flux density IW, but wear resistance is ↑
Housing is extremely low. The present invention was made in view of this (1), and obtained a high magnetic permeability alloy with a saturation magnetic flux density equal to or higher than that of ferrite and a wear resistance superior to that of ferrite.
10%, Si4-11%, Ru2.1-20%. It is characterized by consisting of Tio, 2 to 5.0% balance pe. That is, as a result of various studies in order to obtain a material with better wear resistance than ferrite and a saturation magnetic flux density higher than that of ferrite, the present inventors found that Si 4-11%, A13-10%,
Adding 21 to 20.0% of P'e-8i-AI ternary alloy (2. However, if Ru is added in a small amount, the opposite is true (I know of an actual vehicle that improves these magnetic properties and overturns the conventional wisdom that the increase in coercive force is small. Also, adding 21% or more of Ru improves magnetic properties. The present inventors discovered that the abrasion resistance with recording media such as tapes and magnetic cards was dramatically improved, and furthermore, the present inventors discovered that R
Adding Ti to Fe-8i-A, l-based alloy containing u from 02 to
Adding 5.0% significantly strengthens the grain boundaries of the alloy,
As a result, it was discovered that defects such as chipping, cracking, and peeling during processing such as grinding, cutting and polishing, and during head assembly were largely suppressed, resulting in a high saturation magnetic flux density (Bs) and an excellent We have developed a high magnetic permeability alloy with high wear resistance. The reason why the composition of the alloy of the present invention is limited as described above is as follows. That is, the AI content is 3 to 10%, and the Si content is 4 to 11%.
The reason for this is that even if either AI or Si is below the lower limit or exceeds the northern limit, the magnetic properties, especially the effective magnetic permeability, will drop significantly, making it impossible to use it for magnetic head cores, etc. Moreover, the reason why the Ru content is set to 2.1 to 20.0% is that if the Ru content is less than 2.1%, the saturation magnetic flux density (13
s) and wear resistance are not significant.-R
If the N content exceeds 20.0%, harmful phases will crystallize, resulting in a sharp decrease in saturation magnetic flux density () 3 s) - effective magnetic permeability (μ) and wear resistance. 3
Toyoi is added in a range of 0% or more and 15.0% or more. Furthermore, the reason why the Ti content was set to 0.2 to 5.0% was that 'l+
If the i content is less than 0.2%, grain boundary strengthening will be insufficient and defects such as chipping, cracking, and peeling during processing and assembly cannot be suppressed, and if it exceeds 5.0%, the overall magnetic properties will deteriorate. This is because it reduces its suitability as a magnetic rad core material, and it is preferably added in a range of 0.7% or more and 40% or less. In this way, the effect due to the addition of Ru in the present invention is a completely unusual and unique phenomenon, and it is generally the case that the effect due to the addition of Ru in the Sendust system (in most cases other than Fe, AI, and Si) is the addition of a fourth element. not only lowers the saturation magnetic flux density If (138) but also causes a sharply low effective magnetic permeability (μe) and a significant increase in coercive force (H).
Addition of fa elements improves the hardness and wear resistance of the alloy, but almost without exception it impairs the magnetic properties of the sendust alloy. In contrast to this (2), the addition of Ru of the present invention has an unusual effect of improving the effective magnetic permeability (μ) within the range that is the opposite. It has a high saturation magnetic flux density (1-30) that breaks the limits of ferrite, which is a material for RAD cores, and has excellent wear resistance of 1'-1, and can greatly contribute to the development of magnetic recording technology. The alloy of the present invention will be explained using two examples.
Blend 9.9% Ti at a ratio of 4Φ/J (7) and melt this in a high frequency vacuum melting furnace (vacuum level 3) using an aluminum crucible.
~7X10-3mHg+2 and cast in two cast iron molds C2, having the composition shown in Table 1, thickness 25 mm, width 25 mm.
WIA, an ingot with a length of 160** was obtained. These are subjected to eccentric processing, wire cutting, wrapping ≦2, outer diameter 8 in order, inner diameter 4
Fin, 2fi thick ring for measuring magnetic properties and thickness Q6+x
A test piece for measurement of abrasion resistance and 4 holes was prepared with a medium size of 3.211 m and a length of 85 pieces. These (two are τ, ゛(100 in the air)
After heat treatment at 0° C. for 1 hour, magnetic properties and 1V resistance were measured. The results are shown in Table 1. Ring for measuring magnetic properties (two of them are B-H) laser (two-up [3-Hllll line) was planted, and from this, the saturation magnetic flux density (13S) and coercive force (11) were determined, and a vector interference meter ( The effective magnetic permeability (zle) at IKHzl2 was measured from 2. Also, if wear resistance ≦ 2, after measuring the hardness of the test piece (2 micro Vickers), as shown in Figure 1 C2 (- test piece 7 sheets of +11 stacked together with a thickness of 1.
They are placed facing each other with a 2 μm Ti foil (2) interposed therebetween, and are arranged with a radius of 1
The curved surface of the mackerel (4) was inserted into a brass fixing frame (3) with a rectangular hole (5) with a width of 6.4 fl and a height of 4.2 fins (5), fixed with resin, and the curved surface ( 4) was polished with GC2000 to create a dummy head for wear resistance testing, which was placed on a cassette deck and placed in an atmosphere at a temperature of 30°C and humidity of 75%.
【1】で磁気テープと300時間摺動させて耐摩耗性
を測定した。
また前記鋳塊より巾20履、旭さ20朋、長さ100i
1Nの角棒を作成し、その側面をGC砥石で研摩し、該
研摩面のへりに発生した欠は数と研摩面の任怠に選んだ
1cIn角の領域内に発生した剥離数を測定し、その合
計数を第1表(二併Jeシた。
第1表から明らかなように本発明合金は何れもフェライ
ト以下に飽和磁束密度を劣化させることなく、フェライ
ト以上(=耐摩耗性を改善し、欠け、割れ、剥離等の欠
陥発生晴を著しく減少していることが判る。特C二本発
明合金腐1〜腐13と従来合金/l617./1618
./l620、扁21を比較すれば判るようにRu含有
率が3.0〜5.0%、Lrl含有率が0.3〜3.0
%の範囲内では実効透磁率、飽和磁束密度及び耐摩耗性
が著しく優れており、かつ欠陥発生数が著しく少ないこ
とが判る。
これに対し従来合金屑]7と421−A22を比較すれ
ば明らかなように夕晴のTIを添加したもの及び少量の
TtとZrを添加したものは何れも耐摩耗性と欠陥発生
が成る程度改善されるも実効透磁率と飽和磁束密度が低
下している。
このように本発明合金はフェライトより高い飽和磁束密
Ifと優れた耐摩耗性を有し、かつ加工及び組立時にお
ける欠陥発生が抑制され、磁気へラドコアとして狭いギ
ャップでも強い漏洩磁束なruることができる等工業上
顕著な効果を奏するものである。[1] The wear resistance was measured by sliding it on a magnetic tape for 300 hours. Also, from the above ingot, the width is 20 mm, the Asahi width is 20 mm, and the length is 100 mm.
A 1N square bar was prepared, its side surface was polished with a GC grindstone, and the number of chips that occurred at the edge of the polished surface and the number of flakes that occurred within a 1cIn square area selected due to neglect of the polished surface were measured. , the total number is shown in Table 1 (both of them are shown in Table 1). It can be seen that the occurrence of defects such as chipping, cracking, and peeling is significantly reduced.Special C2 Invention Alloys 1 to 13 and Conventional Alloy/l617./1618
.. As can be seen by comparing /l620 and Flat 21, the Ru content is 3.0 to 5.0% and the Lrl content is 0.3 to 3.0.
% range, the effective magnetic permeability, saturation magnetic flux density, and wear resistance are significantly superior, and the number of defects is extremely low. On the other hand, when comparing conventional alloy scrap] 7 and 421-A22, it is clear that both the one to which Yuharu's TI was added and the one to which small amounts of Tt and Zr were added had poor wear resistance and defect generation. Although improved, the effective magnetic permeability and saturation magnetic flux density have decreased. As described above, the alloy of the present invention has a saturation magnetic flux density If higher than that of ferrite and excellent wear resistance, and also suppresses the occurrence of defects during processing and assembly, and can be used as a magnetic herad core to generate strong leakage magnetic flux even in a narrow gap. It has remarkable industrial effects, such as the ability to
第1図は耐摩耗性試験用ダミーヘッドを示す斜視図であ
る。
1、試験片 2.Ti箔 3.黄銅製固定枠4、
曲面 5方形空穴
第1図FIG. 1 is a perspective view showing a dummy head for wear resistance testing. 1. Test piece 2. Ti foil 3. Brass fixed frame 4,
Curved surface 5 square holes Figure 1
Claims (1)
2.1〜20.Owt%、Ti002〜5.Qwt%、
残部Feからなる高い飽和磁束密度と、優れた耐摩耗性
を有する高透磁率合金AI3~10W1%, Si4~11wt%, Ru
2.1-20. Owt%, Ti002~5. Qwt%,
High magnetic permeability alloy with high saturation magnetic flux density and excellent wear resistance, with the remainder being Fe.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57132002A JPS5923851A (en) | 1982-07-30 | 1982-07-30 | Alloy with high magnetic permeability |
EP82111072A EP0091989A1 (en) | 1982-04-15 | 1982-12-01 | High permeability alloy |
KR1019820005437A KR840002907A (en) | 1982-04-15 | 1982-12-04 | High permeability alloy |
US06/446,974 US4435212A (en) | 1982-04-15 | 1982-12-06 | High permeability alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57132002A JPS5923851A (en) | 1982-07-30 | 1982-07-30 | Alloy with high magnetic permeability |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5923851A true JPS5923851A (en) | 1984-02-07 |
Family
ID=15071252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57132002A Pending JPS5923851A (en) | 1982-04-15 | 1982-07-30 | Alloy with high magnetic permeability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5923851A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61230732A (en) * | 1985-04-04 | 1986-10-15 | Natl Inst For Res In Inorg Mater | Apparatus for generating ultra-high pressure |
US5480824A (en) * | 1992-06-18 | 1996-01-02 | Goldstar Electron Co., Ltd. | Semiconductor memory cell capacitor and fabrication method thereof |
-
1982
- 1982-07-30 JP JP57132002A patent/JPS5923851A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61230732A (en) * | 1985-04-04 | 1986-10-15 | Natl Inst For Res In Inorg Mater | Apparatus for generating ultra-high pressure |
US5480824A (en) * | 1992-06-18 | 1996-01-02 | Goldstar Electron Co., Ltd. | Semiconductor memory cell capacitor and fabrication method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4435212A (en) | High permeability alloy | |
US5478416A (en) | Magnetic alloy | |
JPS5923851A (en) | Alloy with high magnetic permeability | |
JP2907899B2 (en) | Method for producing molded article of high magnetic permeability alloy and magnetic head constituted by members of molded article obtained by this method | |
JPS5925956A (en) | Alloy with high magnetic permeability | |
JPS5935660A (en) | High permeability alloy | |
JPS5931849A (en) | High permeability alloy | |
JP2549145B2 (en) | Magnetic head | |
JPS6144933B2 (en) | ||
JPS6144932B2 (en) | ||
JPS5867845A (en) | High permeability alloy thin strip | |
JPS6128010B2 (en) | ||
JPS5920451A (en) | Alloy for core of head for vtr picture | |
JPS6154102B2 (en) | ||
CA1045423A (en) | Nickel base magnetic alloy | |
US4608228A (en) | Ni-Fe magnetic head including 1.5-2% Ta | |
JPS60125353A (en) | Wear-resistant alloy having high magnetic permeability | |
JPS5927371B2 (en) | Fe↓-Co magnetic material | |
JPS6212302B2 (en) | ||
JPS5867848A (en) | High permeability alloy thin strip | |
JPH05195168A (en) | High-saturation magnetic flux density and permeability alloy | |
JPH0153338B2 (en) | ||
JPS60141848A (en) | Corrosion-resistant alloy having high magnetic permeability | |
JPS5927373B2 (en) | Fe↓-Co magnetic material | |
JPH10212554A (en) | Wear resistant high saturated magnetic flux density high permeability alloy |