JPS6128010B2 - - Google Patents

Info

Publication number
JPS6128010B2
JPS6128010B2 JP53049901A JP4990178A JPS6128010B2 JP S6128010 B2 JPS6128010 B2 JP S6128010B2 JP 53049901 A JP53049901 A JP 53049901A JP 4990178 A JP4990178 A JP 4990178A JP S6128010 B2 JPS6128010 B2 JP S6128010B2
Authority
JP
Japan
Prior art keywords
alloy
magnetic
sendust
magnetic properties
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53049901A
Other languages
Japanese (ja)
Other versions
JPS54142119A (en
Inventor
Masayoshi Takano
Shinichiro Yahagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP4990178A priority Critical patent/JPS54142119A/en
Publication of JPS54142119A publication Critical patent/JPS54142119A/en
Publication of JPS6128010B2 publication Critical patent/JPS6128010B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は優れた磁気特性および耐摩耗性を有す
る磁気ヘツド用の高透磁率合金に関するものであ
る。 近年コンピユータ、テープデツキ、自動改札、
キヤツシユサービスなどのごとく磁気記録再生装
置を組込んだ各種機器が急速に普及している。こ
れにともない磁気記録再成装置の最も重要な部品
である磁気ヘツド コア材にたいする材質的な要
求も、より厳しいものとなつてきている。すなわ
ち :磁気テープの高密度比にともない、より優れた
飽和磁束密度を有すること : 高周波領域での磁気特性が良好であること :磁気ヘツドコアとテープとの摺動が不可避的で
あるため、より優れた耐摩耗性を有すること :磁気ヘツド製造の際樹脂によつてもたらされる
応力により、磁気特性の劣化が少ないこと :磁気ヘツドコアなどの小さな部品に容易に加工
できる。 :温度にたいして磁気特性が安定であることなど
種々の特性に関する要求がある。 これに対して従来から用いられている磁気ヘツ
ドコア用の材料としては、ソフトフエライトまた
はパーマロイ系合金などが用いられているが、こ
れらの材料はそれぞれ一長一短があり、最近の磁
気ヘツドコア用として要求される特性を過不足な
く満たすことはできない。 例えばソフトフエライトにおいては、きわめて
高い電気抵抗(106〜107μΩ−cm)と高硬度
(Hv700)を有し、高周波特性および耐摩耗性
の面ではきわめて優れた特性を有するが、反面飽
和磁束密度およびキユリー点が低く、磁気ヘツド
に用いた場合にノイズが発生しやすい。また機械
的に脆いため加工性にも問題がある。 一方パーマロイ系合金は比較的高い飽和磁束密
度(Bs7000〜8000G)を有するが、磁気テープの
高密度比に対処するためにはまだ充分な値とはい
えず、さらに種々の添加元素による改良にもかか
わらず耐摩耗性は充分とはいえない。このほか非
晶質磁性材料も検討されているが、本質的に非平
衡るため温度にたいしての安定性を欠く。以上の
ような理由から最近磁気ヘツドコア用の材料とし
てセンダスト系合金が注目されている。 すなわちセンダスト系合金はFe、Si、Alを主
成分とする著名な高透磁率合金であつて、Be:
10000G以上の優れた飽和磁束密度を有するとと
もに、ビツカースかたさHv450以上の高かたさを
有するので、耐摩耗性も良好であるという特徴を
保有している。したがつてセンダスト系合金は上
述した磁気ヘツド用としての要求特性を過不足な
く満たす材料として期待度の大きい高透磁率合金
である。しかしながら承知のごとくセンダスト系
合金はSiおよびAlが多量に含有されており、きわ
めて脆弱であるため、加工手段としては専ら鋳塊
からの研削および放電加工に頼らざるを得ないと
いう問題点がある。また研削加工時においても従
来のセンダスト系合金はカケ、ワレが多発するた
め歩留りがきわめて悪く、そのままでは磁気ヘツ
ド用材料として用いることができないため耐カケ
性すなわち機械加工性がより優れたセンダスト系
合金の開発が望まれるにいたつている。 本発明はかかる要望に対処してなされるもので
各種のセンダスト系合金にたいして耐カケ性にお
よぼす微量元素の影響を詳細に調査した結果以下
に示すセンダスト系合金は従来のセンダスト系合
金にたいして、はるかに優れた耐カケ性を有する
ことを見い出した。 すなわち本発明は (1) Al:4.0〜8.0%、Si:6.0〜12.0%残余が実質
的にFeからなるセンダスト系合金において、
さらにMg:0.005〜0.10%を含有させたことを
特徴とする高透磁率合金 (2) Al:4.0〜8.0%、Si:6.2〜12.0%およびこれ
にBe、Yランタニド系元素Re、Ti、Zr、Hf、
V、Nb、Ta、Cr、Mo、W、Mn、Co、Rh、
Ir、Pd、Pt、Ni、Cu、Ge、Sn、Pb、Sb、B、
Cから選んだ元素を1種または2種以上合計量
で0.10〜10%含有し、残余が実質的にFeから
なるセンダスト系合金においてMg:0.005〜
0.10%を含有させたことを特徴とする高透磁率
合金。 本発明合金の特徴は従来のFe−Si−Al系また
はFe−Si−Al−X系(X:Ti、Zr、Hf、V、
Nb、Ta、Cr、Mo、W、Mn、Co、Rh、Ir、Pd、
Pt、Ni、Cu、Ge、Sn、Pb、Sb、B、C)のセン
ダスト系合金に対して研削加工時の耐カケ性を改
善するために特定量のMgを添加したものであ
り、それぞれのセンダスト系合金が保有する磁気
特性および耐摩耗性も損なうことなく耐カケ性を
改善したセンダスト系の高透磁率合金である。 次に本発明合金の成分組成範囲の限定理由を以
下に述べる。 Al:4.0〜8.0% 本発明合金の基本成分であり優れた磁気特性を
保つためには少なくとも4.0%以上添加する必要
がある。ただし多量に添加しすぎると逆に磁気特
性が低下しはじめるので8.0%以下に限定した。 Si:6.0〜12.0% Alとともに本発明合金の基本成分であり、優
れた磁気特性を保つためには少なくとも6.0%以
上添加する必要がある。ただし多量に添加しすぎ
ると逆に磁気特性が低下しはじめるので12.0%以
下に限定した。 Mg:0.005〜0.10% Mgは従来のセンダスト系合金の耐カケ性を改
善するためにきわめて有効な元素であり、この効
果を得るために0.005%以上添加する。しかしな
がらMgは磁気特性を劣化させるので限定量を
0.10%以下とする。 上記の成分組成により耐カケ性の良好なFe−
Si−Al系の高透磁率合金が得られるが、さらに下
記の元素を1種以上添加することにより磁気特
性、耐摩耗性あるいは加工性がさらに良好な高透
磁率合金が得られる。 V、Nb、Ta、Cr、Mo、W、Cu、Ni、Co、
Mn、Ge、Zr 上記元素はいずれも磁気特性を向上させるため
に有効な元素であり、使用目的に応じて0.10%以
上添加することが望ましいが多量に添加すると磁
気特性が逆に低下するため合計量で10%以下に限
定した。 V、Nb、Ta、Sn、Sb、Be、B、C 上記元素はいずれも耐摩耗性を向上させるため
に有効な元素であり、使用目的に応じて0.10%以
上添加することが望ましいが、多量に添加すると
磁気特性が低下するため合計量で10%以下に限定
した。 Ti、V、Nb、Ta、Mo、Mn、Ge、Hf、Pb、
Ni、Y、ランタニド系元素、Re、Cr、Sn、Rh、
Ir、Pd、Pt、Cu 上記元素はいずれも加工法および機械加工法を
向上させるために有効な元素であり、使用目的に
応じて0.10%以上添加することが望ましいが、多
量に添加すると磁気特性が低下するため合計量で
10%以下に限定した。 次に本発明合金の特徴を実施例により詳細に説
明する。 実施例 1 高周波真空誘導炉(真空度:10-3mmHg〜10-5
mmHg)により第1表に示すごとき組成のFe−Si
−Al系合金を溶製し、水冷銅ルツボに鋳造し
て、縦40mm×横50mm×長さ200mmの鋳塊を得た。
The present invention relates to a high permeability alloy for magnetic heads having excellent magnetic properties and wear resistance. In recent years, computers, tape decks, automatic ticket gates,
2. Description of the Related Art Various devices incorporating magnetic recording and reproducing devices, such as those used in cashier services, are rapidly becoming popular. Along with this, the material requirements for the magnetic head core material, which is the most important component of magnetic recording and reproducing devices, are also becoming more stringent. In other words: It has better saturation magnetic flux density due to the high density ratio of the magnetic tape. It has good magnetic properties in the high frequency range. It has better magnetic properties because sliding between the magnetic head core and the tape is unavoidable. It has good abrasion resistance: It has little deterioration of magnetic properties due to the stress caused by the resin during magnetic head manufacturing: It can be easily processed into small parts such as magnetic head cores. : There are requirements regarding various properties such as magnetic properties being stable with respect to temperature. On the other hand, conventionally used materials for magnetic head cores include soft ferrite and permalloy alloys, but each of these materials has its own advantages and disadvantages, and these materials are required for recent magnetic head cores. It is not possible to satisfy the characteristics in just the right amount. For example, soft ferrite has extremely high electrical resistance (10 6 - 10 7 μΩ-cm) and high hardness (Hv700), and has excellent high frequency characteristics and wear resistance, but on the other hand, it has low saturation magnetic flux. It has a low density and a low Kyrie point, and tends to generate noise when used in magnetic heads. Furthermore, since it is mechanically brittle, there is also a problem in workability. On the other hand, permalloy alloys have a relatively high saturation magnetic flux density (Bs7000~8000G), but this value is still not sufficient to cope with the high density ratio of magnetic tapes, and further improvement with various additive elements is required. However, the wear resistance cannot be said to be sufficient. In addition, amorphous magnetic materials are being considered, but they lack stability with respect to temperature because they are inherently non-equilibrium. For the reasons mentioned above, sendust alloys have recently attracted attention as materials for magnetic head cores. In other words, Sendust alloy is a well-known high magnetic permeability alloy whose main components are Fe, Si, and Al, and Be:
It has an excellent saturation magnetic flux density of 10,000G or more, and has a high Vickers hardness of Hv450 or more, so it has good wear resistance. Therefore, the sendust alloy is a high magnetic permeability alloy that has high expectations as a material that satisfies the above-mentioned required characteristics for magnetic heads. However, as is well known, sendust alloys contain large amounts of Si and Al and are extremely brittle, so they have the problem of having to rely exclusively on grinding and electrical discharge machining from ingots as processing methods. In addition, even during grinding, conventional sendust-based alloys frequently chip and crack, resulting in extremely low yields, and cannot be used as materials for magnetic heads as they are. The development of this technology is now desired. The present invention was made in response to such a need, and as a result of detailed investigation into the influence of trace elements on the chipping resistance of various sendust alloys, the sendust alloys shown below are far superior to conventional sendust alloys. It has been found that it has excellent chipping resistance. That is, the present invention provides (1) a sendust alloy consisting of Al: 4.0 to 8.0%, Si: 6.0 to 12.0%, and the remainder substantially Fe;
A high magnetic permeability alloy characterized by further containing Mg: 0.005-0.10% (2) Al: 4.0-8.0%, Si: 6.2-12.0%, and Be, Y lanthanide elements Re, Ti, Zr ,Hf,
V, Nb, Ta, Cr, Mo, W, Mn, Co, Rh,
Ir, Pd, Pt, Ni, Cu, Ge, Sn, Pb, Sb, B,
In a sendust alloy containing one or more elements selected from C in a total amount of 0.10 to 10%, with the remainder substantially consisting of Fe, Mg: 0.005 to
A high magnetic permeability alloy characterized by containing 0.10%. The characteristics of the present invention alloy are the conventional Fe-Si-Al system or Fe-Si-Al-X system (X: Ti, Zr, Hf, V,
Nb, Ta, Cr, Mo, W, Mn, Co, Rh, Ir, Pd,
A specific amount of Mg is added to sendust alloys (Pt, Ni, Cu, Ge, Sn, Pb, Sb, B, C) to improve chipping resistance during grinding. This is a Sendust-based high magnetic permeability alloy that has improved chipping resistance without sacrificing the magnetic properties and wear resistance of Sendust-based alloys. Next, the reason for limiting the composition range of the alloy of the present invention will be described below. Al: 4.0 to 8.0% Al is a basic component of the alloy of the present invention, and must be added in an amount of at least 4.0% to maintain excellent magnetic properties. However, if too much is added, the magnetic properties will begin to deteriorate, so the content was limited to 8.0% or less. Si: 6.0-12.0% Along with Al, it is a basic component of the alloy of the present invention, and in order to maintain excellent magnetic properties, it is necessary to add at least 6.0% or more. However, if too much is added, the magnetic properties will begin to deteriorate, so the content was limited to 12.0% or less. Mg: 0.005-0.10% Mg is an extremely effective element for improving the chipping resistance of conventional sendust alloys, and is added in an amount of 0.005% or more to obtain this effect. However, since Mg deteriorates magnetic properties, its amount should be limited.
0.10% or less. Fe- with good chipping resistance due to the above component composition
A Si--Al based high magnetic permeability alloy can be obtained, and by further adding one or more of the following elements, a high magnetic permeability alloy with even better magnetic properties, wear resistance, or workability can be obtained. V, Nb, Ta, Cr, Mo, W, Cu, Ni, Co,
Mn, Ge, Zr All of the above elements are effective elements for improving magnetic properties, and it is desirable to add 0.10% or more depending on the purpose of use, but if they are added in large amounts, the magnetic properties will deteriorate, so the total The amount was limited to 10% or less. V, Nb, Ta, Sn, Sb, Be, B, C All of the above elements are effective elements for improving wear resistance, and it is desirable to add 0.10% or more depending on the purpose of use, but in large amounts. The total amount was limited to 10% or less because the magnetic properties deteriorate when added to. Ti, V, Nb, Ta, Mo, Mn, Ge, Hf, Pb,
Ni, Y, lanthanide elements, Re, Cr, Sn, Rh,
Ir, Pd, Pt, Cu All of the above elements are effective for improving processing and machining methods, and it is desirable to add 0.10% or more depending on the purpose of use, but if added in large amounts, the magnetic properties decreases, so the total amount
Limited to 10% or less. Next, the characteristics of the alloy of the present invention will be explained in detail using examples. Example 1 High frequency vacuum induction furnace (degree of vacuum: 10 -3 mmHg to 10 -5
mmHg) with the composition shown in Table 1.
- An Al-based alloy was melted and cast in a water-cooled copper crucible to obtain an ingot measuring 40 mm long x 50 mm wide x 200 mm long.

【表】 第1表の組成を有する鋳塊を用いてかたさ、磁
気特性および研削加工による耐カケ性を調査し
た。 かたさ 第1表の供試材から放電加工によりミクロ試料
を採取し、1000℃×10hrの焼鈍を施した後、ミク
ロビツカースかたさを測定した。その結果を第2
表に示す。同表にみられるごとく従来合金および
本発明合金ともHmV470〜490程度のかたさを示
しており、両者の間に大きな差は認められない。
[Table] Using ingots having the compositions shown in Table 1, hardness, magnetic properties, and chipping resistance due to grinding were investigated. Hardness Micro samples were taken from the test materials shown in Table 1 by electric discharge machining, and after annealing at 1000°C for 10 hours, the micro-bits hardness was measured. The second result is
Shown in the table. As seen in the same table, both the conventional alloy and the alloy of the present invention exhibit hardness of HmV of about 470 to 490, and no major difference is observed between them.

【表】 磁気特性 第1表の供試材から放電加工および研削加工に
より外径10mm×内径6mm×厚さ0.3mmの磁気試片
を作り、水素雰囲気中で1100℃×2hrの焼鈍を施
し、しかるのちマスクウエルブリツジにより500
キロヘルツでのインダクタンスを求め、次式によ
り実効透磁率を求めた。 μe=L.l/4πSN×106 L:インダクタンス(mH) l:平均磁路長(cm) S:断面積(cm2) N:巻き数 その結果を第2表に併記した。 同表にみられるごとく従来合金および本発明合
金ともに500キロヘルツにおける実効透磁率はす
べて140以上を示しており、きわめてすぐれた磁
気特性を有している。 すなわち本発明合金のごとく従来のセンダスト
系合金にたいして微量のMgを添加してもかたさ
および磁気特性には大きな影響をおよぼさないこ
とを示している。 耐カケ性 第1表の供試材から放電加工および研削加工に
より縦30mm×横20mm×厚さ5mmの試験片を採取
し、大気中で1000℃×10hrの焼鈍を施した後、下
記の条件下で研削加工試験を行つた。 砥石種類:WA100H 周速度:1000m/分 切り込み速度:0.05mm/分 なお、耐カケ性は上記のごとく苛酷な条件で3
分間研削した場合における試片角部のカケ個数に
より判定した。 その結果を第2表にまとめて併記した。同表に
みられるどとく従来合金はいずれも多数のカケが
発生するのにたいして本発明合金ではカケの発生
がきわめて少く、良好な耐カケ性を示している。 以上の実施例にみられるごとく本発明合金は従
来のセンダスト系合金の難点であつた研削加工時
における耐カケ性を改善するために微量のMgを
添加したセンダスト系の高透磁率合金であり、か
たさおよび磁気特性は従来のセンダスト系合金に
くらべてまつたく遜色なく耐カケ性は格段に優れ
ている。したがつて磁気ヘツド部品の使用条件の
過酸化に対処して、パーマロイおよびフエライト
に代わり磁気特性および耐摩耗性の良好な本発明
高透磁率合金を有利に提供できるものである。
[Table] Magnetic properties Magnetic specimens with an outer diameter of 10 mm x inner diameter of 6 mm x thickness of 0.3 mm were made from the test materials in Table 1 by electrical discharge machining and grinding, and annealed at 1100°C for 2 hours in a hydrogen atmosphere. After that, 500 by Maskwell Bridge.
The inductance in kilohertz was determined, and the effective magnetic permeability was determined using the following formula. μe=L. l/4πSN 2 ×10 6 L: inductance (mH) l: average magnetic path length (cm) S: cross-sectional area (cm 2 ) N: number of turns The results are also listed in Table 2. As shown in the table, both the conventional alloy and the alloy of the present invention have an effective magnetic permeability of 140 or more at 500 kilohertz, and have extremely excellent magnetic properties. In other words, this shows that even when a small amount of Mg is added to a conventional sendust alloy such as the alloy of the present invention, the hardness and magnetic properties are not significantly affected. Chipping resistance Test pieces measuring 30 mm long x 20 mm wide x 5 mm thick were taken from the test materials in Table 1 by electrical discharge machining and grinding, and after annealing them in the air at 1000°C for 10 hours, they were subjected to the following conditions. A grinding test was conducted below. Grinding wheel type: WA100H Peripheral speed: 1000m/min Cutting speed: 0.05mm/min In addition, chipping resistance is 3 under severe conditions as mentioned above.
Judgment was made by the number of chips on the corners of the specimen after grinding for minutes. The results are summarized in Table 2. In contrast to the conventional alloys shown in the same table, which generate a large number of chips, the alloy of the present invention generates extremely few chips, indicating good chip resistance. As seen in the above examples, the alloy of the present invention is a sendust-based high permeability alloy to which a small amount of Mg is added in order to improve the chipping resistance during grinding, which was a drawback of conventional sendust-based alloys. Its hardness and magnetic properties are comparable to those of conventional sendust alloys, and its chipping resistance is significantly superior. Therefore, the high magnetic permeability alloy of the present invention, which has good magnetic properties and wear resistance, can be advantageously provided in place of permalloy and ferrite in order to cope with overoxidation in the usage conditions of magnetic head parts.

Claims (1)

【特許請求の範囲】 1 Al:4.0〜8.0%、Si:6.0〜12.0%残余が実質
的にFeからなるセンダスト系合金において、
Mg:0.005〜0.10%を含有させたことを特徴とす
る磁気ヘツド用高透磁率合金。 2 Al:4.0〜8.0%、Si:6.0〜12.0%およびこれ
にBe、Yランタニド系元素、Re、Ti、Zr、Hf、
V、Nb、Ta、Cr、Mo、W、Mn、Co、Rh、Ir、
Pd、Pt、Ni、Cu、Ge、Sn、Pb、Sb、B、Cか
ら選んだ元素を1種または2種以上合計量で0.1
〜10%含有し、残余が実質的にFeからなるセン
ダスト系合金において、Mg:0.005〜0.10を含有
させたことを特徴とする磁気ヘツド用高透磁率合
金。
[Claims] 1. In a sendust alloy consisting of Al: 4.0 to 8.0%, Si: 6.0 to 12.0%, and the remainder substantially Fe,
A high magnetic permeability alloy for magnetic heads, characterized by containing Mg: 0.005 to 0.10%. 2 Al: 4.0-8.0%, Si: 6.0-12.0% and Be, Y lanthanide elements, Re, Ti, Zr, Hf,
V, Nb, Ta, Cr, Mo, W, Mn, Co, Rh, Ir,
The total amount of one or more elements selected from Pd, Pt, Ni, Cu, Ge, Sn, Pb, Sb, B, and C is 0.1
1. A high magnetic permeability alloy for a magnetic head, characterized in that the sendust alloy contains 0.005 to 0.10 Mg in a sendust alloy containing 0.005 to 0.10 Mg, with the remainder substantially consisting of Fe.
JP4990178A 1978-04-28 1978-04-28 High permeability alloy for magnetic head Granted JPS54142119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4990178A JPS54142119A (en) 1978-04-28 1978-04-28 High permeability alloy for magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4990178A JPS54142119A (en) 1978-04-28 1978-04-28 High permeability alloy for magnetic head

Publications (2)

Publication Number Publication Date
JPS54142119A JPS54142119A (en) 1979-11-06
JPS6128010B2 true JPS6128010B2 (en) 1986-06-28

Family

ID=12843915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4990178A Granted JPS54142119A (en) 1978-04-28 1978-04-28 High permeability alloy for magnetic head

Country Status (1)

Country Link
JP (1) JPS54142119A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145514A (en) * 1987-12-02 1989-06-07 Kobe Steel Ltd Distance measuring apparatus for furnace observation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152154A (en) * 1979-05-16 1980-11-27 Sumitomo Special Metals Co Ltd High permeability magnetic alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357118A (en) * 1976-11-02 1978-05-24 Nippon Musical Instruments Mfg Magnetic material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357118A (en) * 1976-11-02 1978-05-24 Nippon Musical Instruments Mfg Magnetic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145514A (en) * 1987-12-02 1989-06-07 Kobe Steel Ltd Distance measuring apparatus for furnace observation

Also Published As

Publication number Publication date
JPS54142119A (en) 1979-11-06

Similar Documents

Publication Publication Date Title
EP0159028A2 (en) Magnetic thin film
JPS6128010B2 (en)
US4168187A (en) Wear resisting high permeability alloy
JP2907899B2 (en) Method for producing molded article of high magnetic permeability alloy and magnetic head constituted by members of molded article obtained by this method
JP2681048B2 (en) Magnetic scale material
JPS6151023B2 (en)
JPS5811503B2 (en) Wear resistant high permeability alloy
JPS63307246A (en) Free cutting high permeability alloy
JPH07166281A (en) Wear resistant magnetic alloy
JPS6154102B2 (en)
JP2927926B2 (en) Magnetic shield parts
JPS5867845A (en) High permeability alloy thin strip
JPS5922781B2 (en) Wear resistant high permeability high saturation magnetic flux density alloy
JPS5935660A (en) High permeability alloy
JPS5923851A (en) Alloy with high magnetic permeability
JPS60141848A (en) Corrosion-resistant alloy having high magnetic permeability
JPH11354313A (en) Magnetic material having high magnetic permeability
JPS58177434A (en) Wear resistant magnetic alloy of high magnetic permeability
JPH01252756A (en) Ni-fe-cr soft magnetic alloy
JPS6144933B2 (en)
JPS5867848A (en) High permeability alloy thin strip
JPS625973B2 (en)
JPS6034627B2 (en) Corrosion resistant high permeability alloy
JPS59182955A (en) Wear-resistant magnetic alloy with high magnetic permeability
JPH04141537A (en) Magnetic shielding parts