JPS6144734A - Halide glass for infrared light transmission - Google Patents

Halide glass for infrared light transmission

Info

Publication number
JPS6144734A
JPS6144734A JP16701284A JP16701284A JPS6144734A JP S6144734 A JPS6144734 A JP S6144734A JP 16701284 A JP16701284 A JP 16701284A JP 16701284 A JP16701284 A JP 16701284A JP S6144734 A JPS6144734 A JP S6144734A
Authority
JP
Japan
Prior art keywords
glass
rbx
mol
halide
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16701284A
Other languages
Japanese (ja)
Inventor
Junji Nishii
準治 西井
Ryoichi Kaite
買手 良一
Takashi Yamagishi
山岸 隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP16701284A priority Critical patent/JPS6144734A/en
Publication of JPS6144734A publication Critical patent/JPS6144734A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/041Non-oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium

Abstract

PURPOSE:To make halide glass permeable to infrared light rays having wavelength up to the maximum 14mum, by using halide glass comprising one or more compounds of one or more halogenous elements of Cl, Br, and I, and K, Rb, Sr, Cd, Ba, and Pb in a desired ratio. CONSTITUTION:Halide glass for infrared light transmission comprising 0-24 mol% KX [X is one or more of Cl, Br, and I], 0-24mol% RbX, 0-8mol% SrX2, 20-53mol% CdX2, 0-25 BaX2, and 24-60mol% PbX2. KX+RbX is 8- 24mol%, KX+RbX+CdX2+BaX2+PbX2 is 85-100mol%, and (Cl)/(X) [(Cl): number Cl elements in glass, and (X) is number of halogen elements in glass] is controlled to 0.75-1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は可視から遠赤外までの幅広い波長領域において
透明であり、赤外線透過用ガラス等として有用なハライ
ドガラスに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a halide glass that is transparent in a wide wavelength range from visible to far infrared and useful as infrared transmitting glass.

〔従来の技術〕 ガラス体は、結晶体とは異なりさまざまな形状への成形
が容易であり、また光学的等方性を有するため、光学媒
体としての応用が古くからなされてきた。最近光通信に
用いられつつある光学ガラス繊維(光ファイバー)はこ
れらガラスの特性を生かした応用例のひとつであるが、
この光通信用ファイバーの素材としてはすでに実用化さ
れている石英(Si02)ガラスの他に、ゲルマニア(
Ge02)系ガラス及び7ツ化ジルコニウム(ZrF4
)系ガラスなどが検討されている。
[Prior Art] Glass bodies, unlike crystal bodies, can be easily formed into various shapes and have optical isotropy, so they have been used as optical media for a long time. Optical glass fibers (optical fibers), which are recently being used in optical communications, are one example of applications that take advantage of the characteristics of glass.
In addition to quartz (Si02) glass, which is already in practical use as a material for optical communication fibers, germania (
Ge02) type glass and zirconium heptadide (ZrF4
) type glasses are being considered.

一方レーザー発振源の研究の活発化に伴って赤外波長域
において高出力を有するガスレーザー、例えば炭酸ガス
レーザー(波長10.6μm)が開発されている。この
高エネルギー赤外光線は医療(レーザーメス)、産業(
溶接、切断)面において幅広い応用が可能であり、現在
炭酸ガスレーザー加工機も市販されている。しかしなが
ら現在市販されている炭酸ガスレーザー加工機器のレー
ザーエネルギー伝送部には多関節型金属反射鏡が用いら
れており、この方法は極めて汎用性に欠けるため可撓性
のある伝送媒体、すなわちエネルギー伝送用ファイバー
が強く求められている。しかし、上述の通常の光通信用
のガラスは、その光透過波長域が可視から近赤外(o、
 4kjμm )に限られ、それ以上の赤外波長領域で
はガラス骨格の格子振動による吸収が生じて不透明にな
るため波長10.乙μm等のエネルギー伝送には用い得
ないものであった。
On the other hand, as research into laser oscillation sources becomes more active, gas lasers having high output in the infrared wavelength region, such as carbon dioxide lasers (wavelength: 10.6 μm), have been developed. This high-energy infrared light is used in medical (laser scalpel), industrial (
It can be used in a wide range of applications (welding, cutting), and carbon dioxide laser processing machines are currently on the market. However, the laser energy transmission section of currently commercially available carbon dioxide laser processing equipment uses an articulated metal reflector, and this method is extremely lacking in versatility. There is a strong demand for fibers for However, the above-mentioned ordinary glass for optical communication has a light transmission wavelength range from visible to near-infrared (o,
4 kj μm), and in the infrared wavelength range beyond that, absorption occurs due to lattice vibration of the glass skeleton and becomes opaque, so the wavelength is 10. It could not be used for energy transmission such as μm.

現在までに報告されている赤外線エネルギー伝送用ファ
イバーにはハライド結晶、カルコゲナイドカラス、金属
中空導波路、ハライドガラスのtツカする。ハライド結
晶としてはタリウムハライド(TlBr−T/I ’)
、銀ハライド(AgOA!−AgBr)の多結晶体、ヨ
ウ化セシウム(Cs工)の単結晶体のλつがあるが、前
者は結晶粒界での散乱、後者は格子欠陥での散乱などが
原因で低損失化が難がしいと言われており、また両者共
に製造工程が非常に複雑で生産性に劣るという欠点があ
った。
Fibers for transmitting infrared energy that have been reported to date include halide crystals, chalcogenide glass, hollow metal waveguides, and halide glass. As a halide crystal, thallium halide (TlBr-T/I')
, polycrystalline silver halide (AgOA!-AgBr), and single crystalline cesium iodide (Cs).The former is caused by scattering at grain boundaries, and the latter is caused by scattering at lattice defects. It is said that it is difficult to reduce loss in both types, and both have the disadvantage that the manufacturing process is extremely complicated and productivity is low.

一方力ルコゲナイドガラスは、その材料が有する本質的
な特徴である構造欠陥に基づく吸収、及茹 び酸化物などの不純物吸収による損失の低嶋化が困難で
あるため、光導波路として使用し得る波長域は7〜9μ
mまでに限られていた。
On the other hand, lucogenide glass cannot be used as an optical waveguide because it is difficult to reduce losses due to absorption due to structural defects, which are the essential characteristics of the material, and absorption of impurities such as boiled oxides. The wavelength range obtained is 7-9μ
It was limited to m.

さらに金属中空導波路は、その製造工程が複雑であり、
数m以上の長尺ものができず、また伝送紙 損失の低4下が極めて難しいという欠点があった。
Furthermore, the manufacturing process for metal hollow waveguides is complicated;
It had the disadvantage that it was not possible to make long sheets of several meters or more, and it was extremely difficult to reduce the transmission paper loss.

そこで非7ツ化物系のハライドガラスがエネルギー伝送
用ファイバーの材料の有力候補としてあげられている。
Therefore, non-septide-based halide glass has been cited as a promising candidate for energy transmission fiber material.

周知のように、ハロゲン(塩素、臭素、ヨウ素)の原子
量は非常に大きく、そのためハライド化合物のほとんど
は波長151tm以上の遠赤外領域まで透明であるとい
う性質を持っている。このハライド化合物を用いてガラ
ス体が得られれば、ハライド結晶体でみられる散乱損失
が非常に小さく、カルコゲナイドガラスの様な構造欠陥
に基づく損失がなく、さらに製造工程の大幅な簡略化に
伴うコストの低い光伝送体となることが期待されていた
As is well known, the atomic weight of halogens (chlorine, bromine, iodine) is very large, and therefore most halide compounds have the property of being transparent to far infrared wavelengths of 151 tm or more. If a glass body can be obtained using this halide compound, the scattering loss seen in halide crystals will be extremely small, there will be no loss due to structural defects as in chalcogenide glass, and the manufacturing process will be significantly simplified, resulting in lower costs. It was expected that this material would become an optical transmitter with low energy consumption.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし70μm以上の遠赤外域まで透明で、かつファイ
バー化可能な程度に安定なハライドガラスは未だに報告
されていないのが現状である。例えば従来よく知られて
いる塩化亜鉛(ZnC12)ガラスは、著しい潮解性を
有するため実用化が難かしく、その他項化ビスマス(B
iCl2)系ガラス、臭化鉛(PbBr2)系ガラスな
ども報告されているが各々、ガラス転移温度が60″C
以下と低いためにパワー伝送中に軟化、又は結晶化する
恐れがあった。
However, at present, no halide glass has been reported that is transparent to the far infrared region of 70 μm or more and is stable enough to be made into fibers. For example, the conventionally well-known zinc chloride (ZnC12) glass has significant deliquescent properties, making it difficult to put it to practical use.
iCl2)-based glasses and lead bromide (PbBr2)-based glasses have also been reported, but each has a glass transition temperature of 60"C.
Due to the low temperature below, there was a risk of softening or crystallization during power transmission.

本発明は上記の種々の欠点を除去するためになされたも
のであり、可視から/4’μm4’の広い波長域に渡っ
て透明であり、かつ潮解性を示さず、ガラス転移湿度が
高く、また製造が容易な/・ライドガラスを得ることを
目的としている。
The present invention was made to eliminate the various drawbacks mentioned above, and is transparent over a wide wavelength range from visible to /4'μm4', does not exhibit deliquescent property, has a high glass transition humidity, The purpose is also to obtain a ride glass that is easy to manufacture.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解決するために、塩素、臭素およ
びヨウ素からなる群より選んだ少なくとも1種のハロゲ
ン元素をXとして表わした場合にモル%で表わして、 KX      ’0〜21 PbXOへ2’l 5rX2    0 A−g cax2  、  2O−53 Bax20−、−.2j pbx2xv〜x。
In order to solve the above-mentioned problems, the present invention provides the following formula: When at least one halogen element selected from the group consisting of chlorine, bromine, and iodine is expressed as X, expressed in mol%, 'l 5rX2 0 A-g cax2 , 2O-53 Bax20-, -. 2j pbx2xv~x.

ただし  KX+RbX     、1’ 〜2 lI
u+RbX+0dX2+BaX2+PbX2 1!; 
〜100でありかつガラス中の塩素元素の数をガラス中
のハロゲン元素の数に対する割合で示した時73〜lD
O%となる赤外線透過用ハライドガラスを提供する。こ
こでカドミウム(cd)、鉛(Pb)、バリウム(Ba
)の各イオンは塩素CO6)等ハロゲンイオンと共にガ
ラス中に存在しても波長2.1〜71μmの赤外域にお
いて何ら吸収をもたず、またガラスに潮解性を生じさせ
る・ようなことのない本発明のガラスの主要成分である
However, KX+RbX, 1' ~ 2 lI
u+RbX+0dX2+BaX2+PbX2 1! ;
~100 and 73~1D when the number of chlorine elements in the glass is expressed as a ratio to the number of halogen elements in the glass
To provide a halide glass for transmitting infrared rays with a transmission rate of 0%. Here, cadmium (cd), lead (Pb), barium (Ba
) do not have any absorption in the infrared wavelength range of 2.1 to 71 μm even if they exist in glass together with halogen ions such as chlorine CO6), and do not cause deliquescence in the glass. It is the main component of the glass of the present invention.

以下に本発明のガラスの組成限定値およびその理由を述
べる。
The compositional limitations of the glass of the present invention and their reasons will be described below.

まず陽イオン成分の限定理由を述べるが、本発明の赤外
線透過用ハライドガラスに含まれる/10ゲンイオン(
Cl、Br、■)をXと総称して説明する。
First, the reason for limiting the cation component will be described. The /10 gen ion (
Cl, Br, ■) will be collectively referred to as X for explanation.

ここでXはCl−Br十Iの意味合であり■とはKGl
+KBr+KIとしても表わせる。
Here, X means Cl-Br 1, and ■ means KGl
It can also be expressed as +KBr+KI.

本発明のガラスのCdX2の含有−は20〜S3モル%
 、PbX2の含有量は、2 ’l/−A O% ル%
 、BaX2の含有量は0−23モル%である。さらに
各陽イオン成分の含有量をcax2 :o−弘gモル%
、PbX22s〜lIざモル%、BaX2 トー20モ
ル%に限定することによってより一層安定なガラス体が
得られる。
The content of CdX2 in the glass of the present invention is 20 to S3 mol%
, the content of PbX2 is 2'l/-A O%
, the content of BaX2 is 0-23 mol%. Furthermore, the content of each cation component is cax2: o-hirog mol%
A more stable glass body can be obtained by limiting the amounts of PbX to 22s to 1I mol% and BaX2 to 20 mol%.

CdX 21 P b X 2およびBaX2の各含有
量が上記限定範囲を外れると融液からの冷却過程での結
晶化速度が速くなるため、安定なガラス体を得ることが
困難になる。
If the contents of CdX 21 P b

一方、ガラス形成助剤用陽イオン成分として作用する■
、RbXおよび5rX2 は、Cl等ハロゲンイオンと
共にガラス中に存在しても波長2.5〜73μmの赤外
領域において何ら吸収をもたず、またガラスに著しい潮
解性が生じるようなことのないガラス中に含ませること
が好まれる成分である。本発明のガラスのKXの含有量
はO〜J1モル%、RbXの含有量は0〜2qモル%、
5rX20〜gモル%であり、かつKとRb、両イオン
の含有量の合計はg〜21Iモル%である。またKX、
RbXおよび5rX2の各含有量をKXt〜72モル%
、RbX 4’〜/2モル%、および5rx2 o〜g
モル%とし、KxとRbXの含有量の合計を72〜20
モル%に限定することによってより一層安定なガラス体
が得られる。
On the other hand, it acts as a cationic component for glass forming aids■
, RbX and 5rX2 are glasses that do not have any absorption in the infrared region of wavelengths 2.5 to 73 μm even if they exist together with halogen ions such as Cl, and do not cause significant deliquescent properties in the glass. This is a component that is preferably included. The KX content of the glass of the present invention is O to J1 mol%, the RbX content is 0 to 2 q mol%,
5rX20~g mol%, and the total content of both K and Rb ions is g~21I mol%. Also KX,
Each content of RbX and 5rX2 is KXt ~ 72 mol%
, RbX 4'~/2 mol%, and 5rx2 o~g
The total content of Kx and RbX is 72 to 20 mol%.
By limiting the amount to mol%, a more stable glass body can be obtained.

■、RbXおよび5rx2 の各成分共に上記限定範囲
を外れるとガラスを作成する際の融液からの冷却過程に
おける結晶化速度が速くなるため、安定なガラス体を得
ることが困難になる。
(2) If each of the RbX and 5rx2 components is outside the above-mentioned limited range, the rate of crystallization during the cooling process from the melt during glass production will increase, making it difficult to obtain a stable glass body.

さらに、本発明のガラスには、その赤外線透過特性を変
化させず、かつ結晶化に対する安定性を変化させない範
囲で、NaX 、 OuX 、 ZnX r AgX 
t CsXおよびTdXなどの陽イオン成分を上記ガラ
スに添加することができる。例えばその添加可能範囲は
NaX O−/(+、GuX O−r、znx O〜乙
、AgX O〜IO,C3XC1’l+TAX o〜/
&各モル%であり、これら全添加物の合計は75モル%
以下である。各添加物を各限定範囲より多く含有させた
り、また全添加物の合計が75モル%より多くなるとガ
ラス作製時の融液が濁ったり、冷却時に結晶化しやすく
なるため本発明のガラスの特性を失う。
Furthermore, the glass of the present invention may contain NaX, OuX, ZnX r AgX, within a range that does not change its infrared transmission properties and does not change its stability against crystallization.
t Cationic components such as CsX and TdX can be added to the glass. For example, the possible addition range is NaX O-/(+, GuX O-r, znx O~O, AgX O~IO, C3XC1'l+TAX o~/
& each mole%, and the total of all these additives is 75 mole%
It is as follows. If each additive is contained in an amount greater than the respective limited range, or if the total amount of all additives exceeds 75 mol%, the melt during glass production will become cloudy and crystallization will occur more easily during cooling. lose.

また本発明のガラスを構成するためのハロゲンイオン成
分としては塩素イオンが好まれ使用されるが、その一部
分を臭素(Br)イオン、ヨウ素CI)イオンの内少な
くとも一方に置換することができる。ここで本発明のガ
ラスを構成するためのハo )fンイオン成分の割合は
0/イオン73〜100モル%である。ここでClイオ
ンの含有量が7!モル%未満では融液からの冷却過程に
おいて結晶化しやすくなるという欠点になる。また置換
することのできるBrイオンの含有量としては0〜20
モル%またエイオンの含有量としては0−2!;モル%
が好まれる。ここでBrイオン、及びエイオンの含有量
が上記限定範囲を超えると融液が濁ったり結晶化しやす
くなったりする。
Further, chlorine ions are preferably used as the halogen ion component for constituting the glass of the present invention, but a portion thereof can be replaced with at least one of bromine (Br) ions and iodine CI) ions. Here, the proportion of the ion component for constituting the glass of the present invention is 0/ion 73 to 100 mol%. Here, the content of Cl ions is 7! If it is less than mol %, it has the disadvantage that it tends to crystallize during the cooling process from the melt. In addition, the content of Br ions that can be substituted is 0 to 20
The mole% and Aion content is 0-2! ;mol%
is preferred. If the content of Br ions and Aions exceeds the above-mentioned limited range, the melt becomes cloudy and tends to crystallize.

〔実 施 例〕〔Example〕

次に本発明を実施例に基づいてさらに詳細に説明する。 Next, the present invention will be explained in more detail based on examples.

実施例1 ガラス原料に用いるハロゲン化合物はすべて1.20′
C乾燥器中で2日間以上乾燥した高純度の無無水結晶を
用いた。KO/gモル%、 Rb(J ざモル%r C
dO,i!2 !jモル%、 Pb012コ!モル%。
Example 1 All halogen compounds used in glass raw materials are 1.20'
High purity anhydrous crystals dried in a C dryer for at least 2 days were used. KO/g mol%, Rb(J mol%r C
dO,i! 2! jmol%, Pb012ko! mole%.

10mm、長さざtmmの石英試験管に入れ、塩化水素
ガス雰囲気中でl!;O”C,2時間の乾燥を行なった
。その後炉温を速やかに!;10”Cに昇温した。ただ
し昇温中の雰囲気は塩素ガスまたは窒素ガス雰囲気とし
た。炉温がsio″CK達し、かつ該混合粉末が均一な
融液になった後に融液中へ毎分1occの塩化水素ガス
を吹き込みながら約2時間の溶融を行なった。その後塩
化水素ガスを止め、代りに毎分1occの乾燥窒素を約
10分間融液中へ吹き込んだ。得られた融液を、135
°Cに予熱され、約へ/mmの平行な間隔をもたせた真
鍮板の間に流し込んで、縦pomm、横30mm、厚さ
八/mmの急冷体を得た。この急冷体は速やかに735
℃の乾燥器中に収納され毎分/’Cの速度で徐冷された
Place it in a quartz test tube with a length of 10 mm and a length of t mm, and heat it in a hydrogen chloride gas atmosphere. Drying was carried out at 10"C for 2 hours. Thereafter, the oven temperature was quickly raised to 10"C. However, the atmosphere during the temperature rise was a chlorine gas or nitrogen gas atmosphere. After the furnace temperature reached sio''CK and the mixed powder became a uniform melt, melting was carried out for about 2 hours while blowing hydrogen chloride gas into the melt at a rate of 1 occ per minute.Then, the hydrogen chloride gas was stopped. , instead, 1 occ/min of dry nitrogen was blown into the melt for about 10 minutes.The resulting melt was
The material was poured between brass plates preheated to .degree. C. and spaced parallel to each other with a spacing of approximately 1/2 mm to obtain a quenched body measuring 30 mm (vertical), 30 mm (width), and 8/mm (thick). This rapidly cooled body quickly 735
The sample was placed in a dryer at a temperature of 0.degree. C. and slowly cooled at a rate of 1.degree.

得られた急冷体のX線回折図形を第1図の(al K示
す。第1図の((転)から明らかな様に、本急冷体試料
には結晶質特有の鋭いピークが観測されないことから、
この材料はガラス体であることが確認された。またこの
材料の示差熱分析を行なったところ、第2図に示すよう
に1lIll″C付近にガラス転移点(Tg)が観測さ
れ、このことからもこの材料がガラス体であることが確
認された。さらに直接透過法によって測定したこの材料
の赤外透過特性図を第3図に示す。第3図よりこの材料
は、20gμm。
The X-ray diffraction pattern of the obtained quenched body is shown in Figure 1 (alK).As is clear from the ((trans)) in Figure 1, no sharp peaks characteristic of crystallinity were observed in this quenched body sample. from,
This material was confirmed to be a glass body. In addition, when differential thermal analysis of this material was performed, a glass transition point (Tg) was observed near 1lIll''C as shown in Figure 2, which also confirmed that this material was a glass body. Further, an infrared transmission characteristic diagram of this material measured by the direct transmission method is shown in Fig. 3. From Fig. 3, this material has a diameter of 20 gμm.

乙、3μmの水の吸収を除けば波長λ、S〜/lIμm
の赤外波長領域において何ら吸収をもたないことがわか
った。ここで、20gμmのOH伸縮振動による吸収、
及び乙、3μmのH20分子の変角振動による吸収の強
度がほぼ等しいことがわかるが、一般にこれら2つの吸
収帯のモル吸光係数はほぼ等しいので、第3図の2.ざ
及び6.3μm帯の吸収はほとんど測定前及び測定中に
材料表面に付着した吸着水に起因するものであり、材料
内部に存在するOHまたはH2Oは非常に少ないと考え
られる。
B, wavelength λ, S~/lIμm, excluding water absorption of 3μm
It was found that there was no absorption in the infrared wavelength region. Here, absorption due to OH stretching vibration of 20 gμm,
It can be seen that the intensity of absorption due to the bending vibration of the 3 μm H20 molecule is almost equal, and since the molar extinction coefficients of these two absorption bands are generally almost equal, 2. Most of the absorption in the 6.3 μm band is due to adsorbed water adhering to the material surface before and during the measurement, and it is thought that there is very little OH or H2O present inside the material.

また第3図において波長2.!;−/!iμmの全領域
に渡って20〜2S%の透過光の減少が見られるが、こ
れは材料の表面状態の不備に原因する乱反射によるもの
であり、材料の本質的な吸収とは考えられない。さらに
この材料は、so”c以上の空気中に数日間放置してお
いても表面の変質は全く観察されず、また25°C付近
の空気中に放置しておいても材料の表面の潮解現象は全
く観察されなかった。
Also, in FIG. 3, wavelength 2. ! ;-/! A decrease in transmitted light of 20 to 2 S% is observed over the entire iμm range, but this is due to diffuse reflection caused by imperfections in the surface condition of the material and cannot be considered to be an essential absorption of the material. Furthermore, even if this material is left in air at temperatures above 25°C for several days, no surface deterioration is observed; No phenomena were observed.

実施例2〜10 実施例/と全く同じ原料を用いて第1表に示すような割
合に調合されたKCl−RbC1−Cd(lJ2−Pb
(J2−Ba(J、jl混合粉末を、実施例/と全く同
様な方法で乾燥、溶融、冷却して第1表に示すような厚
味の無色の透光性材料を得た。この材料がガラス状態に
あることは、偏光顕微鏡観察によって異方性結晶の場合
に見られる様な散乱が観察されないこと、X線回折図形
に結晶質特有の鋭いピークが現われないこと、及び示差
熱分析によってTgが観測されることなどの方法で確認
した。示差熱分析によって測定された各ガラスのTgを
第1表にあわせて示す。各材料の赤外線透過特性を調べ
たところ、実施例/の場合と同様に、水の吸収を除けば
波長2.5〜/4’μmの範囲には何ら吸収を生じなか
った。代表例として実施例−の材料の赤外透過時  、
性図を第q図に示した。
Examples 2 to 10 KCl-RbC1-Cd (lJ2-Pb
(J2-Ba (J, jl mixed powder) was dried, melted, and cooled in exactly the same manner as in Example/1 to obtain a thick colorless translucent material as shown in Table 1. This material The fact that it is in a glass state is confirmed by the fact that no scattering as seen in anisotropic crystals is observed under polarized light microscopy, that sharp peaks characteristic of crystalline materials do not appear in the X-ray diffraction pattern, and by differential thermal analysis. It was confirmed by methods such as observation of Tg. The Tg of each glass measured by differential thermal analysis is also shown in Table 1. When the infrared transmission characteristics of each material were investigated, it was found that Similarly, with the exception of water absorption, no absorption occurred in the wavelength range of 2.5 to /4' μm.As a representative example, when the material of Example 1 transmits infrared light,
The sex diagram is shown in Figure Q.

また得られた実施例2〜ioの各材料の耐候性は実施例
1の材料とほぼ同程度であり、特に実施例7および10
の材料は耐候性に優れていた。
In addition, the weather resistance of each of the obtained materials of Examples 2 to io is almost the same as that of the material of Example 1, and in particular, Examples 7 and 10.
The material had excellent weather resistance.

実施例/l〜30 実施例1と同様に/、2Q’Cでλ日間以上乾燥した第
7表に示す各種原料を用いて、第1表に示すような割合
に調合した実施例//−!4’の各混合粉末を実施例1
とほぼ同様な方法で乾燥、溶融、冷却して第1に示すよ
うな厚味の透光性材料を得た。
Examples/1 to 30 Examples in which various raw materials shown in Table 7 were dried in 2Q'C for λ days or more in the same manner as in Example 1, and were prepared in the proportions shown in Table 1//- ! Example 1
By drying, melting, and cooling in substantially the same manner as above, a thick translucent material as shown in the first example was obtained.

ただし実施例//−#の場合の溶融雰囲気は、実施例/
と全く同じであるが、実施例17〜30の場合は窒素雰
囲気中で行なった。これらの材料の偏光顕微鏡観察によ
って、光学異方性結晶の場合に見られる様な光の散乱が
媒質中で観察されなかったこと、及び示差熱分析によっ
てTgが観察されたこと、さらKX線回折図形中に結晶
質特有の鋭いピークが存在しないことなどから、これら
の材料がガラス質であることが確認された。これらの性
は全く観察されなかった。
However, the melting atmosphere in the case of Example//-# is
However, Examples 17 to 30 were conducted in a nitrogen atmosphere. Polarized light microscopy of these materials revealed that no light scattering was observed in the medium as seen in the case of optically anisotropic crystals, and Tg was observed by differential thermal analysis, as well as by KX-ray diffraction. The absence of sharp peaks characteristic of crystalline materials confirmed that these materials were glassy. None of these traits were observed.

比較例1〜7 第1表つづき(1) 第1表つづき(2) 第1表つづき(3) 第7表つづき(4) 実施例/と同様の原料を用いて第1表に示す様な割合に
調合した比較例1〜7の各混合粉末を実施例/と同様な
(比較例乙は実施例17と同様な)方法で乾燥、溶融、
冷却をして厚さ0 、J mm以下の不透明白色の材料
を得た。これらの材料はX線回折図形において鋭い回折
ピークが観察されることから結晶質であることがわかっ
た。代表例として比較例/、3..!;のX線回折図形
を第1図の(b)。
Comparative Examples 1 to 7 Table 1 continued (1) Table 1 continued (2) Table 1 continued (3) Table 7 continued (4) Using the same raw materials as in Example/, as shown in Table 1 The mixed powders of Comparative Examples 1 to 7 prepared in the same proportions were dried, melted,
After cooling, an opaque white material with a thickness of less than 0 J mm was obtained. These materials were found to be crystalline since sharp diffraction peaks were observed in their X-ray diffraction patterns. Comparative example/3. .. ! The X-ray diffraction pattern of ; is shown in Figure 1(b).

(C1、(dlに示す。またこれらの材料の赤外線透過
率は波長2.3−2jμmの範囲では5%以下であった
(C1, (dl). In addition, the infrared transmittance of these materials was 5% or less in the wavelength range of 2.3 to 2 j μm.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明の赤外線透過用ハライドガラ
スは最長/4’μmまでの波長の赤外線を透過すること
ができた。また厚さ7mm以上の板状ガラスを比較的容
易に作製することができ、はとんどの材料が100″C
以上の高いガラス転移点を示した。さらに、主成分のひ
とつである塩化鉛(PbC12)は、水に対する溶解度
が低いため、pbc7!2含有量の多い組成を選ぶこと
によって、耐候性に優れたガラス体を得ることが可能と
なった。
As explained above, the halide glass for transmitting infrared rays of the present invention was able to transmit infrared rays with wavelengths up to /4'μm. In addition, sheet glass with a thickness of 7 mm or more can be produced relatively easily, and most materials are 100"C
It showed a high glass transition point. Furthermore, lead chloride (PbC12), one of the main components, has low solubility in water, so by choosing a composition with a high content of PbC7!2, it became possible to obtain a glass body with excellent weather resistance. .

以上の理由により、本発明の赤外透過用ハライドガラス
は波長l066μmの炭酸ガスレーザー及び波長5.2
μmの一酸化炭素レーザーなど、中赤外波長領域のレー
ザー光線の伝送媒体として利用できるばかりか、低温部
での赤外線温度計用光導波路などへの応用が可能である
For the above reasons, the halide glass for infrared transmission of the present invention is suitable for use with a carbon dioxide laser with a wavelength of 1066 μm and a wavelength of 5.2 μm.
Not only can it be used as a transmission medium for laser beams in the mid-infrared wavelength range, such as μm carbon monoxide lasers, but it can also be applied to optical waveguides for infrared thermometers in low-temperature areas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はX線回折図であり、図中の(a)〜(dJは各
々実施例11比較例1,3、及びSの材料のX線回折図
形である。第2図は実施例1の材料の示差熱分析曲線図
である。第3図及び第1図は各々実施例11及び−の赤
外線透過特性図である。 第 1 図 第 2 図 手続補正書 昭和59年g月22日 コ1発明の名称 赤外線透過用ハライドガラス 3 補正をする者 事件との関係 特許出願人 住 所 大阪府大阪市東区道修町4丁目8番地名称 (
zoo) 日本板硝子株式会社代表者  刺 賀 信 
雄 グ代理人 7 補正の内容 (11明細書10頁10行目〜l1行目にr 0sXO
−4Jとあるのを[C3Xo〜/IJと補正する。 (2)  明細書19頁第1表つづき(3)のサンプル
厚味(mm)の欄に実施例2!;−30VC対応して「
0.113J 。 「0.3/」、 「0.23J 、 [0,J7J 、
 「0.l13」、 「O,乙0」とあるのを「0.I
/−」、「0.3」、「o、η+ [o−IIJ r「
o、B + 「0.’Jと補正する。
FIG. 1 is an X-ray diffraction diagram, and (a) to (dJ in the figure are the X-ray diffraction patterns of the materials of Example 11, Comparative Examples 1 and 3, and S, respectively. Fig. 3 and Fig. 1 are infrared transmission characteristic charts of Examples 11 and -, respectively. 1 Name of the invention Halide glass for infrared transmission 3 Relationship with the case of the person making the amendment Patent applicant address 4-8 Doshomachi, Higashi-ku, Osaka-shi, Osaka Name (
zoo) Nippon Sheet Glass Co., Ltd. Representative Makoto Saga
Ogu agent 7 Contents of amendment (11 Specification, page 10, line 10 to line l1 r 0sXO
-4J is corrected to [C3Xo~/IJ. (2) Example 2 in the Sample Thickness (mm) column of Table 1 (Continued) (3) on page 19 of the specification! ;-30VC compatible;
0.113J. "0.3/", "0.23J, [0,J7J,
``0.l13'', ``O, Otsu 0'' is replaced with ``0.I13''.
/-", "0.3", "o, η+ [o-IIJ r"
o, B + "Correct as 0.'J.

Claims (4)

【特許請求の範囲】[Claims] (1)塩素、臭素およびヨウ素からなる群より選んだ少
なくとも1種のハロゲン元素をXとして表わした場合に
、モル%で表わして KX 0〜24 RbX 0〜24 SrX_2 0〜8 CdX_2 20〜53 BaX_2 0〜25 Pbx_2 24〜60 ただしKX+RbX 8〜24 KX+RbX+CdX_2+BaX_2+PbX_2 
85〜100であり、かつガラス中の塩素元素の数をガ
ラス中のハロゲン元素の数に対する割合で示した時75
〜100%となる赤外線透過用ハライドガラス。
(1) When at least one halogen element selected from the group consisting of chlorine, bromine, and iodine is represented as X, expressed in mol%, KX 0-24 RbX 0-24 SrX_2 0-8 CdX_2 20-53 BaX_2 0~25 Pbx_2 24~60 However, KX+RbX 8~24 KX+RbX+CdX_2+BaX_2+PbX_2
85 to 100, and when the number of chlorine elements in the glass is expressed as a ratio to the number of halogen elements in the glass, 75
Halide glass for transmitting infrared rays up to 100%.
(2)塩素、臭素およびヨウ素からなる群より選んだ少
なくとも1種のハロゲン元素をXとして表わした場合に
、モル%で表わして KX 4〜12 RbX 4〜12 SrX_2 0〜6 CdX_2 30〜48 BaX_2 4〜20 PbX_2 25〜48 ただしKX+RbX 12〜20 である特許請求の範囲第1項記載の赤外線透過用ハライ
ドガラス。
(2) When at least one halogen element selected from the group consisting of chlorine, bromine, and iodine is represented as X, expressed in mol%, KX 4-12 RbX 4-12 SrX_2 0-6 CdX_2 30-48 BaX_2 4-20 PbX_2 25-48 However, KX+RbX 12-20 The halide glass for infrared transmission according to claim 1.
(3)塩素、臭素およびヨウ素からなる群より選んだ少
なくとも1種のハロゲン元素をXとして表わした場合に
、モル%で表わして NaX 0〜10 CuX 0〜5 ZnX 0〜6 AgX 0〜10 CSX 0〜14 TlX 0〜15 を有する特許請求の範囲第1項又は第2項記載の赤外線
透過用ハライドガラス。
(3) When at least one halogen element selected from the group consisting of chlorine, bromine, and iodine is represented as X, expressed in mol%, NaX 0-10 CuX 0-5 ZnX 0-6 AgX 0-10 CSX The halide glass for infrared transmission according to claim 1 or 2, which has 0 to 14 TlX 0 to 15 .
(4)ガラス中の臭素元素およびヨウ素元素の数をガラ
ス中のハロゲン元素の数に対する割合で示した時 臭素 0〜20% ヨウ素 0〜25% を有する特許請求の範囲第1項ないし第3項記載の赤外
線透過用ハライドガラス。
(4) Claims 1 to 3 which have 0 to 20% bromine and 0 to 25% iodine when the number of bromine and iodine elements in the glass is expressed as a ratio to the number of halogen elements in the glass. Halide glass for infrared transmission as described.
JP16701284A 1984-08-09 1984-08-09 Halide glass for infrared light transmission Pending JPS6144734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16701284A JPS6144734A (en) 1984-08-09 1984-08-09 Halide glass for infrared light transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16701284A JPS6144734A (en) 1984-08-09 1984-08-09 Halide glass for infrared light transmission

Publications (1)

Publication Number Publication Date
JPS6144734A true JPS6144734A (en) 1986-03-04

Family

ID=15841743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16701284A Pending JPS6144734A (en) 1984-08-09 1984-08-09 Halide glass for infrared light transmission

Country Status (1)

Country Link
JP (1) JPS6144734A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204840A (en) * 1982-02-18 1983-11-29 サントル・ナシオナル・ド・ラ・ルシエルシユ・シア−ンテイフイク(セ・エヌ・エ−ル・エス) Novel halogen glass, manufacture and use
JPS59167011A (en) * 1983-02-01 1984-09-20 Mitsubishi Electric Corp Semiconductor wafer
JPS60246242A (en) * 1984-05-18 1985-12-05 Nippon Sheet Glass Co Ltd Halide glass for infrared transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204840A (en) * 1982-02-18 1983-11-29 サントル・ナシオナル・ド・ラ・ルシエルシユ・シア−ンテイフイク(セ・エヌ・エ−ル・エス) Novel halogen glass, manufacture and use
JPS59167011A (en) * 1983-02-01 1984-09-20 Mitsubishi Electric Corp Semiconductor wafer
JPS60246242A (en) * 1984-05-18 1985-12-05 Nippon Sheet Glass Co Ltd Halide glass for infrared transmission

Similar Documents

Publication Publication Date Title
EP1114803B1 (en) Li2o-al2o3-sio2 type transparent crystalized glass and crystalline glass
JPS62143841A (en) Chalcogenide glass
US5148510A (en) Optical fiber made of galliobismuthate glasses and optical devices using same
CN112811816B (en) High-stability full-spectrum transparent infrared chalcogenide glass material and preparation method thereof
JPH0420861B2 (en)
Kaur et al. Synthesis and characterization of lithium borate glasses containing bismuth
JPS6144734A (en) Halide glass for infrared light transmission
Kuroda et al. Glass formation, properties, and structure of the glasses based on GeS2–Sb2S3–CsX (X= Cl, Br, I)
JPS6021822A (en) Manufacture of material with infrared optical transparency
JP3749276B2 (en) Infrared transmission glass
US5093287A (en) Galliobismuthate glasses
US3999996A (en) Compatible near-portion phototropic glass
JPS6144733A (en) Halide glass for infrared light transmission
Ashida et al. Glass formation and properties of the glasses based on As-and Ge-free sulfide systems for infrared transmitting materials
JPH0822762B2 (en) UV transparent glass
US4473612A (en) Flashed glass
Środa Effect of Er 2 O 3 on thermal stability of oxyfluoride glass
JPS60246242A (en) Halide glass for infrared transmission
Kadono et al. Novel halide glasses based on systems of LiX (X= Cl, Br, I)
US4745090A (en) Glasses based on tellurium halides, their preparation and their use principally in the optoelectronic and infra-red transmission field
JPS6177639A (en) Production of infrared optical membrane material
Chaguetmi et al. Physical properties of ternary NaPO3-KHSO4-MX (M= Na, K and X= Cl, Br) glasses
Le Toullec et al. A new family of vitreous materials: The cesium aluminum or gallium thiohalide glasses
US20220396521A1 (en) Multicomponent oxide glass, optical element, optical fiber, and method of producing multicomponent oxide glass
JPS60264344A (en) Halide glass for infrared transmission