JPS60264344A - Halide glass for infrared transmission - Google Patents

Halide glass for infrared transmission

Info

Publication number
JPS60264344A
JPS60264344A JP59120559A JP12055984A JPS60264344A JP S60264344 A JPS60264344 A JP S60264344A JP 59120559 A JP59120559 A JP 59120559A JP 12055984 A JP12055984 A JP 12055984A JP S60264344 A JPS60264344 A JP S60264344A
Authority
JP
Japan
Prior art keywords
glass
infrared
components
transmission
halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59120559A
Other languages
Japanese (ja)
Inventor
Ryoichi Kaite
買手 良一
Takashi Yamagishi
山岸 隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP59120559A priority Critical patent/JPS60264344A/en
Publication of JPS60264344A publication Critical patent/JPS60264344A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/041Non-oxide glass compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To provide a halide glass having excellent infrared transmittance and suitable for the transmission of infrared light, etc., by using cations of Pb, Cu and Cs as essential components and anions of Br and I as additive components. CONSTITUTION:Raw materials such as PbBr2, CuBr, CuI, etc. are weighed and mixed in a manner to form a lass composition containing 65-75% Pb<2+>, 5- 20% Cu<+>, 10-18% Cs<+>, 0-15% Ag<+> and 0-15% Cd<2+> as the glass-constituting anionic components, and containing 0-20% Cl<->, 70-90% Br<-> and 5-20% I<-> as glass-constituting anionic components. The mixture is molten by heating, and cooled to obtain the objective glass for the transmission of infrared light. The obtained glass has no absorption in a medium infrared region of 2.5-25mum wavelength, is producible in large quantities, free from deliquescence, and has relatively high glass transition point.

Description

【発明の詳細な説明】 a 産業上の利用分計 本発明は赤外線の伝送に有用な赤外線透過用ハライドガ
ラスに関するものである。
DETAILED DESCRIPTION OF THE INVENTION a. Industrial Application The present invention relates to an infrared transmitting halide glass useful for transmitting infrared rays.

b 従来技術 従来から使用されている光伝送体は主として石英(Si
n2)を主体とした酸化物ガラスであった。
b. Prior Art The optical transmission bodies conventionally used are mainly made of quartz (Si).
It was an oxide glass mainly composed of n2).

しかしながら、当該ガラスはその網目を形成するSiと
Oとの結合が強いために格子振動による赤外吸収があり
、波長が2μm迄の赤外線しか透過できない、という欠
点があった。
However, this glass has a drawback in that it absorbs infrared light due to lattice vibration due to the strong bond between Si and O that forms the network, and can only transmit infrared light with a wavelength of up to 2 μm.

そこで上記欠点を解決する材料、つまり波長が2μm以
上の赤外領域において透明な窓を有する材料、も種々研
究、報告されている。これら材料はガラスと結晶材料と
に大別されるが、ガラス材としてはフッ化ジルコニウム
(ZrF4) !、塩化ビスマス(BiOJ3)系など
の非フッ化物系ハライドガラス、あるいは砒素、セレン
、テルル等を含むカルコゲンガラスなどが知られており
、又結晶材料としてはタリウムハライド(TA’Br−
TA!I)Jlハライド(AgOl−AgBr) など
の多結晶体、塩化カリウム(K(J)、臭化セシウム(
OsBr)などの単結晶体などが知られている。
Therefore, various studies and reports have been made on materials that solve the above-mentioned drawbacks, that is, materials that have transparent windows in the infrared region with a wavelength of 2 μm or more. These materials are broadly classified into glass and crystalline materials, and among the glass materials is zirconium fluoride (ZrF4)! , non-fluoride halide glasses such as bismuth chloride (BiOJ3), or chalcogen glasses containing arsenic, selenium, tellurium, etc., and crystal materials such as thallium halide (TA'Br-
TA! I) Polycrystals such as Jl halide (AgOl-AgBr), potassium chloride (K(J), cesium bromide (
Single crystals such as OsBr) are known.

しかしながら7フ化物ガラスは、格子振動にもとずく吸
収があるために赤外線の透過波長領域はゲμm程度まで
と狭い。これに対して非フツ化物系ハライドガラスは波
長が10μm以上の赤外線も良く透過するために赤外透
過材料として最も有力な候補とされている。しかしなが
ら現在報告されているZnOA2またはBiCl3を主
成分とするガラスは著るしい潮解性のため実用性に欠け
ている。又カルコゲンガラスは■波長がgμm以上の中
赤外領域に格子振動による赤外吸収があること、および
■ガラスの構造欠陥に起因する赤外吸収があるために赤
外線透過ガラスとしては問題が多い。
However, since heptafluoride glass has absorption based on lattice vibration, the transmission wavelength range of infrared rays is as narrow as about 1 μm. On the other hand, non-fluoride halide glass is considered to be the most promising candidate as an infrared transmitting material because it can well transmit infrared rays having a wavelength of 10 μm or more. However, currently reported glasses containing ZnOA2 or BiCl3 as main components lack practical use due to their significant deliquescent properties. Furthermore, chalcogen glass has many problems as an infrared transmitting glass because (1) it has infrared absorption due to lattice vibration in the mid-infrared region with a wavelength of gμm or more, and (2) it has infrared absorption due to structural defects in the glass.

一方、結晶材料のうち多結晶体は結晶粒界の散乱が大き
いという欠点が、又単結晶体はその成長速度が毎分/〜
xcmと小さいために極めて生産性が悪いという欠点が
あった。
On the other hand, among crystalline materials, polycrystalline materials have the disadvantage of large scattering at grain boundaries, and single crystalline materials have a growth rate of ~/min/min.
The disadvantage was that productivity was extremely low due to the small size of x cm.

I・□ 。□7.□、ようよ7.□4 本発明は上記の種々の欠点を除去するためになされたも
のであり、近赤外から中赤外領域の赤外線を極めて良く
透過し、がっ生産性に優れたガラスを得ることを目的と
している。
I・□. □7. □, Yoyo7. □4 The present invention was made in order to eliminate the various drawbacks mentioned above, and the purpose is to obtain a glass that transmits infrared rays in the near-infrared to mid-infrared region extremely well and has excellent productivity. It is said that

d 問題点を解決するための手段 上記問題点を解決するために本発明はガラスを構成する
陽イオン成分として pb2+ 乙5〜7S Ou+!;−20 C6” 10〜/ざ Ag+ 0〜15 かつガラスを構成する陰イオン成分としてCCO〜、2
0 Br”” 70〜q。
d Means for Solving the Problems In order to solve the above problems, the present invention uses pb2+ Ou5~7S Ou+! as a cation component constituting the glass. ;-20 C6" 10~/zaAg+ 0~15 and CCO~, 2 as an anion component constituting the glass
0 Br"" 70~q.

ガラスを提供する。Provide glass.

上記ガラス組成において、pb、Cu、とC8成分は本
発明の必項成分であり、Pb成分は陰イオンと共にガラ
スの網目を形成する成分である。QuとOsは上記網目
構造を修飾する成分で、ガラス形成を促がす作用を有す
る。Agとcdは付加成分で、いずれも結晶化に対する
ガラスの安定性を高める。
In the above glass composition, pb, Cu, and C8 components are essential components of the present invention, and the Pb component is a component that forms a glass network together with anions. Qu and Os are components that modify the network structure and have the effect of promoting glass formation. Ag and CD are additional components that both increase the stability of the glass against crystallization.

上記の陽イオン成分のハライド化合物はいずれも波長が
2.!;l1mから、25μmの中赤外領域において何
ら吸収を持たず、かつ潮解性もない。pbの含有量は陽
イオン成分の比率(イオン\率)としてtS〜7jモル
%であり、下限より少ない量あるいは上限より多い量で
は結晶化速度が速くなり安定なガラス体が得られにくい
。又Ouの含有量は5〜20モル%であり、下限より少
ない量では結晶化速度が速くなり安定なガラス体が得ら
れにくい。又この系のガラスのガラス転移点は主として
Gu の量で決まり上限より多い量ではガラス転移点が
SO″C以下となり実用性に欠ける。Csは10〜/、
1’モル%、好ましくは70〜/乙モル%であり、下限
より少ない量あるいは上限より多い量では結晶化速度が
速くなり安定なガラス体が得られにくい。
All of the above halide compounds as cationic components have wavelengths of 2. ! ; It has no absorption in the mid-infrared region from l1m to 25 μm, and has no deliquescent property. The content of Pb is tS~7j mol% as a ratio of cationic components (ion ratio), and if the amount is less than the lower limit or more than the upper limit, the crystallization rate becomes faster and it is difficult to obtain a stable glass body. Further, the content of O is 5 to 20 mol %, and if the content is less than the lower limit, the crystallization rate will increase and it will be difficult to obtain a stable glass body. Furthermore, the glass transition point of this type of glass is mainly determined by the amount of Gu, and if the amount is more than the upper limit, the glass transition point will be below SO''C, which is impractical.Cs is 10~/,
The amount is 1' mol %, preferably 70 to 70 mol %, and if the amount is less than the lower limit or more than the upper limit, the crystallization rate will increase and it will be difficult to obtain a stable glass body.

付加成分であるAgと0(iの好ましい濃度範囲は各々
0〜75モル%でありさらに好ましい範囲はAg。
The preferable concentration range of the additional components Ag and 0(i) is 0 to 75 mol%, and the more preferable range is Ag.

(j) Cd共に0〜/3モル%である。両者とも上限より多い
量では結晶化速度が速くなり安定なガラス体が得られに
くい。
(j) Both Cd is 0 to 3 mol%. If the amount of both is greater than the upper limit, the crystallization rate will increase and it will be difficult to obtain a stable glass body.

陰イオンである塩素(Of)、臭素(Br−)およびよ
う素(I−)イオンの好ましい範囲は、陰イオン成分の
モル%(イオン比率)でそれぞれ0〜20゜70〜りO
および5〜20%である。これらの下限よりも少ない量
あるいは上限より多い量では結晶化速度が速くなり安定
なガラス体が得られにくい。
The preferable range of the anions chlorine (Of), bromine (Br-), and iodine (I-) ions is 0 to 20° and 70 to 70°, respectively, in terms of mol% (ion ratio) of the anion component.
and 5-20%. If the amount is less than these lower limits or more than these upper limits, the crystallization rate will increase and it will be difficult to obtain a stable glass body.

e実施例 実施例/ Pb Br2.Ou Br、Cu I、Os Iの各試
薬をPb13r2≦、3− %ル%、CuBr 10.
、!!r %ル% 、OuI 9.7.!tモル%、C
8I /!iモル%の割合になるように調合した混合粉
末3gを直径10mm、長さgsmmのパイレックス試
験管に入れ、真空乾燥器内で/20”C−77時間加熱
した。その後容量比で窒素ガス9夕%、塩素ガスS%の
混合ガス雰囲気中でqoo″C%/時間溶融し、黄銅製
の鋳型に融液を流し込み、0.3mm厚のガラスサンプ
ルを作製した。結晶の有無を(A ) 調べるために偏光顕微鏡とX線回析により評価したが結
晶の存在は確認されなかった。また、ガラス転移点を示
差熱分析で測定したところTg=3/”Cであった。当
該ガラスのX線回折図形を第1図に、赤外線透過特性の
測定結果を第一図に図示した。
eExample Example/Pb Br2. Ou Br, Cu I, Os I reagents Pb13r2≦, 3-% Le%, CuBr 10.
,! ! r%ru%, OuI 9.7. ! tmol%, C
8I/! 3 g of mixed powder prepared at a ratio of i mol % was placed in a Pyrex test tube with a diameter of 10 mm and a length of gs mm, and heated in a vacuum dryer at /20"C for 77 hours. Thereafter, nitrogen gas was added at a volume ratio of 9 The glass sample was melted at qoo''C%/hour in a mixed gas atmosphere of chlorine gas S% and chlorine gas S%, and the melt was poured into a brass mold to produce a glass sample with a thickness of 0.3 mm. In order to examine the presence or absence of crystals (A), evaluation was performed using a polarizing microscope and X-ray diffraction, but the presence of crystals was not confirmed. Further, the glass transition point was measured by differential thermal analysis and was found to be Tg=3/''C. The X-ray diffraction pattern of the glass is shown in FIG. 1, and the measurement results of the infrared transmission characteristics are shown in FIG.

第1図では結晶特有のX線回折ピークが観察されないこ
とから非晶質であることが、又第2図では試料表面の不
備によると思われる全体的な透過損失のほかに2.9μ
mと乙、3μm に水に原因すると考えられるわずかな
吸収ピーク、および11μm付近からの酸化物に起因す
ると思われるg&収が若干観察される。しかしながらこ
れらの吸収は外的要因に依るものであり、材料の本質的
な問題ではないと考えられる。すなわち第2図より本実
施例ガラスハ2.3μm−,!Oμmの波長の光を良好
に透過することがわかる。
In Figure 1, the X-ray diffraction peak peculiar to crystals is not observed, indicating that the sample is amorphous.
A slight absorption peak thought to be caused by water at m and 3 μm, and a slight absorption peak thought to be caused by oxides from around 11 μm are observed. However, these absorptions are due to external factors and are not considered to be an essential problem of the material. That is, from FIG. 2, the glass of this example is 2.3 μm-! It can be seen that light with a wavelength of 0 μm is transmitted satisfactorily.

71.1・ ″″I′。′〜′。71.1・ ″″I′. ′〜′.

第1表に示した組成の割合となるように調合したPt)
Br2,0uBr、CuI、C3I、AgBr、0dB
r2等の混合粉末3g を実施例/と同様の方法で溶融
を行い、第 7 表 黄銅製の鋳型に融液を流し込み003mm厚のガラスサ
ンプルを作製した。これらのガラスサンプルを偏光顕微
鏡およびX線回析で結晶の有無を調べた。
Pt prepared to have the composition ratio shown in Table 1)
Br2, 0uBr, CuI, C3I, AgBr, 0dB
3 g of mixed powder such as R2 was melted in the same manner as in Example 7, and the melt was poured into a brass mold to prepare a glass sample with a thickness of 0.03 mm. These glass samples were examined for the presence of crystals using a polarizing microscope and X-ray diffraction.

表わすものと定義して第1表にそのガラスの安定性の観
察結果を示すが、実施例2〜10で得られた全てのガラ
スには結晶が全く確認されなかった。
Table 1 shows the observation results of the stability of the glasses. No crystals were observed in any of the glasses obtained in Examples 2 to 10.

又得られたガラスの赤外透過特性も測定したが、実施例
1と同様λ、Sμm−20μmの波長の光を良好に透過
した。又得られたガラスのガラス転移点(Tg)の値の
測定値も第7表に示す。
The infrared transmission characteristics of the obtained glass were also measured, and as in Example 1, it successfully transmitted light with a wavelength of λ, S μm-20 μm. Table 7 also shows the measured values of the glass transition point (Tg) of the obtained glasses.

比較例/〜g 第2表に示した組成の割合となるように調合したpt)
Br2 、0uBr + CuI 、 OsI 、 A
g%I3r l CdBr2 等の混合粉末3g を実
施例/と同じ方法で溶融およびサンプル作製を行ない実
施例λ〜IOと同様の評価を行なった。
Comparative example/~g pt prepared to have the composition ratio shown in Table 2)
Br2, 0uBr + CuI, OsI, A
3 g of mixed powder such as g% I3r l CdBr2 was melted and a sample was prepared in the same manner as in Example 1, and the same evaluations as in Examples λ to IO were performed.

比較例1のガラスサンプルは偏光顕微鏡およびX線回析
による評価では結晶は確認されなかった。
No crystals were found in the glass sample of Comparative Example 1 when evaluated using a polarizing microscope and X-ray diffraction.

しかし、ガラス転移点はTg−4’4°Cと実施例とく
らべると低いものであった。また比較例2〜gではいず
れも偏光顕微鏡で結晶の存在が確認された。ここで表中
の※印は本発明の組成範囲から逸脱している成分を示す
However, the glass transition point was Tg-4'4°C, which was lower than that of the Examples. Furthermore, in all of Comparative Examples 2 to g, the presence of crystals was confirmed using a polarizing microscope. Here, the * mark in the table indicates a component that deviates from the composition range of the present invention.

f 発明の効果 第 2 表 本発明によるガラスはpb 、 Qu 、 Qsおよび
臭素、ヨウ素の必項成分とAg1Odおよび塩素の付加
成分で構成されている。
f Effects of the Invention Table 2 The glass according to the present invention is composed of essential components of pb, Qu, Qs, bromine and iodine, and additional components of Ag1Od and chlorine.

これら成分により得られたガラスは波長が2.3μm−
2!;μmの中赤外領域において何ら内的要因による吸
収を持っていない。又本発明のガラスは量産性が極めて
良く、さらに本発明によるガラスは潮解性もなく、比較
的ガラス転移点も高い(Tg≧SO″C)ことから、超
低損失光通信用ファイバ、赤外湿度計測用ファイバなど
への応用が可能であるO
The glass obtained from these components has a wavelength of 2.3 μm-
2! ; It has no absorption due to internal factors in the mid-infrared region of μm. In addition, the glass of the present invention is extremely suitable for mass production, and furthermore, the glass of the present invention is not deliquescent and has a relatively high glass transition point (Tg≧SO″C), so it can be used as an ultra-low-loss optical communication fiber, an infrared fiber, etc. O can be applied to humidity measurement fibers, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例/のガラスのX線回析図形であり、第2
図は実施例/のガラスの赤外線透過特性図である。 ■ ′#島 2α(え) 第1図 波長(、um) 第2図 (/l) 手 続 補 正 書 昭和!;9年g月2日 / 事件の表示 特願昭39−/203!;9号 −発明の名称 赤外線透過用ハライドガラス 3 補正をする者 事件との関係 特許出願人 住 所 大阪府大阪市東区道修町4丁目8番地名 称 
(<toθ)日本板硝子株式会社代表者 刺 賀 信 
雄 グ代理人 7 補正の内容 (1)明細書ざ頁第1表の実施例3のAgイオン成分の
欄に12」とあるのをl’−/ 、!Jに補正する。 (2)明細書I頁第7表の実施例ざの1イオン成分の@
Vc[/!;J、!ニーあル(1)ti: [!; J
 K補正t、B。 (3)明細書//頁13行目に1X線回析図形」とある
のを「X線回折図」と補正する。 (2)
FIG. 1 is an X-ray diffraction pattern of the glass in Example/2.
The figure is an infrared transmission characteristic diagram of the glass of Example/. ■ '# Island 2α (e) Figure 1 Wavelength (, um) Figure 2 (/l) Procedure Correction Book Showa! ;G month 2, 1999/Special application for display of incident 1972-/203! No. 9 - Name of the invention Halide glass for infrared transmission 3 Relationship with the case of the person making the amendment Patent applicant address 4-8 Doshomachi, Higashi-ku, Osaka-shi, Osaka Name Name
(<toθ) Shin Saiga, Representative of Nippon Sheet Glass Co., Ltd.
Og Agent 7 Contents of amendment (1) In the Ag ion component column of Example 3 in Table 1 on page 1 of the specification, ``12'' has been changed to l'-/,! Correct to J. (2) Specification page I Table 7 Example No. 1 Ionic component @
Vc[/! ;J,! Niall (1) ti: [! ;J
K correction t, B. (3) "1X-ray diffraction pattern" on page 13 of the specification should be corrected to "X-ray diffraction pattern." (2)

Claims (1)

【特許請求の範囲】[Claims] (1) ガラスを構成する陽イオン成分としてPb” 
J j〜7j cu+s〜20 O8+lO〜/lr Ag+O〜/j イオン成分として、 ai−o〜20 13r−70〜90 ラス。
(1) Pb as a cationic component constituting glass
J j~7j cu+s~20 O8+lO~/lr Ag+O~/j As an ionic component, ai-o~20 13r-70~90 Ras.
JP59120559A 1984-06-12 1984-06-12 Halide glass for infrared transmission Pending JPS60264344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59120559A JPS60264344A (en) 1984-06-12 1984-06-12 Halide glass for infrared transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59120559A JPS60264344A (en) 1984-06-12 1984-06-12 Halide glass for infrared transmission

Publications (1)

Publication Number Publication Date
JPS60264344A true JPS60264344A (en) 1985-12-27

Family

ID=14789304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59120559A Pending JPS60264344A (en) 1984-06-12 1984-06-12 Halide glass for infrared transmission

Country Status (1)

Country Link
JP (1) JPS60264344A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395139A (en) * 1986-10-13 1988-04-26 Nippon Telegr & Teleph Corp <Ntt> Halide glass
US7951733B2 (en) * 2005-11-15 2011-05-31 Isuzu Glass Co., Ltd. Blue-violet light blocking glass
CN113233775A (en) * 2021-06-17 2021-08-10 中国科学院上海光学精密机械研究所 Nano-Ag reinforced CsPbBr3Quantum dot glass and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395139A (en) * 1986-10-13 1988-04-26 Nippon Telegr & Teleph Corp <Ntt> Halide glass
US7951733B2 (en) * 2005-11-15 2011-05-31 Isuzu Glass Co., Ltd. Blue-violet light blocking glass
CN113233775A (en) * 2021-06-17 2021-08-10 中国科学院上海光学精密机械研究所 Nano-Ag reinforced CsPbBr3Quantum dot glass and preparation method thereof

Similar Documents

Publication Publication Date Title
Yakhkind Tellurite glasses
TWI255260B (en) Graded index lens
JP6661611B2 (en) Infrared transmission glass suitable for molding
US3630765A (en) Photochromic glass containing tantalum oxide for optical fiber fabrication
US4486541A (en) Phototropic glass with a refractive index of at least 1.59
Velmuzhov et al. Preparation and investigation of the properties of Ge25-xGaxTe75-yIy Glass System (x= 5, 10, 15, y= 0–6)
US4001019A (en) Reversible light sensitive glass
JPH0420861B2 (en)
JPS60264344A (en) Halide glass for infrared transmission
JPH01103930A (en) Halide glass
JPH0455136B2 (en)
Kaur et al. Synthesis and characterization of lithium borate glasses containing bismuth
US3826661A (en) High index optical glass
Kuroda et al. Glass formation, properties, and structure of the glasses based on GeS2–Sb2S3–CsX (X= Cl, Br, I)
Zhao et al. Glass formation in Sb2Se3 MXn (metal halides)
JPS6131327A (en) Halide glass for infrared transmission
JPS60221340A (en) Halide glass for transmitting infrared ray
JPH08133779A (en) Infrared rays transmission glass
JPS6021832A (en) Halide glass for transmitting infrared ray
JPS59182248A (en) Halide glass for transmitting infrared rays
JPS60246242A (en) Halide glass for infrared transmission
JPH0472781B2 (en)
JPS59116148A (en) Mercury-thallium-fluorophosphoric acid glass
JP7026892B2 (en) Infrared transmissive glass
JPH0379302B2 (en)