JPS6144733A - Halide glass for infrared light transmission - Google Patents

Halide glass for infrared light transmission

Info

Publication number
JPS6144733A
JPS6144733A JP16701184A JP16701184A JPS6144733A JP S6144733 A JPS6144733 A JP S6144733A JP 16701184 A JP16701184 A JP 16701184A JP 16701184 A JP16701184 A JP 16701184A JP S6144733 A JPS6144733 A JP S6144733A
Authority
JP
Japan
Prior art keywords
glass
mol
rbx
halide
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16701184A
Other languages
Japanese (ja)
Inventor
Junji Nishii
準治 西井
Takashi Yamagishi
山岸 隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP16701184A priority Critical patent/JPS6144733A/en
Publication of JPS6144733A publication Critical patent/JPS6144733A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/041Non-oxide glass compositions

Abstract

PURPOSE:To make halide glass permeable to infrared light rays having wavelength up to the maximum 15mum, by using halide glass comprising one or more compounds of one or more halogenous elements of Cl, Br, and I, and K, Rb, Sr, Cd, Ba, and Pb in a desired ratio. CONSTITUTION:Halide glass for infrared light transmission comprising 0-24 mol% KX [X is one or more halogenous elements of Cl, Br, and I], 0-24mol% RbX, 2-30mol% SrX2; 34-53mol% CdX2, 8-40mol% BaX2, and 0-23mol% RbX2. SrX2+BaX2 is 11-42mol%, KX+RbX is 8-26mol%, KX+RbX+SrX2+ CdX2+BaX2+PbX2 is 90-100mol%, and (Cl)/(X) [(Cl) is number of Cl element in glass, and (X) is number of halogen elements in glass ] is controlled to 0.86- 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、可視から遠赤外の幅広い波長領域において透
明なハライドガラスに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a halide glass that is transparent in a wide wavelength range from visible to far infrared.

〔従来技術〕[Prior art]

今日、研究開発が一層活発化している光ファイバーの用
途は情報伝送(通信)媒体及び赤外線工用ファイバーの
素材としては、すでに実用化されている石英ガラスをは
じめゲルマニア(Ge02) 、1%ガラス、7フ化ジ
ルコニウム(ZrF4)系ガラスなどが研究されている
。しかしながらこれらのガラスファイバーの光透過領域
はガラス骨格の格子振動に基づく光の吸収が長波長領域
で生じるため可視光領域から近赤外光領域(2〜IIμ
m)に限られ、エネルギー伝送体としては使えないもの
であった。
Today, the applications of optical fibers, for which research and development are becoming more active, include quartz glass, germania (Ge02), 1% glass, 7 Zirconium fluoride (ZrF4)-based glasses are being studied. However, the light transmission region of these glass fibers is from the visible light region to the near-infrared light region (2 to II μ
m), and could not be used as an energy transmitter.

ここでψμm以上の中赤外から遠赤外にかけて透明な材
料でファイバーができればCO2レーザ−(波長10.
Attm ) 、Go レーザー(波長r、、zμm)
などから発振される光エネルギーを伝送することができ
、医療用、産業用加工機器の光導波路への応用が可能と
なるためその開発が行なわれてきている。
Here, if a fiber is made of a material that is transparent from mid-infrared to far-infrared beyond ψμm, it will be a CO2 laser (wavelength 10.
Attm), Go laser (wavelength r,,zμm)
They are being developed because they can transmit optical energy emitted from sources such as light sources, and can be applied to optical waveguides for medical and industrial processing equipment.

現在までに報告されているエネルギー伝送用ファイバー
にはハライド結晶、カルコゲナイドガラス、金属中空導
波路の3つがある。
There are three types of energy transmission fibers reported to date: halide crystal, chalcogenide glass, and hollow metal waveguide.

ハライド結晶としては、クリラムハライド(TIBr−
Tl!I)、銀ハライド(Ag(J−AgBr)の多結
ノ体、ヨウ化セシウム(O8I)の単結晶体のλつが2
るが前者は結晶粒界での散乱、後者は格子欠陥−・の散
乱などが原因で低損失化が困難であると言オれており、
また両者共に製造工程が非常に複雑゛あるという欠点が
あった。
As a halide crystal, krillum halide (TIBr-
Tl! I), a polycrystalline body of silver halide (Ag (J-AgBr), and a single crystalline body of cesium iodide (O8I) are 2
However, it is said that it is difficult to reduce loss due to scattering at grain boundaries in the former, and scattering in lattice defects in the latter.
Furthermore, both had the disadvantage that the manufacturing process was extremely complicated.

一方力ルコゲナイドガラスは、その材料が有)る本質的
な特徴である構造欠陥に基づく吸収、ノび不純物による
吸収のために低損失化が困難で2つ、また透過波長域も
g〜9μmが限界であった。
On the other hand, it is difficult to reduce the loss of lucogenide glass due to absorption due to structural defects and absorption due to impurities, which are the essential characteristics of the material, and the transmission wavelength range is also limited to The limit was 9 μm.

また金属中空導波路はその製造工程が複雑で−り、数m
以上の長尺ものができず、さらに伝送(失の低減化が極
めて難しいという欠点があった。
In addition, the manufacturing process for metal hollow waveguides is complicated, and the
However, it was not possible to produce longer lengths, and furthermore, it was extremely difficult to reduce transmission loss.

エイ・ルギー伝送用ファイバーの材料として最N有力な
ものは非7ツ化物系のハライドガラスでΔると言われて
いる。それは、塩素、臭素、ヨウっけ原子量が非常に大
きく、そのためこれらのバーイド化合物のほとんどは1
3μm以上の遠赤外ま1透明であるという性質を有し、
またガラス体でjれば結晶体でみられる散乱損失が非常
に小さく、陽   カルコゲナイドガラスの様な構造欠
陥がなく、され   らに製造工程の簡略化が期待され
るためである。
It is said that the most promising material for A/L energy transmission fibers is non-septide halide glass. It has a very large atomic weight of chlorine, bromine, and iodine, so most of these byid compounds are 1
It has the property of being transparent in far infrared rays of 3 μm or more,
In addition, if it is a glass material, the scattering loss seen in crystal materials is extremely small, there are no structural defects like anodic chalcogenide glasses, and the manufacturing process is expected to be simplified.

Cしかしioμm以上の遠赤外領域まで透明で、かつI
:1   ファイバー化可能な程度に安定なハライドガ
ラスで   は未だに報告されていないのが現実である
。例えば古典的によく知られている塩化亜鉛(ZnC1
2)ガr   ラスは著しい潮解性を有するため実用化
は困難で!   あり、その他項化ビスマス(Bi06
3)系i ラフ、 、Xb   化鉛(Pt)Br2)
 系ガラスなどもガラス転移温度が60℃以下と低いた
めにパワー伝送中に軟化又は結し   晶化する恐れが
あった。
However, it is transparent up to the far infrared region of ioμm or more, and I
:1 The reality is that no halide glass that is stable enough to be made into fibers has yet been reported. For example, the classically well-known zinc chloride (ZnC1
2) Glass has significant deliquescent properties, making it difficult to put it into practical use! Yes, other bismuth bismuth (Bi06
3) System i rough, , Xb lead oxide (Pt)Br2)
Since glass has a low glass transition temperature of 60°C or less, there is a risk that it will soften or crystallize during power transmission.

員   〔発明が解決しようとする問題点〕本発明は上
記の種々の欠点を除去するためになら   されたもの
であり、可視から10μm以上の広い波b   長領域
に渡って透明であり、かつ潮解性を示さず、靴   ガ
ラス転移温度が高く、かつ製造が容易なハライドガラス
を得ることを目的としてし)る。
[Problems to be solved by the invention] The present invention has been made in order to eliminate the various drawbacks mentioned above. The purpose of the present invention is to obtain a halide glass that exhibits no chemical properties, has a high glass transition temperature, and is easy to manufacture.

?  〔問題点を解決するための手段〕b    本発
明は上記問題点を解決するために、塩素、臭素およびヨ
ウ素からなる群より選んだ少なくとも1種のハロゲン元
素をXとして表わした場合に、モル%で表わして KX      O〜+2t RbX      0−211 srx22〜30 (idX2     J4Z−3;3 BaX2     J’〜110 pbx2     o〜23 ただし  5rX2+BaX2     / /”−1
I2KX+RbX            ざ〜2乙K
X+Rt)X+5rX2+CdX2+BaX2+PbX
2  90〜100でありかつガラス中の塩素元素の数
をガラス中のハロゲン元素の数に対する割合で表わした
場合ざ6〜100%となる赤外線透過用ハライドガラス
を提供する。
? [Means for Solving the Problems] b In order to solve the above-mentioned problems, the present invention provides that when at least one halogen element selected from the group consisting of chlorine, bromine and iodine is expressed as X, mol% Expressed as KX O~+2t RbX 0-211 srx22~30 (idX2 J4Z-3; 3 BaX2 J'~110 pbx2 o~23 where 5rX2+BaX2 / /"-1
I2KX+RbX Za~2OtsuK
X+Rt)X+5rX2+CdX2+BaX2+PbX
2. To provide an infrared transmitting halide glass which is 90 to 100 and has a ratio of 6 to 100% of the number of chlorine elements in the glass to the number of halogen elements in the glass.

ここで、Qd、BaおよびSrはClイオン等ハライド
イオンと共にガラス中に存在しても波長λ、S〜/Sμ
mの赤外領域において何ら吸収をもたず、又ガラスに潮
解性が生じるようなことがないために本発明のガラスの
主要成分として使用される。又SrおよびBaは共存す
ることによってガラス化傾向を向上させることができる
効果も有する。
Here, even if Qd, Ba and Sr exist in the glass together with halide ions such as Cl ions, the wavelength λ, S~/Sμ
It is used as the main component of the glass of the present invention because it has no absorption in the infrared region of m and does not cause deliquescent properties in the glass. In addition, Sr and Ba also have the effect of improving the vitrification tendency when they coexist.

以下に本発明のガラスの組成限定値およびその理由を述
べる。
The compositional limitations of the glass of the present invention and their reasons will be described below.

まず陽イオン成分の限定理由を述べるが、本発明の赤外
線透過用ハライドガラスに含まれるノ・ロゲンイオン(
Cl、Br、I)  をXと総称して説明する。
First, the reasons for limiting the cation components will be described.
Cl, Br, I) will be collectively referred to as X for explanation.

ここでXはCA!+Br十Iの意味合であり■とはKC
l+KBr+KIとしても表わせる。ガラス中の0dX
2の含有量は3’l−!;3モル%、B aX 2の含
有量はg〜さらに各成分の含有量をcax2 tto〜
30モル%、BaX2 / 2〜3 A % ル%、5
rx2’l”−2!; モル%、ここでBaX2と5r
x2の合計を、20〜3gモル%、に限定し、かつBa
X2と5rX2のモル比をt対/から3対2に保つこと
によってより一層安定なガラス体が得られる。
Here, X is CA! It has the meaning of +Br1I and ■ means KC
It can also be expressed as l+KBr+KI. 0dX in glass
The content of 2 is 3'l-! ; 3 mol%, the content of B aX 2 is g ~ Furthermore, the content of each component is cax2 tto ~
30 mol%, BaX2/2~3 A% le%, 5
rx2'l"-2!; mol%, where BaX2 and 5r
The total of x2 is limited to 20 to 3 g mol%, and Ba
By keeping the molar ratio of X2 and 5rX2 from t to 3 to 2, a more stable glass body is obtained.

0dX2、BaX2および5rX2の各成分の含有量が
上記限定範囲を外れると融液からの冷却過程における結
晶化速度が速くなるため安定なガラス体を得ることが困
難になる。
If the content of each component of 0dX2, BaX2 and 5rX2 is out of the above-mentioned limited range, the rate of crystallization during the cooling process from the melt increases, making it difficult to obtain a stable glass body.

又ガラス形成助剤用陽イオン成分として作用する■、 
RbXおよびPbX2はClイオン等ハロゲンイオンと
共にガラス中に存在しても波長2.3−20μmの赤外
領域において何ら吸収をもたず、又ガラスに潮解性が生
じるよ・)なことのないガラス中に含ませることが好ま
れる成分である。
■ Also acts as a cationic component for glass forming aids.
Even if RbX and PbX2 exist together with halogen ions such as Cl ions in the glass, they do not have any absorption in the infrared region of wavelength 2.3-20 μm, and the glass does not become deliquescent. This is a component that is preferably included.

本発明のガラスのKXの含有量は0〜21モル%、Rb
Xの含有量はO−2’lモル%であり、かつKXとRb
Xとの含有量の合計は、!’−、24モル%である。ま
た各成分の含有量をKXj−/jモル%、RbX3−/
、2モル%、ここで■とRbXの合計を70〜20モル
%に限定することによってより一層安定なガラス体が得
られる。また本発明のガラスとしてpbx2の含有量は
0−23モル%、好ましくは2〜/7モル%である。■
、 RbXおよびpbx2 の各成分共に上記限定範囲
を外れると、ガラスを作成するための融液の冷却過程に
おける結晶化速度が速くなるため安定なガラス体を得る
ことが困難になる。
The KX content of the glass of the present invention is 0 to 21 mol%, Rb
The content of X is O-2'l mol%, and KX and Rb
The total content with X is! '-, 24 mol%. In addition, the content of each component is expressed as KXj-/j mol%, RbX3-/
, 2 mol %, and by limiting the total of (1) and RbX to 70 to 20 mol %, an even more stable glass body can be obtained. Further, the content of pbx2 in the glass of the present invention is 0 to 23 mol%, preferably 2 to 7 mol%. ■
, RbX and pbx2 are outside the above-mentioned limited ranges, it becomes difficult to obtain a stable glass body because the crystallization rate during the cooling process of the melt for producing glass increases.

また本発明のガラスには、その赤外線透過特性を変化さ
せず、かつ結晶化に対する安定性を変化サセナイ範囲’
T: Li+Na+Os、TA!tAg+Znなどの陽
イオン成分を上記ガラスに添加することができる。
In addition, the glass of the present invention does not change its infrared transmission properties, and its stability against crystallization changes within the range of
T: Li+Na+Os, TA! Cationic components such as tAg+Zn can be added to the glass.

例えばその添加可能範囲はLiX O−1、NaX o
〜10゜C8X 0〜g、TIX O〜10.AgX 
Oんざ、znx2o〜y各モル%であり、かつこれら全
添加物の合計は10モル%以下である。各添加物を各限
定範囲より多く含有させたり、また全添加物の合計が7
0モル%以上になるとガラス作成時の融液が濁ったり、
結晶化しやすくなるため本発明のガラスの特性を失う。
For example, the range in which it can be added is LiX O-1, NaX o
~10°C8X 0~g, TIX O~10. AgX
Onza, znx2o to y are each mol%, and the total of all these additives is 10 mol% or less. Each additive may be contained in an amount greater than each limited range, or the total amount of all additives may be 7.
If it exceeds 0 mol%, the melt during glass creation will become cloudy,
Since it becomes easy to crystallize, the properties of the glass of the present invention are lost.

又本発明のガラスを構成するための陰イオン成分として
は塩素イオンが好まれ使用されるが、一部分をBrt工
などの他のハロゲンイオンと置換することが可能である
。ここで本発明のガラスを構成するための陰イオン成分
の割合はGl #;〜100モル%である。ここでO/
の含有量がざ乙モル%未満では融液が濁ったり、結晶化
しやすくなったりする欠点となる。又置換することの出
来るBrの含有量としては0−74モル%、■の含有量
トしては0〜70モル%が好まれる。ここでBrおよび
工の含有量が上記限定範囲をこえると融液が濁ったり、
結晶化しやすくなったりする。
Although chlorine ions are preferably used as the anionic component for constituting the glass of the present invention, it is possible to partially replace them with other halogen ions such as BRT. Here, the proportion of the anion component for constituting the glass of the present invention is Gl #; ~100 mol%. Here O/
If the content is less than mol %, the melt becomes cloudy and tends to crystallize, which is a drawback. The content of Br, which can be substituted, is preferably 0 to 74 mol%, and the content of Br, which can be substituted, is preferably 0 to 70 mol%. Here, if the content of Br and E exceeds the above limited range, the melt will become cloudy,
It may become easier to crystallize.

次に本発明を実施例に基づいてさらに詳細に説明する。Next, the present invention will be explained in more detail based on examples.

〔実 施 例〕〔Example〕

実施例/ ガラス原料に用いるハロゲン化合物はすべて/20°C
乾燥器中で2日間以上乾燥した高純度の無水結晶を用い
た。CdCl2 Q 4 モk f−* BaO11p
、 −21モル%z 5rCJ29 %/l’ % z
 KClざ% ル% 、Rb(Jざモル%、 Pb01
2gモル%の割合になるように調合したCd(J2−B
aC/2−8rGj?2−K(J−Rb(J−PbCA
’g混合粉末を直径iomm、長さs:smm の石英
試験管に入れ、塩素ガス雰囲気中で200”C12時間
の乾燥を行なった。その後炉温を速やかにsro”cに
昇温して該混合粉末を溶融し、融液中へ毎分10CCの
塩素ガスを吹き込みながら約ψ時間の溶融を行なった。
Example/All halogen compounds used in glass raw materials/20°C
High purity anhydrous crystals were used that had been dried in a dryer for at least 2 days. CdCl2 Q 4 Mok f-* BaO11p
, -21 mol%z 5rCJ29%/l'%z
KClza%le%, Rb(Jzamol%, Pb01
Cd (J2-B) prepared at a ratio of 2 g mol%
aC/2-8rGj? 2-K(J-Rb(J-PbCA
The mixed powder was placed in a quartz test tube with a diameter of iomm and a length of s:smm, and dried at 200"C for 12 hours in a chlorine gas atmosphere.Then, the furnace temperature was quickly raised to sro"c to The mixed powder was melted, and melting was carried out for about ψ hours while blowing 10 cc/min of chlorine gas into the melt.

その後塩素を止め毎分10CCの乾燥窒素を約10分間
融液中へ吹き込んだ。得られた融液を/ !; O′C
K予熱され、約へ/mmの平行間隔をもたせた真鍮板の
間に流し込んでたて30mm、よこ’10mm、厚さ八
/mm の急冷体を得た。この急冷体。
Thereafter, the chlorine supply was stopped and dry nitrogen was blown into the melt at a rate of 10 cc/min for about 10 minutes. The obtained melt/! ;O'C
A quenched body having a length of 30 mm, a width of 10 mm and a thickness of 8/mm was obtained by pouring it between preheated brass plates with parallel spacing of about 1/2 mm. This rapidly cooled body.

は速やかに150°Cの乾燥器中に収納され、毎分/°
Cの速度で徐冷された。
was immediately stored in a dryer at 150°C, and
It was slowly cooled at a rate of C.

得られた急冷体のX線回折図形を第1図の(aJに示す
。第1図の(alから明らかなように本急冷体には結晶
質の場合に見られる鋭いピークが観測されていないこと
から、この材料はガラス体であることが確認された。ま
たこの材料の示差熱分析を行なったところ第2図に示す
ように733°C付近にガラス転移点(Tg)が観測さ
れ、このことからもこの材料がガラス体であることが確
認された。さらに直接透過法によって測定したこの材料
の赤外透過特性図を第3図に示す。第3図よりこの材料
は波長2.5〜lSμmの範囲に渡って何ら吸収をもた
ないことがわかった。第3図において2.5〜75μm
においても20−23%の透過光の減少が見られるが、
これは試料表面状態の不備に原因する乱反射によるもの
と考えられ本質的な吸収とは考えられない。
The X-ray diffraction pattern of the obtained quenched body is shown in Figure 1 (aJ).As is clear from Figure 1 (al), the sharp peaks seen in the case of crystalline solids are not observed in this quenched body. Therefore, it was confirmed that this material was a glass body.Additionally, when differential thermal analysis of this material was performed, a glass transition point (Tg) was observed around 733°C as shown in Figure 2. This confirms that this material is a glass body.Furthermore, the infrared transmission characteristics of this material measured by the direct transmission method are shown in Figure 3.From Figure 3, this material has a wavelength of 2.5~ It was found that there was no absorption over the range of 1S μm.
A decrease in transmitted light of 20-23% is also seen in
This is considered to be due to diffuse reflection caused by imperfections in the surface condition of the sample, and cannot be considered to be essential absorption.

またこの材料は50°C以上の空気中に放置しておいて
も表面の変質は全く観察されず、また室温で大気中に放
置しておいても表面が若干曇る程度で、潮解現象は全く
観察されなかった。
Furthermore, even if this material is left in the air at temperatures above 50°C, no change in surface quality is observed, and even if it is left in the air at room temperature, the surface only becomes slightly cloudy and no deliquescence occurs. Not observed.

実施例!〜// 実施例/と全く同じ原料を用いて第1表に示すような割
合に調合されたCd072−Ba(J2−3r(J2−
KCl−RbCl−PbC12混合粉末を、実施例/と
全く同様な方法で乾燥、溶融、冷却して、第1表に示す
ような厚味のガラス材料を得た。この材料がガラス状態
であることは、偏光顕微鏡観察によって異方性結晶特有
の散乱が観察されないこと、X線回折図形に結晶質特有
の鋭いピークが現われないこと、及び示差熱分析8cよ
ってTgが観測されることなどの方法で確認した。示差
熱分析によって測定された各ガラスのTgを第1表に示
す。各材料の赤外線透過特性を調べたところ、実施例/
と同様に波長2.!;−/タμmの範囲には何ら吸収を
生じなかった。代表例として実施例2の材料の赤外透過
特性を第1図に示した。又得られた実施例2〜ツノの各
材料の耐候性は実施例/とほぼ同様の結果を示し潮解性
は全く観察されなかった。
Example! ~//Cd072-Ba(J2-3r(J2-
The KCl-RbCl-PbC12 mixed powder was dried, melted, and cooled in exactly the same manner as in Example 1 to obtain thick glass materials as shown in Table 1. The fact that this material is in a glass state is confirmed by the fact that the scattering characteristic of anisotropic crystals is not observed when observed under a polarizing microscope, the sharp peaks characteristic of crystalline materials do not appear in the X-ray diffraction pattern, and the Tg is determined by differential thermal analysis (8c). Confirmed by observation and other methods. Table 1 shows the Tg of each glass measured by differential thermal analysis. When we investigated the infrared transmission characteristics of each material, we found that
Similarly, wavelength 2. ! No absorption occurred in the range of ;-/ta μm. As a representative example, the infrared transmission characteristics of the material of Example 2 are shown in FIG. In addition, the weather resistance of each of the obtained materials of Examples 2 to 2 horns showed almost the same results as in Example 1, and no deliquescent property was observed.

実施例12〜31 実施例1と同様に/20”Cで2日間以上乾燥した第1
表に示す各種原料を用いて第1表に示す様な割合に調合
した実施例72〜3/の各混合粉末を実施例/とほぼ同
様な方法で乾燥、溶融、冷却して第1表に示すような厚
味のガラス材料を得た。材料がガラス質であることの確
認は実施例/〜//と同様な方法で行なった。ただし溶
融の際の雰囲気は、実施例12〜/7の場合は塩素雰囲
気で、実施例1ざ〜3/の場合は窒素雰囲気で行なった
。これらの材料の耐候性は実施例/の材料と大差はなく
、潮解性は全く観察されなかった。
Examples 12 to 31 The first sample was dried at /20"C for 2 days or more in the same manner as in Example 1.
The mixed powders of Examples 72 to 3/, which were prepared using the various raw materials shown in the table in the proportions shown in Table 1, were dried, melted, and cooled in substantially the same manner as in Example/. A thick glass material as shown was obtained. Confirmation that the material was glassy was performed in the same manner as in Examples / to //. However, the atmosphere during melting was a chlorine atmosphere in Examples 12 to 7, and a nitrogen atmosphere in Examples 1 to 3. The weather resistance of these materials was not significantly different from that of the materials in Examples/Examples, and no deliquescent properties were observed.

比較例/〜5 実施例1と同様の原料を用いて第1表に示す様な割合に
調合した比較例/〜Sの各混合粉末を実施例1と同様な
方法で乾燥、溶融、冷却して厚さ0.2mm  以下の
不透明白色の材料を得た。これらの材料は、X線回折図
形において鋭い回折ピークが観察されることから結晶質
であることがわかった。代表例として比較例/及びSの
X線回折図形を第1図の(b)、(C)に示す。またこ
れらの材料の赤外線透過率は波長2゜!−25μm の
範囲では5%以下であった。
Comparative Example/~5 Each of the mixed powders of Comparative Example/~S prepared using the same raw materials as in Example 1 and in the proportions shown in Table 1 was dried, melted, and cooled in the same manner as in Example 1. An opaque white material with a thickness of 0.2 mm or less was obtained. These materials were found to be crystalline since sharp diffraction peaks were observed in their X-ray diffraction patterns. As a representative example, the X-ray diffraction patterns of Comparative Example/and S are shown in FIG. 1(b) and (C). In addition, the infrared transmittance of these materials is 2° in wavelength! In the range of −25 μm, it was 5% or less.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明の赤外透過用ハライドガラス
は最長lSμmまでの波長の赤外線を透過することがで
きた。また厚さ/mm以上の板状ガラスを比較的容易に
作製することができ、130″C以上の高いガラス転移
点を示した。以上の理由により本発明の赤外透過用ハラ
イドガラスは波長10.6μmのco2レーザー光線及
び5.2μmのCOレーザー光線などのパワー伝送とし
て利用できるばかりか、低温部での赤外線温度計用光導
波路などへの応用が可能である。
As explained above, the infrared transmitting halide glass of the present invention was able to transmit infrared rays with a maximum wavelength of 1S μm. In addition, it was possible to relatively easily produce a sheet glass with a thickness of 10 mm or more, and it showed a high glass transition point of 130"C or more. For the above reasons, the halide glass for infrared transmission of the present invention has a wavelength of 10 mm or more. Not only can it be used for power transmission of .6 μm CO2 laser beams and 5.2 μm CO laser beams, but it can also be applied to optical waveguides for infrared thermometers in low-temperature areas.

第7表つづき(1) 第1表つづき(2) 第1表つづき(3) 第1表つづき(4) +、窃i−>動車φ皺帆 折開形である。第2図は実施例1の材料の示差熱分析曲
線図である。第3図および第1図は各々実施例/及び2
の赤外透過特性図である。
Table 7 continued (1) Table 1 continued (2) Table 1 continued (3) Table 1 continued (4) FIG. 2 is a differential thermal analysis curve diagram of the material of Example 1. FIG. 3 and FIG. 1 are examples/and 2, respectively.
FIG. 3 is an infrared transmission characteristic diagram.

口前^= 20(&) 第 1 図 第2図Front of mouth = 20 (&) Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)塩素、臭素およびヨウ素からなる群より選んだ少
なくとも1種のハロゲン元素をXとして表わした場合に
、モル%で表わして KX 0〜24 RbX 0〜24 SrX_2 2〜30 CdX_2 34〜53 BaX_2 8〜40 PbX_2 0〜23 ただしSrX_2+BaX_2 11〜42KX+Rb
X 8〜26 KX+RbX+SrX_2+CdX_2+BaX_2+
PbX_2 90〜100でありかつガラス中の塩素元
素の数をガラス中のハロゲン元素の数に対する割合で表
わした場合86〜100%となる赤外線透過用ハライド
ガラス。
(1) When at least one halogen element selected from the group consisting of chlorine, bromine, and iodine is expressed as X, expressed in mol%, KX 0-24 RbX 0-24 SrX_2 2-30 CdX_2 34-53 BaX_2 8~40 PbX_2 0~23 However, SrX_2+BaX_2 11~42KX+Rb
X 8~26 KX+RbX+SrX_2+CdX_2+BaX_2+
PbX_2 is 90 to 100, and the number of chlorine elements in the glass is 86 to 100% when expressed as a ratio to the number of halogen elements in the glass.
(2)塩素、臭素およびヨウ素からなる群より選んだ少
なくとも1種のハロゲン元素をXとして表わした場合に
、モル%で表わして KX 5〜12 RbX 5〜12 SrX_2 4〜25 CdX_2 40〜50 BaX_2 12〜36 PbX_2 2〜17 ただしSrX_2+BaX_2 20〜38SrX_2
/BaX_2 2/3以下 KX+RbX 20以下 を有する 特許請求の範囲第1項記載の赤外線透過用ハライドガラ
ス。
(2) When at least one halogen element selected from the group consisting of chlorine, bromine, and iodine is represented as X, expressed in mol%, KX 5-12 RbX 5-12 SrX_2 4-25 CdX_2 40-50 BaX_2 12~36 PbX_2 2~17 However, SrX_2+BaX_2 20~38SrX_2
/BaX_2 2/3 or less KX+RbX 20 or less, the halide glass for infrared transmission according to claim 1.
(3)塩素、臭素およびヨウ素からなる群より選んだ少
なくとも1種のハロゲン元素をXとして表わした場合に
、モル%で表わして L1X 0〜8 NaX 0〜10 AgX 0〜8 CSX 0〜8 TlX 0〜10 ZnX_2 0〜8 を有する特許請求の範囲第1項又は第2項記載の赤外線
透過用ハライドガラス。
(3) When at least one halogen element selected from the group consisting of chlorine, bromine, and iodine is represented as X, it is expressed in mol% L1X 0-8 NaX 0-10 AgX 0-8 CSX 0-8 TlX The halide glass for infrared transmission according to claim 1 or 2, having a ZnX_2 of 0 to 10 0 to 8.
(4)ガラス中の臭素元素およびヨウ素元素の数をガラ
ス中のハロゲン元素の数に対する割合で示した時 臭素 0〜14% ヨウ素 0〜10% を有する特許請求の範囲第1項ないし第3項記載の赤外
線透過用ハライドガラス。
(4) Claims 1 to 3 which have 0 to 14% bromine and 0 to 10% iodine when the number of bromine and iodine elements in the glass is expressed as a ratio to the number of halogen elements in the glass. Halide glass for infrared transmission as described.
JP16701184A 1984-08-09 1984-08-09 Halide glass for infrared light transmission Pending JPS6144733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16701184A JPS6144733A (en) 1984-08-09 1984-08-09 Halide glass for infrared light transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16701184A JPS6144733A (en) 1984-08-09 1984-08-09 Halide glass for infrared light transmission

Publications (1)

Publication Number Publication Date
JPS6144733A true JPS6144733A (en) 1986-03-04

Family

ID=15841723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16701184A Pending JPS6144733A (en) 1984-08-09 1984-08-09 Halide glass for infrared light transmission

Country Status (1)

Country Link
JP (1) JPS6144733A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204840A (en) * 1982-02-18 1983-11-29 サントル・ナシオナル・ド・ラ・ルシエルシユ・シア−ンテイフイク(セ・エヌ・エ−ル・エス) Novel halogen glass, manufacture and use
JPS59167012A (en) * 1983-03-12 1984-09-20 Agency Of Ind Science & Technol Plasma cvd equipment
JPS60246242A (en) * 1984-05-18 1985-12-05 Nippon Sheet Glass Co Ltd Halide glass for infrared transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204840A (en) * 1982-02-18 1983-11-29 サントル・ナシオナル・ド・ラ・ルシエルシユ・シア−ンテイフイク(セ・エヌ・エ−ル・エス) Novel halogen glass, manufacture and use
JPS59167012A (en) * 1983-03-12 1984-09-20 Agency Of Ind Science & Technol Plasma cvd equipment
JPS60246242A (en) * 1984-05-18 1985-12-05 Nippon Sheet Glass Co Ltd Halide glass for infrared transmission

Similar Documents

Publication Publication Date Title
US5430573A (en) UV-absorbing, polarizing glass article
US3325299A (en) Phototropic glass article and method of making it
JPH0850205A (en) Polarizer made of glass and preparation thereof
US5148510A (en) Optical fiber made of galliobismuthate glasses and optical devices using same
JPH0420861B2 (en)
US3923529A (en) Sodalite-related glass compositions for production of photochromic and fluorescent articles
US3293052A (en) Glass article and method of making it
JPS6144733A (en) Halide glass for infrared light transmission
US2701208A (en) Glasses
US3834912A (en) Lead borate containing phototropic glass
US3007804A (en) Ceramic material
Kuroda et al. Glass formation, properties, and structure of the glasses based on GeS2–Sb2S3–CsX (X= Cl, Br, I)
US3826661A (en) High index optical glass
Ghanbari‐Ahari et al. Phase Diagram of Na2O‐B2O3‐SiO2 System
JPS6144734A (en) Halide glass for infrared light transmission
JPH08133779A (en) Infrared rays transmission glass
JPS6177639A (en) Production of infrared optical membrane material
JPS60246242A (en) Halide glass for infrared transmission
Kadono et al. Novel halide glasses based on systems of LiX (X= Cl, Br, I)
US3594198A (en) Phototropic glass
US5139899A (en) Lithium ion conductive glass electrolyte
JPH09110465A (en) Infrared-ray transmitting halide glass material
US4745090A (en) Glasses based on tellurium halides, their preparation and their use principally in the optoelectronic and infra-red transmission field
US2901364A (en) Glass compositions and method of making same
JPS6131327A (en) Halide glass for infrared transmission