JPS6144708A - Production of fine silicon carbide powder - Google Patents

Production of fine silicon carbide powder

Info

Publication number
JPS6144708A
JPS6144708A JP59165387A JP16538784A JPS6144708A JP S6144708 A JPS6144708 A JP S6144708A JP 59165387 A JP59165387 A JP 59165387A JP 16538784 A JP16538784 A JP 16538784A JP S6144708 A JPS6144708 A JP S6144708A
Authority
JP
Japan
Prior art keywords
silicon carbide
fine powder
gas
powder
carbide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59165387A
Other languages
Japanese (ja)
Inventor
Takashi Suzuki
喬 鈴木
Takamasa Kawakami
川上 殷正
Goji Koyama
剛司 小山
Hiromasa Isaki
寛正 伊崎
Riako Nakano
里愛子 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP59165387A priority Critical patent/JPS6144708A/en
Priority to US06/729,751 priority patent/US4613490A/en
Priority to DE19853516589 priority patent/DE3516589A1/en
Publication of JPS6144708A publication Critical patent/JPS6144708A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain efficiently fine silicon carbide powder of high purity in a short time, by heat-treating fine powder prepared by reacting an alkoxysilane compound in the vapor phase in a nonoxidizing atmosphere. CONSTITUTION:An alkoxysilane compound expressed by the formula (R is chlorine, bromine, iodine, hydrogen, alkyl, allyl or phenyl; R' is alkyl, allyl or phenyl; n is 0, 1, 2 or 3), e.g. tetramethoxysilane or dimethyldimethoxysilane, is prepared. The resultant alkoxysilane compound is then preheated in a preheater and gasified, and the formed gas is mixed with a nonoxidizing gas, e.g. Ar or N2, introduced into a reaction tube and reacted in the vapor phase at about 800-1,500 deg.C. The formed fine powder is then cooled and collected. The resultant fine powder is heat-treated at about 1,350-1,850 deg.C in a nonoxidizing atmosphere, e.g. hydrogen or argon, and crystallized to afford the aimed fine silicon carbide powder.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は炭化珪素微粉末の製造方法に関する発明である
。更に詳しくは、一般式がRnSi(OR’)*−r+
(式中、Rは塩素、臭素、ヨウ素、水素、アルキル基、
アリル基またはフェニル基を示し、R′はアルキル基、
アリル基、またはフェニル基を示す、nは0,1.2ま
たは3である)で表されるアルコキシシラン化合物を気
相反応させて得た微粉末を非酸化的雰囲気で熱処理する
ことを特徴とする炭化珪素微粉末の製造方法に関する発
明である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing fine silicon carbide powder. More specifically, the general formula is RnSi(OR')*-r+
(In the formula, R is chlorine, bromine, iodine, hydrogen, an alkyl group,
represents an allyl group or a phenyl group, R' is an alkyl group,
The method is characterized by heat-treating fine powder obtained by gas-phase reaction of an alkoxysilane compound represented by an allyl group or a phenyl group (n is 0, 1.2 or 3) in a non-oxidizing atmosphere. This invention relates to a method for producing fine silicon carbide powder.

〔産業上の利用分野〕[Industrial application field]

炭化珪素は高温安定性、高強度、高熱伝導性等の緒特性
を有する材料であり、原子力エネルギー材料、化学装置
、高温ガス処理、電気加熱要素及び電子抵抗器等に広く
用いられている。これらのうち特に高温構造材料として
有用であり、また省エネルギー、省資源の目的に重要な
役割を果たす材料として開発が進められている。
Silicon carbide is a material with properties such as high temperature stability, high strength, and high thermal conductivity, and is widely used in nuclear energy materials, chemical equipment, high temperature gas processing, electric heating elements, electronic resistors, etc. Among these materials, they are particularly useful as high-temperature structural materials, and are being developed as materials that play an important role in saving energy and resources.

これらの用途に使用する場合に、材料の強度は材料自体
の緻密性により決定され、材料内部に存在する欠陥空孔
の大きさが材料の強度を左右する。
When used in these applications, the strength of the material is determined by the density of the material itself, and the size of the defective pores present within the material influences the strength of the material.

従ってかかる材料には、おおきな欠陥空孔を有せず、緻
密且つ均質な組織を形成するものが強く要求されており
、特に原料粉末に対しては、より高品質化することが要
望されている。
Therefore, there is a strong demand for such materials that do not have large defective pores and form a dense and homogeneous structure, and in particular, there is a demand for higher quality raw material powders. .

〔従来の技術〕[Conventional technology]

従来、炭化珪素粉末はシリカの炭素還元、または他の方
法により製造されているが、何れも粒径を小さくする°
ことが困難であり、粒子の径や形状がばらついているた
め優れた特性を得ることができなかった。
Traditionally, silicon carbide powder has been produced by carbon reduction of silica or other methods, but both methods reduce the particle size.
However, it was difficult to obtain excellent properties due to the variation in particle size and shape.

この点を改良するために、シリカと炭素の他に第3成分
として窒化珪素や炭化珪素などを添加することが提案さ
れている。
In order to improve this point, it has been proposed to add silicon nitride, silicon carbide, etc. as a third component in addition to silica and carbon.

しかしこの方法は使用する第3成分が主原料のシリカや
炭素よりも高価なので経済的に好ましい方向ではない。
However, this method is not economically preferable because the third component used is more expensive than the main raw materials, silica and carbon.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は炭化珪素粉末を製造するプロセスにおいて
アルコキシシラン化合物を気相反応させて得た微粉末を
非酸化的雰囲気で熱処理することによりβ型炭化珪素を
得ることについて鋭意研究を行った。
The present inventors conducted intensive research on obtaining β-type silicon carbide by heat-treating fine powder obtained by gas-phase reaction of an alkoxysilane compound in a non-oxidizing atmosphere in the process of manufacturing silicon carbide powder.

その結果アルコキシシラン化合物をアルゴン、ヘリウム
、水素、窒素、アンモニア等の非酸化雰囲気で気相反応
を行うことによって非晶質微粉末が得られ、更に上記の
方法で得られた微粉末を非酸化性ガス雰囲気下で結晶化
させることにより、β型炭化珪素結晶質粉末が得られる
ことを見出して本発明を完成するに至った。
As a result, an amorphous fine powder was obtained by performing a gas phase reaction of the alkoxysilane compound in a non-oxidizing atmosphere such as argon, helium, hydrogen, nitrogen, ammonia, etc., and the fine powder obtained by the above method was further non-oxidized. The present invention was completed based on the discovery that β-type silicon carbide crystalline powder can be obtained by crystallization in a hostile gas atmosphere.

即ち、本発明によれば気相反応で得られた生成微粉末は
式1の反応式にみられる様に、非晶質二酸化珪素と非晶
質炭素の混合物と考えられるが、0.5μ以下の球状物
質であり、炭素と二酸化珪素とが極めて均一に混合され
ているものと思われる。
That is, according to the present invention, the fine powder obtained by the gas phase reaction is considered to be a mixture of amorphous silicon dioxide and amorphous carbon, as seen in the reaction formula of formula 1, but the powder is less than 0.5 μm. It is considered to be a spherical substance containing an extremely uniform mixture of carbon and silicon dioxide.

RnSi(OR’)4−n−→SiO2+ C式1従っ
て本発明方法の場合は従来の方法の様に二酸化珪素粉末
と炭素粉末を微細な粉末にする工程と均一に混合する工
程が不要になるだけでなく、微細粒子が均一に混合して
いるために第3成分を混入することなく、従来法よりも
結晶化時間を短くして、微細な炭化珪素粉末が得られる
RnSi(OR')4-n-→SiO2+ C Formula 1 Therefore, in the case of the method of the present invention, the step of making silicon dioxide powder and carbon powder into fine powder and the step of uniformly mixing them as in the conventional method is not necessary. In addition, since the fine particles are uniformly mixed, fine silicon carbide powder can be obtained without mixing a third component and with a shorter crystallization time than in the conventional method.

また原料は蒸留等の操作によって容易に生成することが
出来るので、本発明方法によって得ら些る生成物は極め
て高い純度のものである。
Moreover, since the raw materials can be easily produced by operations such as distillation, the products obtained by the method of the present invention are of extremely high purity.

(発明の概要〕 本発明方法において、原料としては次の様な有機珪素化
合物が用いられる。
(Summary of the Invention) In the method of the present invention, the following organic silicon compounds are used as raw materials.

一般式がRnSi(OR′)4−J式中、Rは塩素、臭
素、ヨウ素、水素、アルキル基、アリル基またはフェニ
ル基を示し、Roはアルキル基、アリル基、またはフェ
ニル基を示す、nは0.1.2または3である)で表さ
れるアルコキシシラン化合物としては、例えばテトラメ
トキシシラン、テトラエトキシシラン、メチルトリメト
キシシラン、ジメチルジメトキシシラン、トリメチルメ
トキシシラン、ジクロロジメトキシシラン等が挙げられ
る。
The general formula is RnSi(OR')4-J, where R represents chlorine, bromine, iodine, hydrogen, an alkyl group, an allyl group, or a phenyl group, and Ro represents an alkyl group, an allyl group, or a phenyl group, n is 0.1.2 or 3), examples thereof include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, dichlorodimethoxysilane, etc. .

これらの原料は通常の蒸留等により極めて高純度に精製
される。また気相反応へ供給する場合、これらの原料が
2種以上混合されていてもさしつかえない。またこれら
の原料は予めガス化させて反応管へ導き、同時に^rS
HeSNz、H2及びアンモニア等の非酸化性ガスと混
合して供給される。
These raw materials are purified to extremely high purity by conventional distillation or the like. Furthermore, when supplying to a gas phase reaction, two or more of these raw materials may be mixed. In addition, these raw materials are gasified in advance and introduced into the reaction tube, and at the same time ^rS
It is supplied mixed with a non-oxidizing gas such as HeSNz, H2 and ammonia.

非酸化性ガスは反応に於ける原料の分圧を変化させたり
、反応時間を制御するために重要である。
Non-oxidizing gases are important for changing the partial pressure of raw materials in the reaction and controlling the reaction time.

本発明方法において、反応温度は800℃〜1500℃
の範囲で選択するのが適当であり、800℃より低いと
きには反応の進行が不充分であるために生成量が低く、
逆に1500℃を超える場合は、装置の制約と多大のエ
ネルギーを要するために経済的でない。原料ガスの分圧
及び反応時間は生成物の粒径や収率等を考慮して決めら
れるが、原料分圧は0.01〜数atm 、反応時間は
120〜0.01sec、で実施するのが好ましい。こ
れらの値より原料分圧が低く、反応時間が長い場合には
、反応装置が大型になり工業的に不利となる。
In the method of the present invention, the reaction temperature is 800°C to 1500°C.
It is appropriate to select within the range of 800°C, and when the temperature is lower than 800°C, the reaction progresses insufficiently, resulting in a low production amount.
On the other hand, if the temperature exceeds 1500° C., it is not economical due to equipment restrictions and a large amount of energy required. The partial pressure of the raw material gas and the reaction time are determined by considering the particle size and yield of the product, but the raw material partial pressure is 0.01 to several atm and the reaction time is 120 to 0.01 sec. is preferred. If the raw material partial pressure is lower than these values and the reaction time is long, the reactor will be large-sized, which is industrially disadvantageous.

逆に、分圧が高く反応時間が短い場合には反応が進行し
なかったり、または生成物中に炭素量が多くなったりす
るので好ましくない。
On the other hand, if the partial pressure is high and the reaction time is short, the reaction may not proceed or the amount of carbon in the product may increase, which is not preferable.

具体的な実施方法としては、例えば原料が液体である場
合には所定の液量を予熱器に導入してガス化させ、所定
量の非酸化性ガスと充分に均一に混合したのち、外部加
熱式の反応管へ導く。反応管の形式は空塔あるいは充填
塔式の流通型が用いられるがガスの流れが脈動あるいは
乱脈にならず、均一に加熱される構造とすることが生成
微粉末の均一性を得るために重要である。生成した微粉
末は冷却後捕集器へと導かれ捕集される。この場合の捕
集器としては通常用いられている濾過方式の集塵器、電
気集塵器、サイクロン等を適宜用いることが可能である
For example, if the raw material is a liquid, a predetermined amount of liquid is introduced into a preheater and gasified, mixed thoroughly and uniformly with a predetermined amount of non-oxidizing gas, and then heated externally. Lead to the reaction tube of the formula. The type of reaction tube used is either an empty column or a packed column type, but it is important to have a structure in which the gas flow is not pulsating or irregular and is heated evenly in order to obtain uniformity of the fine powder produced. It is. After cooling, the generated fine powder is guided to a collector and collected. As the collector in this case, a commonly used filter type dust collector, electric dust collector, cyclone, etc. can be appropriately used.

この様にして得られる生成微粉末はX線回折ではピーク
が認められない非晶質であり、粒径の揃った0、5μm
以下の球状粒子である。
The resulting fine powder obtained in this way is amorphous with no peak observed in X-ray diffraction, and has a uniform particle size of 0.5 μm.
These are the following spherical particles.

この生成微粉末の炭素量は37.5重量%〜50重量%
が好ましい。
The carbon content of this fine powder is 37.5% to 50% by weight.
is preferred.

炭素量が少な過ぎると、未反応の二酸化珪素骨の残留、
シリコンオキシナイトライドの生成がみられる。炭素量
が多くとも特に不都合は無いが経済的に好ましくない。
If the carbon content is too low, unreacted silicon dioxide bones may remain,
Formation of silicon oxynitride is observed. Although there is no particular disadvantage if the carbon content is large, it is economically unfavorable.

炭素量の調節方法は反応温度や分圧の制御の他、次の様
な方法が採られる。第1の方法としてはアルコキシシラ
ン化合物の炭素量が少ない場合(例えばテトラメトキシ
シラン、またはメチルトリメトキシシラン等の場合)゛
、原料として、ベンゼン、ヘキサン等の炭化水素および
クロロホルム、塩化メチレン等のハロゲン化炭化水素化
合物を加える方法。第2の方法としてはアルコキシシラ
ン化合物の炭素量が多い場合は気相反応においてAr等
とともにアンモニアや口2を導入することによって炭素
量を調節することができる。
In addition to controlling the reaction temperature and partial pressure, the following methods can be used to adjust the amount of carbon. The first method is when the carbon content of the alkoxysilane compound is small (for example, in the case of tetramethoxysilane or methyltrimethoxysilane), the raw materials are hydrocarbons such as benzene and hexane, and halogens such as chloroform and methylene chloride. Method of adding hydrogenated hydrocarbon compounds. As a second method, when the carbon content of the alkoxysilane compound is large, the carbon content can be adjusted by introducing ammonia or the like together with Ar or the like in a gas phase reaction.

結晶化の際の雰囲気は炭化水素、−酸化炭素、アルゴン
、水素、窒素、アンモニア等の非酸化性ガスが使用され
る。また結晶化の際の温度は一酸化炭素、アルゴンの雰
囲気中で1350〜1850℃(但し、窒素、アンモニ
ガスの場合は1550〜1850℃)であり、好ましく
は1400〜1700℃である。
The atmosphere used during crystallization is a non-oxidizing gas such as hydrocarbon, carbon oxide, argon, hydrogen, nitrogen, or ammonia. The temperature during crystallization is 1350 to 1850°C in an atmosphere of carbon monoxide and argon (1550 to 1850°C in the case of nitrogen and ammonia gas), preferably 1400 to 1700°C.

なお焼成温度が1350℃未満では炭化珪素の生成が難
しく、1850℃を超える温度では粒が成長し、微細化
出来なくなるので好ましくない。
It should be noted that if the firing temperature is less than 1350°C, it will be difficult to generate silicon carbide, and if the firing temperature exceeds 1850°C, grains will grow and it will not be possible to make them fine, which is not preferable.

また非酸化性雰囲気が窒素、アンモニアガスの場合には
1550℃未満では窒化珪素が生成するので1550℃
の温度以上で焼成する必要がある。
In addition, if the non-oxidizing atmosphere is nitrogen or ammonia gas, silicon nitride will be generated at temperatures below 1550°C.
It is necessary to bake at a temperature higher than .

焼成時間は結晶化度によっても異なるが通常0゜5〜5
時間である。焼成の具体的実施方法については特に制限
はなく、前記生成物を坩堝または流通式反応管に充填し
、不活性ガスを流通させる方法が行われる。
The firing time varies depending on the degree of crystallinity, but is usually 0°5-5.
It's time. There are no particular restrictions on the specific method of carrying out the calcination, and a method may be used in which the product is filled in a crucible or a flow reaction tube and an inert gas is passed through it.

また炭素量が過剰の場合には、未反応の炭素粉末が残留
するが、焼成後に酸化性雰囲気中600〜850℃で炭
素を酸化して除去することができる。
Furthermore, if the amount of carbon is excessive, unreacted carbon powder remains, but it can be removed by oxidizing the carbon at 600 to 850° C. in an oxidizing atmosphere after firing.

こうして得られる結晶質の炭化珪素微粉末はX線的にS
iO□、Siの生成が見られず極めて高いβ相を有して
いる。
The crystalline silicon carbide fine powder obtained in this way is
No formation of iO□ or Si is observed, and it has an extremely high β phase.

以下に本発明方法を実施例により更に詳しく説明するが
、本発明方法はこれらの実施例のみに限定されるもので
はない。
The method of the present invention will be explained in more detail below with reference to Examples, but the method of the present invention is not limited to these Examples.

〔実施例〕〔Example〕

実施例1゜ 電気炉中に設置された内径25mm、長さ7゜Qmmの
高純度アルミナ反応管と反応管出口に取りつけた捕集器
とからなる装置を用い、1200℃に電気炉の温度を保
持した。予め予熱器によりガス化せしめた5i(OEt
)4とAr (体積比1:20)とをよく混合したのち
、反応管に導入した。
Example 1 Using a device consisting of a high-purity alumina reaction tube with an inner diameter of 25 mm and a length of 7° Qmm installed in an electric furnace and a collector attached to the outlet of the reaction tube, the temperature of the electric furnace was raised to 1200°C. held. 5i (OEt), which has been gasified in advance with a preheater
)4 and Ar (volume ratio 1:20) were thoroughly mixed and then introduced into the reaction tube.

捕集器で得られた生成粉末はX線回折では非晶質であり
、粒径が0.2ミクロン以下の球状粒子であった。
The product powder obtained in the collector was amorphous according to X-ray diffraction, and was spherical particles with a particle size of 0.2 microns or less.

次にこの生成物をアルミナ管に充填してアルゴン雰囲気
下1600℃で2時間熱処理を行った。
Next, this product was filled into an alumina tube and heat treated at 1600° C. for 2 hours under an argon atmosphere.

未反応の炭素は空気中で800°C13時間熱処理を行
い除去した。得られた微粉末はX線回折ではβ−3iC
であり、0.3ミクロン以下の塊状の結晶粒子であった
Unreacted carbon was removed by heat treatment at 800° C. for 13 hours in air. The obtained fine powder was determined by X-ray diffraction to be β-3iC.
It was a massive crystal particle of 0.3 microns or less.

実施例2゜ 実施例1.と同様の実験方法により各種有機珪素化合物
を反応させた。実験条件及び得られた結果を第1表及び
第2表に示した。
Example 2゜Example 1. Various organic silicon compounds were reacted using the same experimental method. The experimental conditions and the results obtained are shown in Tables 1 and 2.

手続補正書 昭和60年5月8日Procedural amendment May 8, 1985

Claims (1)

【特許請求の範囲】[Claims] 一般式がRnSi(OR′)_4_−_n(式中、Rは
塩素、臭素、ヨウ素、水素、アルキル基、アリル基また
はフェニル基を示し、R′はアルキル基、アリル基、ま
たはフェニル基を示す、nは0、1、2または3である
)で表されるアルコキシシラン化合物を気相反応させて
得た微粉末を非酸化的雰囲気で熱処理することを特徴と
する炭化珪素微粉末の製造方法
The general formula is RnSi(OR')_4_-_n (wherein R represents chlorine, bromine, iodine, hydrogen, alkyl group, allyl group, or phenyl group, and R' represents an alkyl group, allyl group, or phenyl group. , n is 0, 1, 2, or 3) A method for producing fine silicon carbide powder, characterized by heat-treating fine powder obtained by gas-phase reaction in a non-oxidizing atmosphere.
JP59165387A 1984-05-08 1984-08-07 Production of fine silicon carbide powder Pending JPS6144708A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59165387A JPS6144708A (en) 1984-08-07 1984-08-07 Production of fine silicon carbide powder
US06/729,751 US4613490A (en) 1984-05-08 1985-05-02 Process for preparing silicon nitride, silicon carbide or fine powdery mixture thereof
DE19853516589 DE3516589A1 (en) 1984-05-08 1985-05-08 METHOD FOR PRODUCING SILICON NITRIDE, SILICIUM CARBIDE OR FINE, POWDERED MIXTURES THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59165387A JPS6144708A (en) 1984-08-07 1984-08-07 Production of fine silicon carbide powder

Publications (1)

Publication Number Publication Date
JPS6144708A true JPS6144708A (en) 1986-03-04

Family

ID=15811421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59165387A Pending JPS6144708A (en) 1984-05-08 1984-08-07 Production of fine silicon carbide powder

Country Status (1)

Country Link
JP (1) JPS6144708A (en)

Similar Documents

Publication Publication Date Title
JPS6112844B2 (en)
JPH0134925B2 (en)
US4613490A (en) Process for preparing silicon nitride, silicon carbide or fine powdery mixture thereof
JPS5888110A (en) Preparation of silicon nitride powder
JPH02188412A (en) Manufacture of crystal silicon nitride powder
JPS6111886B2 (en)
JPS6144708A (en) Production of fine silicon carbide powder
JPS6140805A (en) Manufacture of silicon nitride fine powder
JPS5930645B2 (en) Manufacturing method of high purity α-type silicon nitride
JPS6111885B2 (en)
JPS5926909A (en) Preparation of powder
JPS6163510A (en) Production of composite fine powder
JPH0764533B2 (en) Method for producing fine silicon carbide powder
JPS62100403A (en) Production of fine powder of hexagonal boron nitride having high purity
JPS621564B2 (en)
JP2646228B2 (en) Method for producing silicon nitride powder
JPS6046911A (en) Production of fine silicon carbide powder
JPH0454611B2 (en)
JPH0313166B2 (en)
JPS6046912A (en) Production of ultrafine granule of silicon carbide
JPS6163506A (en) Production of silicon nitride fine powder
JPH0454609B2 (en)
JPS61247608A (en) Preparation of mixture of fine powder of silicon nitride with silicon carbide
JPS59110706A (en) Preparation of powder
JPS6259049B2 (en)