JPS59110706A - Preparation of powder - Google Patents

Preparation of powder

Info

Publication number
JPS59110706A
JPS59110706A JP57219595A JP21959582A JPS59110706A JP S59110706 A JPS59110706 A JP S59110706A JP 57219595 A JP57219595 A JP 57219595A JP 21959582 A JP21959582 A JP 21959582A JP S59110706 A JPS59110706 A JP S59110706A
Authority
JP
Japan
Prior art keywords
powder
fine
gaseous mixture
quenched
specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57219595A
Other languages
Japanese (ja)
Other versions
JPS6010081B2 (en
Inventor
Yusuke Iyori
裕介 井寄
Norio Takahashi
紀雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP57219595A priority Critical patent/JPS6010081B2/en
Publication of JPS59110706A publication Critical patent/JPS59110706A/en
Publication of JPS6010081B2 publication Critical patent/JPS6010081B2/en
Expired legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a fine WC-powder in which V is uniformly dispersed, by a method wherein molten WO3 is injected to be cooled at a specific speed and cooled WO3 is heated to a specific temp. under a reduced pressure atmosphere comprising a specific gaseous mixture consisting of H2, CH4 and VCl4. CONSTITUTION:In preparing a fine stock carbide powder as an ultra-hard phase, molten WO3 is injected to a cooling body to be quenched at a cooling speed of 10<4> deg.C/sec or more. Subsequently, this quenched WO3 is heated to 900 deg.C or more under a reduced pressure atmosphere comprising a gaseous mixture prepared by partially mixing VCl4 in a gaseous mixture of which the mixing ratio of H2 and CH4 is 1/10-100/1. By this method, WC in which V is mixed from the gas phase is formed and particle growth suppressing effect is developed by the uniform dispersion of V and a fine particulate powder hardly generating particle growth is obtained.

Description

【発明の詳細な説明】 本発明は超硬およびサーメットの硬質相として利用され
る微粒原料炭化物粉末の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a fine grain raw material carbide powder used as a hard phase in cemented carbides and cermets.

炭化物の一般的な製造方法としては、 ■金属粉末と炭素の同相反応 ■金属粉末と炭素の固相、気相反応 ■メンストラム法 ■ハロゲン化物と炭化水素の反応 等が知られている。しかしながら、これら従来方法は、
例えば上記■の方法では高湿で反応させるため機械的な
粉砕を行なうが、有害不純物の混入なしに 1μ石以下
の大きさになるまで粉砕を行なうことは困難であること
、合成粉末の粒度は固形炭素の大きさに左右されること
、および固形炭素からの不純物混入が避けられないこと
などの困難さがある。
As general methods for producing carbides, the following methods are known: 1) In-phase reaction between metal powder and carbon, 2) Solid phase or gas phase reaction between metal powder and carbon, 2) Menstrum process, and 4) Reaction between halides and hydrocarbons. However, these conventional methods
For example, in method ① above, mechanical pulverization is performed to allow the reaction to occur at high humidity, but it is difficult to pulverize the material to a size of 1 micron or less without contaminating harmful impurities, and the particle size of the synthetic powder is There are difficulties in that it depends on the size of the solid carbon and that contamination with impurities from the solid carbon is unavoidable.

■の方法は、例えば、Wメタル粉末とCHaガスの反応
によりWC粉末を合成する場合に一部用いられるが、炭
化速度が遅いことに加え金属粉末の粒子の大きさによっ
て合成粉の粒度が決定されるという欠点があった。■の
方法は高温で反応されることが必要なため、得られる粒
子は100μm前後の粗粒単結晶となり、微細な粉末を
得ることは困難である。また、■の方法では数百オング
ストロームの微細で高純度の粉末が得られる。しかし実
用的な微細組織を有する超硬合金用の原料にはo、i−
i、oμm程度の粒度が好ましく、数百オングストロー
ムの粉末は工業」−のメリツ[・が少ない。
Method (2) is partially used, for example, when WC powder is synthesized by the reaction of W metal powder and CHa gas, but in addition to the slow carbonization rate, the particle size of the synthesized powder is determined by the size of the metal powder particles. It had the disadvantage of being Since the method (2) requires the reaction to be carried out at high temperatures, the resulting particles are coarse single crystals of around 100 μm, making it difficult to obtain fine powder. Further, in the method (2), a fine and highly pure powder of several hundred angstroms can be obtained. However, raw materials for cemented carbide with a practical microstructure include o, i-
A particle size of approximately 1,0 μm is preferable, and a powder of several hundred angstroms has a low industrial merit.

本発明は上記従来技術の欠点を解消し、聞産性に優れ、
しかも1.0μm以下の微粒子を得る新しい製造方法を
提供することを目的とする。
The present invention eliminates the drawbacks of the above-mentioned prior art, has excellent productivity,
Moreover, it is an object of the present invention to provide a new manufacturing method for obtaining fine particles of 1.0 μm or less.

本発明は上記目的を達成するために、急冷酸化物粉末を
還元と同時に炭化雰囲気中で処理して、微粒の粉末を得
る方法で、特に気相と反応させる場合にVを気相より混
入させることにより微粒でかつ粒成長が生じにくい粉末
を合成するという新規な方法である。
In order to achieve the above object, the present invention is a method for obtaining fine powder by treating rapidly cooled oxide powder in a carbonizing atmosphere at the same time as reduction, and in particular, when reacting with a gas phase, V is mixed in from the gas phase. This is a novel method for synthesizing a powder that is fine and resistant to grain growth.

本発明において、WO2よりWCを合成する場合には、
還元性ガスとしてH2を用いるととが好ましく、また炭
化ガスとしてはCH4が望ましい。
In the present invention, when synthesizing WC from WO2,
It is preferable to use H2 as the reducing gas, and CH4 is preferable as the carbonizing gas.

また、H2とCH4の混合比が’1/10〜100/ 
1の範囲であれば、十分好□ましい合成粉末が得られる
。H2’/ CH4”< ’ 1/ 10では十分な還
元反応が進行せず、またH2 /CHa > 100/
1では逆に炭化速度が遅くなり工業的に好ましくない。
Also, the mixing ratio of H2 and CH4 is '1/10~100/
If it is within the range of 1, a sufficiently preferable synthetic powder can be obtained. When H2'/CH4''<' 1/10, sufficient reduction reaction does not proceed, and when H2/CH4>100/
On the contrary, carbonization rate becomes slow in case of No. 1, which is industrially unfavorable.

ここでVC+ 4の混入聞は特に制限されるものではな
い。ただし、気相中よりVをWC中に混入させるため、
従来の製造法に比べてVが均一に分散され、その結果非
常←微量で粒成長抑制効果が現われることを発見者は見
出しており、この点が本発明の優れる点の1つである。
There is no particular restriction on the inclusion of VC+4 here. However, since V is mixed into the WC from the gas phase,
The discoverer has discovered that V is more uniformly dispersed than in conventional production methods, and as a result, a grain growth suppressing effect appears even in very small amounts, and this point is one of the advantages of the present invention.

また、h成)g度は900℃以上が必要であり、900
℃未満では還元が十分進行しない。
In addition, the degree of g) must be 900°C or higher;
If the temperature is below ℃, the reduction will not proceed sufficiently.

本発明による方法は、すべて同相−気相反応に基づくた
め、非常に純度の高いものが得られる利点がある。
Since the method according to the invention is entirely based on in-phase-gas-phase reactions, it has the advantage of obtaining very high purity.

また、W Oaを冷却速度104℃/′秒以上で冷却し
たのちWCを前述の方法で合成した場合、市販のW O
a粉末を炭化する場合に比べて気相との反応が極めて活
性化する利点がある。これは、おイらくは急冷すること
に□より蓄えられた多量の歪エネルギーが気相との反応
に寄与するためと考えられる。ともあれ、急冷W Oa
を用いると、従来困難とされでいた微粒のWCが容易に
製造可能となり、平均粒度0.1μm程度のものまで製
造可能となる。
Furthermore, when WC is synthesized by the method described above after cooling W Oa at a cooling rate of 104°C/' seconds or more, commercially available W Oa
This method has the advantage that the reaction with the gas phase is extremely active compared to the case where a powder is carbonized. This is probably because a large amount of strain energy stored during rapid cooling contributes to the reaction with the gas phase. Anyway, quenching W Oa
By using this method, it becomes possible to easily produce fine WC, which has been considered difficult in the past, and it becomes possible to produce particles with an average particle size of about 0.1 μm.

また、本発明において、W Oaの冷却速度を10℃/
秒より遅くすると、蓄えられる歪エネルギーが小さく上
述の効果が少ない。
In addition, in the present invention, the cooling rate of W Oa is set to 10°C/
When the time is slower than seconds, the strain energy stored is small and the above-mentioned effect is small.

以下、本発明を実施例により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 先端をノズル状にしぼった石英管にWOa粉末を入れ、
これを1480℃に昇温した炉内に入れて5分間保持し
たのち、急速に下方炉外に移動させ、同時に前記石英管
内に2.5K(+ /CIl+’のArガスを導入して
溶融W Oaを石英管先端部より噴出させた。石英管先
端部の直下2+nmには、予め周速30If/ See
で回転する外形300mmの銅製回転冷却体の最上部を
位置させ、噴出W Oaをこの回転体に衝突させること
により急冷し、薄片状のW Oaを得た。次に、この薄
片状急冷W Oaをカーボン容器に入れH2/CH4/
VCI a = 1/1 / 0.02の混合ガス雰囲
気内に設置した。このときの圧力は100Torrであ
った。この状態で950℃1時間保持し還元および炭化
反応を十分に促進させた後、加熱を終了した。冷却債合
成粉末を取出した。
Example 1 WOa powder was put into a quartz tube with a nozzle-shaped tip,
This was placed in a furnace heated to 1480°C and held there for 5 minutes, then rapidly moved downwards to the outside of the furnace, and at the same time Ar gas of 2.5K(+/CIl+' was introduced into the quartz tube to melt the W). Oa was ejected from the tip of the quartz tube.At a distance of 2+ nm directly below the tip of the quartz tube, a circumferential velocity of 30If/See was preliminarily applied.
The uppermost part of a copper rotary cooling body with an outer diameter of 300 mm was placed at the top of the rotating body, and the jetted W Oa was collided with this rotary body to rapidly cool it, thereby obtaining flaky W Oa. Next, put this flaky quenched W Oa into a carbon container and mix H2/CH4/
It was installed in a mixed gas atmosphere of VCI a = 1/1/0.02. The pressure at this time was 100 Torr. After maintaining this state at 950° C. for 1 hour to sufficiently promote reduction and carbonization reactions, heating was terminated. The cooling bond synthetic powder was taken out.

この合成粉末は、X線回折によりWCであることが確認
できた。またC分析の結果、結合CIが6.13重量%
であることを、S E M (S canningE 
IeCtrOn  M 1crO8(iol)e )で
、平均粒度が0.1μmであることをそれぞれ確認でき
た。
This synthetic powder was confirmed to be WC by X-ray diffraction. In addition, as a result of C analysis, the bond CI was 6.13% by weight.
That is, S E M (S canningE
It was confirmed that the average particle size was 0.1 μm for IeCtrOn M 1crO8(iol)e ).

さらに、I CP (I nductively   
CoupledP lasma  S 11eCtrO
ph(itoIIlf3ter)を用い、微量分析を市
販WCと比較して行った。
Furthermore, I CP (Inductively
CoupledP lasma S 11eCtrO
Microanalysis was performed using ph(itoIIlf3ter) in comparison with commercially available WC.

第1表にイの測定結集の一部を示す。Table 1 shows some of the results of A's measurements.

第1表 このように、気相反応により合成したWCは極めて純度
が高いことがわかる。特に、超硬合金の原料として用い
た場合に、多大の悪影響を及ぼすSは本発明によるWC
″r−′は極めて含有量が少ないことは注目すべき効果
である。
As shown in Table 1, it can be seen that WC synthesized by gas phase reaction has extremely high purity. In particular, when used as a raw material for cemented carbide, S has a great negative effect on the WC according to the present invention.
It is a noteworthy effect that the content of ``r-'' is extremely small.

代理人   出  中  寿  徳Agent Toku Kotobuki

Claims (1)

【特許請求の範囲】[Claims] 溶融W Oaを冷却体に噴射して冷却速度104°C/
′秒以上で急冷したのち、この急冷W O3をH2とC
H4の混合比が1/10〜100/1の混合ガスに一部
VCI 4を混入した減圧混合ガス雰囲気下において、
900℃以上に加熱することを特徴とするVを固溶させ
たWC粉末の製造方法。
Molten W Oa is injected into the cooling body at a cooling rate of 104°C/
After quenching for more than 10 seconds, this quenched W O3 is
Under a reduced pressure mixed gas atmosphere in which a part of VCI 4 was mixed into a mixed gas with a H4 mixing ratio of 1/10 to 100/1,
A method for producing WC powder in which V is dissolved in solid solution, the method comprising heating to 900°C or higher.
JP57219595A 1982-12-15 1982-12-15 Powder manufacturing method Expired JPS6010081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57219595A JPS6010081B2 (en) 1982-12-15 1982-12-15 Powder manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57219595A JPS6010081B2 (en) 1982-12-15 1982-12-15 Powder manufacturing method

Publications (2)

Publication Number Publication Date
JPS59110706A true JPS59110706A (en) 1984-06-26
JPS6010081B2 JPS6010081B2 (en) 1985-03-15

Family

ID=16737990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57219595A Expired JPS6010081B2 (en) 1982-12-15 1982-12-15 Powder manufacturing method

Country Status (1)

Country Link
JP (1) JPS6010081B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190072U (en) * 1986-05-26 1987-12-03
JPS633779U (en) * 1986-06-25 1988-01-11

Also Published As

Publication number Publication date
JPS6010081B2 (en) 1985-03-15

Similar Documents

Publication Publication Date Title
US4460697A (en) Process for producing non-oxide powders
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
CN102225761B (en) TiC material with Ti-Si-Fe alloy as raw material and preparation method thereof
US11713251B2 (en) Method for preparing powdered composite carbide of tungsten and titanium
JPS59110706A (en) Preparation of powder
JPH0280318A (en) Synthesis of refractory metal boride having predetermined particle dimension
JPS6042164B2 (en) Powder manufacturing method
TW201609536A (en) Novel process and product
JPS58213617A (en) Production of titanium carbonitride powder
JPS58213618A (en) Production of powder of composite carbonitride solid solution
JPS6259507A (en) Production of ultrafine powder of ti nitride and device therefor
JPS58213619A (en) Production of powder of composite carbonitride solid solution
JPS616109A (en) Manufacture of sic
JPS6135129B2 (en)
Sato et al. Synthesis of titanium nitride by a spark-discharge method in liquid ammonia
JPS5926910A (en) Preparation of powder
JPS5926908A (en) Preparation of carbide solid solution
JPS6132253B2 (en)
JPS6256313A (en) Method and apparatus for producing ultra-fine titanium carbide powder
Sadangi et al. Synthesis and processing of nanograined Fe-(Fe, Mo) 6C composite powders
JPH0764533B2 (en) Method for producing fine silicon carbide powder
JPS6077114A (en) Production of spherical sic powder
JPS59110707A (en) Preparation of powder
JPS6311507A (en) Production of fine zirconium nitride and titanium nitride powder by high-pressure ammonia process
JPS59184718A (en) Manufacture of (w,ti)c powder