JPS6144583B2 - - Google Patents

Info

Publication number
JPS6144583B2
JPS6144583B2 JP1787081A JP1787081A JPS6144583B2 JP S6144583 B2 JPS6144583 B2 JP S6144583B2 JP 1787081 A JP1787081 A JP 1787081A JP 1787081 A JP1787081 A JP 1787081A JP S6144583 B2 JPS6144583 B2 JP S6144583B2
Authority
JP
Japan
Prior art keywords
ester
acid
mold
silica sand
hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1787081A
Other languages
Japanese (ja)
Other versions
JPS57134233A (en
Inventor
Hirotaka Kawai
Hirotsugu Ichikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP1787081A priority Critical patent/JPS57134233A/en
Priority to GB8203284A priority patent/GB2092602A/en
Priority to DE19823204270 priority patent/DE3204270A1/en
Priority to FR8202036A priority patent/FR2499432A1/en
Publication of JPS57134233A publication Critical patent/JPS57134233A/en
Publication of JPS6144583B2 publication Critical patent/JPS6144583B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2206Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/222Polyacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/06Acrylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、鋳型を製造する方法に関する。 本発明の方法は、特に鋳物用中子・主型を得る
為に、耐火性微粒子状固体物質から、鋳型を得る
目的に適用できる。 鋳造用の中子及び主型等鋳型を製造する際に用
いられる耐火性微粒子状固体物質には代表的に
は、硅砂、ジルコンサンド、クロマイトサンドが
ある。又これらを鋳型の骨材と呼ぶこともある。 従来、該鋳造工業では、骨材を結合させる目的
で、セメント、水ガラスの如き「無機粘結剤」が
用いられて来た。しかしこれらの粘結剤を用いて
鋳物を生産する際には、造型生産性が良くな
い、鋳込後の崩壊性が良くない、鋳物の表面
仕上り、寸法精度が悪い、硅砂など骨材の再生
利用に限界があるなどの理由で、近年では有機粘
結剤が脚光を浴び、上記欠点を大幅に改善して来
た。有機粘結剤には、フラン系を主流とする酸硬
化型粘結剤と、ウレタン型粘結剤があり各々触媒
又は促進剤の存在下で自硬化する「自硬性」的使
用法と、触媒又は促進剤をガスとして型込めした
鋳型中に吹き込んで反応・硬化させる高速の鋳型
生産向の「コールドボツクス」的使用法がある。
このコールドボツクス的使用法に於ては、酸硬化
型では亜硫酸ガスを、ウレタン型ではアミンガス
を用いる為、これらガスを密閉系でかつ最終処理
することを前提に用いねばならず、各々に合つた
設備を設けて実用化されなければならなかつた。 鋳型の製造において亜硫酸ガスやアミンガスを
使用しない方法については、特開昭50−29423号
公報に開示される方法がある。この方法はアクリ
ル酸エステルの重合を利用して硅砂等骨材を結合
せしめ中子・主型等鋳型を得る際、型込めした鋳
型内を実質的に酸素のない状態にする事、具体的
には窒素ガス又は炭酸ガスの如き不活性ガスを吹
き込む事により、数秒から数分内という高速鋳型
生産を可能にした第3のコールドボツクスという
ことができる。該出願に於ける技術では、亜硫酸
ガスやアミン含有ガスという有害ガスを用いる必
要がないという大きな長所を大きい生産スピード
と共に挙げることができる。しかるに特開昭50−
29423号公報の発明は「実質的に酸素の存在しな
い環境を与える」「過酸化物の存在下」という限
定された条件下で鋳型を成型し得る方法である。 本発明はアクリル酸エステル又はメタアクリル
酸エステルを用いる事は共通であるが、取扱
い、貯蔵に於て注意を要する「過酸化物」を用い
ることなく、「実質的に酸素の存在しない環
境」即ち「嫌気的に」のみならず、通常の状態
で、即ち空気中ででも鋳型を成形し得るという方
法で特開昭50−29423号の発明とは別異のもので
ある。空気中常温にて重合・硬化して鋳型を成形
できる本発明の性質は「酸硬化型」、「ウレタン
型」とは全く異質の「ビニル重合体」の「自硬
性」であり業界待望のフラン系、ウレタン系に次
ぐ第三の有機自硬性粘結剤系であり、又一方嫌気
的に重合・硬化させる場合には「コールドボツク
ス」と言える。 即ち、本発明はナフテン酸コバルトまたはオク
テン酸コバルトとカルボン酸とからなるアミン活
性化剤とN・N−ジアルキルアリルアミンとを含
む重合促進剤と、微粒子状固体物質と、アクリル
酸エステル又はメタアクリル酸エステル(以下単
にエステルと記載する)とを混合しパーオキイド
不在下で重合硬化させることにより、空中にて常
温で鋳型を製造する方法を提供するものであり、
又実質的に酸素の存在しない環境に於ても実施す
る方法を提供するものである。 本発明において重合促進剤として使用されるア
ミンはN・N−ジアルキルアリルアミン例えば
N・N−ジメチルアニリン、N・N−ジメチルト
ルイジンである。又本発明において用いられるア
ミンは液状のものであることが好ましい。 本発明で言うアミン活性化剤とは、ナフテン酸
コバルトまたはオクテン酸コバルト(以下コバル
ト石鹸と略す)とカルボン酸とからなり、他の金
属石鹸、例えば鉛、マンガン等の石鹸はコバルト
石鹸に比較して有効ではない。 本発明に用いられるアミン活性化剤の必須成分
の一つであるカルボン酸について具体的に説明す
れば基本的には炭素数2以上のカルボン酸は用い
ることができるが、好ましいものは水又はアルコ
ール又はエステルに対して大きい溶解度を有する
ものか又はそれ自体が液体のカルボン酸である。
この様なカルボン酸の具体例を挙げると酢酸、プ
ロピオン酸、カプリル酸、アクリル酸、メタアク
リル酸、モノクロル酢酸、ジクロル酢酸、トリク
ロル酢酸、シアノ酢酸、ブロモ酢酸、クロルプロ
ピオン酸等がある。 これらの内、自硬性的に酸素の存在下で用いて
硅砂を結合、成形し得るものは窒素環境下ででも
成形し得るが、例えばトリクロル酢酸は、自硬性
的にも反応は起こせ得るが鋳型としての強度を与
える点においては窒素雰囲気下で用いると充分な
強度を与えることができる。 本発明において使用される微粒子状固体物質と
は、例えば耐火性微粒子状固体物質であり特に鋳
造用に於ては具体例として硅砂、ジルコンサン
ド、クロマイトサンド等を挙げることができる。
しかし本発明方法は、固体物質の種類及びその成
形体の用途を制限するものではない。 次に本発明に於けるエステルは、特に構造を規
定しないが、用途から考え当然多官能性エステル
が好ましい。具体例を挙ければ、エチレングリコ
ールジ(メタ)アクリレート、トリメチロールプ
ロパントリ(メタ)アクリレートやジペンタエリ
スリトールヘキサ(メタ)アクリレートなどの単
一構造で示される多官能エステルから、多価アル
コールと多塩基性カルボン酸オリゴエステルの末
端に、数個の(メタ)アクリル酸エステル基が組
み込まれたオリゴエステル型や同様にウレタンオ
リゴマーの末端に(メタ)アクリル酸エステル基
を有するウレタン型又更にはエポキシ型等の分子
量分布を有する多官能エステルも本発明に言うエ
ステルとして用いることができる。 以下、実施例により、本発明の方法を更に詳細
に説明する。エステル、コバルト石鹸、ジアルキ
ルアリルアミン、カルボン酸と、微粒子状固体物
質例えば硅砂との混合は、各成分を各々別々に加
えても良く、例えばエステル中にジアルキルアリ
ルアミンを予め混合しておいて添加しても良い
が、エステル中にコバルト石鹸を混合するかある
いはエステル以外の三成分をすべて混合すること
は避けた方が好ましい。互いに好ましくない反応
が起こり得るからである。更に本発明において
「実質的に酸素の存在しない環境」とは、型込め
した模型中に不活性ガス例えば窒素ガス、炭素ガ
スを通気し空気と置換したり減圧にさらして酸素
をなくしたり、又は一旦不活性ガスを通気した後
そのまま空気を遮断したりすることで実現でき
る。 本発明の方法は当然のことながら常温で行うこ
とを主目的としたものであるが、硅砂等固体粒子
を加温したり嫌気的に用いる時には、不活性ガス
を加温したり又金型等模型を加温したりすること
によりその反応スピードを促進できることは論を
待たない。 次に本発明を鋳型を製造するのに利用する際の
標準的な配合・混合割合を説明する。 エステルは硅砂等骨材に対して0.8〜3%好ま
しくは1〜2%である。コバルト石鹸は、エステ
ルに対して0.5〜15%好ましくは1〜5%、N・
N−ジアルキルアリルアミンも、エステルに対し
て0.5〜10%好ましくは1〜5%、カルボン酸は
エステルに対して0.5〜10%好ましくは1〜5%
である。 以下に実施例を示すが、用いた成形体のテスト
ピースは50mmφ×50mmHのものであり、硬化性能
は抗圧力(圧縮強度)(Kg/cm2)で測定した。混練
方法は効率の良いミキサーを用い、まずエステル
を次にアミン続いてコバルト石鹸、カルボン酸の
順で行つた。 自硬性として空気中で硬化させる場合は、混練
した後手込め法にて割り型に込めた。コールドボ
ツクス的に又嫌気的に硬化させる場合には、混練
した後内径50mmφのインレツト、アウトレツト管
をとりつけた円筒にランマー込めした後内筒を閉
じインレツト管より20/MINの流速で窒素ガス
を流じアウトレツト管より放出した。通気は10秒
間で窒素ガスを止めて後インレツト、アウトレツ
トを閉じ110秒間そのままの雰囲気に保つた後、
テストピースをとり出し抗圧力の測定を行つた。
即ち2分後の抗圧力で示したものである。 配合例に於ける%はすべて重量%である。 又、主に用いた骨材は硅砂で銘柄は商品名フリ
ーマントルなるオーストラリヤ産品である。その
粒度構成は次の第1表の如くである。
The present invention relates to a method of manufacturing a mold. The method of the present invention can be applied to obtain molds from refractory particulate solid materials, particularly for obtaining cores and main molds for foundries. Refractory fine particulate solid substances typically used in manufacturing molds such as cores and main molds for casting include silica sand, zircon sand, and chromite sand. These are also sometimes called mold aggregates. Traditionally, the foundry industry has used "inorganic binders" such as cement and water glass to bind aggregates together. However, when producing castings using these binders, there are problems such as poor molding productivity, poor collapsibility after casting, poor surface finish of castings, poor dimensional accuracy, and recycling of aggregates such as silica sand. In recent years, organic binders have been in the spotlight due to limitations in their use, and have greatly improved the above-mentioned drawbacks. Organic binders include acid-curing binders, mainly furan-based binders, and urethane-type binders, and they are used in a "self-hardening" manner in which they self-cure in the presence of a catalyst or accelerator, and in a catalytic manner. Alternatively, there is a "cold box" method for high-speed mold production in which an accelerator is blown into a mold as a gas to react and harden.
In this cold box usage method, sulfur dioxide gas is used for the acid-curing type, and amine gas is used for the urethane type, so these gases must be used on the premise that they will be used in a closed system and for final treatment, so it is necessary to use the gases that are suitable for each. Equipment had to be installed and it had to be put into practical use. Regarding a method that does not use sulfur dioxide gas or amine gas in manufacturing a mold, there is a method disclosed in JP-A-50-29423. This method utilizes polymerization of acrylic acid ester to bond aggregates such as silica sand, and when obtaining molds such as cores and main molds, the inside of the mold is kept in a substantially oxygen-free state. This can be said to be the third type of cold box that enables high-speed mold production within several seconds to several minutes by blowing inert gas such as nitrogen gas or carbon dioxide gas. The technology disclosed in this application has the great advantage of not requiring the use of harmful gases such as sulfur dioxide gas or amine-containing gas, as well as high production speed. However, JP-A-1973-
The invention disclosed in Publication No. 29423 is a method that can mold a mold under the limited conditions of ``providing an environment substantially free of oxygen'' and ``in the presence of peroxide.'' Although the present invention commonly uses acrylic esters or methacrylic esters, it does not use "peroxides" that require care in handling and storage, and is produced in a "substantially oxygen-free environment". This invention is different from the invention of JP-A-50-29423 in that the mold can be formed not only anaerobically but also under normal conditions, that is, in air. The property of the present invention, which can be polymerized and cured in air at room temperature to form a mold, is the "self-hardening" property of the "vinyl polymer" which is completely different from "acid curing type" and "urethane type", and it is a long-awaited furan in the industry. It is the third organic self-hardening binder system after urethane-based and urethane-based binders, and on the other hand, when it is polymerized and hardened anaerobically, it can be said to be a "cold box". That is, the present invention provides an amine activator comprising cobalt naphthenate or cobalt octenoate and a carboxylic acid, a polymerization accelerator comprising N.N-dialkylallylamine, a fine particulate solid substance, and an acrylic ester or methacrylic acid. The present invention provides a method for manufacturing a mold in air at room temperature by mixing with ester (hereinafter simply referred to as ester) and polymerizing and curing it in the absence of peroxide,
It also provides a method that can be carried out in an environment substantially free of oxygen. The amines used as polymerization accelerators in the present invention are N.N-dialkylallylamines such as N.N-dimethylaniline and N.N-dimethyltoluidine. Further, the amine used in the present invention is preferably a liquid one. The amine activator referred to in the present invention is composed of cobalt naphthenate or cobalt octenoate (hereinafter referred to as cobalt soap) and carboxylic acid. is not valid. Regarding the carboxylic acid, which is one of the essential components of the amine activator used in the present invention, basically any carboxylic acid having 2 or more carbon atoms can be used, but water or alcohol is preferred. or have a high solubility for the ester, or are themselves liquid carboxylic acids.
Specific examples of such carboxylic acids include acetic acid, propionic acid, caprylic acid, acrylic acid, methacrylic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, cyanoacetic acid, bromoacetic acid, and chloropropionic acid. Among these, those that can be used to bind and mold silica sand in the presence of oxygen in a self-hardening manner can also be molded in a nitrogen environment. For example, trichloroacetic acid can cause a reaction in a self-hardening manner, but it cannot be used in the mold. Sufficient strength can be provided when used in a nitrogen atmosphere. The fine particulate solid material used in the present invention is, for example, a refractory fine particulate solid material, and in particular for casting, specific examples include silica sand, zircon sand, and chromite sand.
However, the method of the present invention does not limit the type of solid material or the use of the molded product. Next, the structure of the ester in the present invention is not particularly defined, but polyfunctional esters are naturally preferred in view of the intended use. Specific examples include polyfunctional esters with a single structure such as ethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, and dipentaerythritol hexa(meth)acrylate; An oligoester type in which several (meth)acrylic acid ester groups are incorporated at the ends of a basic carboxylic acid oligoester, a urethane type having (meth)acrylic acid ester groups at the ends of a urethane oligomer, or even an epoxy type. Polyfunctional esters having a specific molecular weight distribution can also be used as the esters referred to in the present invention. Hereinafter, the method of the present invention will be explained in more detail with reference to Examples. When mixing the ester, cobalt soap, dialkylallylamine, carboxylic acid, and a fine particulate solid material, such as silica sand, each component may be added separately, or, for example, the dialkylallylamine may be premixed with the ester and added. However, it is preferable to avoid mixing cobalt soap with the ester or mixing all three components other than the ester. This is because mutually unfavorable reactions may occur. Furthermore, in the present invention, "an environment substantially free of oxygen" means that an inert gas such as nitrogen gas or carbon gas is aerated into the molded model to replace it with air, or oxygen is eliminated by exposing it to reduced pressure, or This can be achieved by first venting inert gas and then blocking the air. Naturally, the main purpose of the method of the present invention is to perform the process at room temperature, but when solid particles such as silica sand are heated or used anaerobically, an inert gas is heated or molds etc. It goes without saying that the reaction speed can be accelerated by heating the model. Next, standard formulations and mixing ratios when using the present invention to manufacture molds will be explained. The amount of ester is 0.8 to 3%, preferably 1 to 2%, based on the aggregate such as silica sand. Cobalt soap is 0.5-15% based on ester, preferably 1-5%, N.
N-dialkylallylamine is also 0.5 to 10%, preferably 1 to 5%, based on the ester, and carboxylic acid is 0.5 to 10%, preferably 1 to 5%, based on the ester.
It is. Examples are shown below, and the molded test piece used was 50 mmφ x 50 mmH, and the curing performance was measured in terms of coercive pressure (compressive strength) (Kg/cm 2 ). The kneading method used an efficient mixer, and the ester was mixed first, then the amine, then the cobalt soap, and then the carboxylic acid. When curing in air for self-hardening, the mixture was kneaded and then poured into split molds using a manual filling method. When curing in a cold box or anaerobically, after kneading, put a rammer into a cylinder with an inner diameter of 50 mmφ and an inlet and outlet pipe, close the inner cylinder, and flow nitrogen gas through the inlet pipe at a flow rate of 20/min. It was released from the same outlet pipe. After stopping the nitrogen gas for 10 seconds, the inlet and outlet were closed and the atmosphere was maintained for 110 seconds.
The test piece was taken out and the resistance pressure was measured.
That is, it is shown by the counter pressure after 2 minutes. All percentages in the formulation examples are by weight. The main aggregate used is silica sand, an Australian product with the brand name Freemantle. The particle size structure is as shown in Table 1 below.

【表】 実施例で示したカルボン酸の内、常温で固体の
物質は水溶液で用いた。記載は酸の名称そのまま
とした。 実施例 1 配合; 各種エステル(第2表) 各2%対硅砂 N・N−ジメチルアニリン 2%対エステル オクテン酸コバルト 2.5%対エステル アクリル酸 2%対エステル 上記配合にし「自硬性」として、空気中、室温
(25℃)にて硬化せしめた結果は次の第2表の如
くである。
[Table] Among the carboxylic acids shown in the examples, substances that are solid at room temperature were used in aqueous solutions. The name of the acid was used as is. Example 1 Blend; Various esters (Table 2) 2% of each to silica sand N.N-dimethylaniline 2% to ester cobalt octenoate 2.5% to ester acrylic acid 2% to ester The above formulation was used for "self-hardening" and air was added. The results of curing at room temperature (25°C) are shown in Table 2 below.

【表】【table】

【表】 実施例 2 配合; 各種エステル(第3表) 各2%対硅砂 N・N−ジメチルアニリン 5%対エステル オクテン酸コバルト 5%対エステル 酢 酸 5%対エステル 実施例1と同様に「自硬性」として硬化せしめ
た結果は次の第3表の如くである。
[Table] Example 2 Formulation; Various esters (Table 3) 2% each to silica sand N.N-dimethylaniline 5% to ester cobalt octenoate 5% to ester acetic acid 5% to ester Same as Example 1. The results of curing as "self-hardening" are shown in Table 3 below.

【表】 実施例 3 配合; トリメチロールプロパントリアクリレート
2%対硅砂 N・N−ジメチルアニリン 2%対エステル アクリル酸 2%対エステル コバルト石鹸(第4表) (第4表)対エステル 実施例1と同様に「自硬性」として硬化せしめ
た結果は次の第4表の如くである。
[Table] Example 3 Formulation; Trimethylolpropane triacrylate
2% vs. silica sand N・N-dimethylaniline 2% vs. ester acrylic acid 2% vs. ester Cobalt soap (Table 4) (Table 4) vs. ester The results of curing as "self-hardening" in the same manner as in Example 1 are as follows. As shown in Table 4 below.

【表】 実施例 4 配合; トリメチロールプロパントリアクリレート
2%対硅砂 N・N−ジメチルトルイジン 1%対エステル オクテン酸コバルト 2.5%対エステル アクリル酸 1%対エステル 同じく「自硬性」として硬化せしめた結果は次
の第5表の如くであつた。
[Table] Example 4 Formulation; Trimethylolpropane triacrylate
2% to silica sand N.N-dimethyltoluidine 1% to ester cobalt octenoate 2.5% to ester acrylic acid 1% to ester Similarly, the results of curing as "self-hardening" were as shown in Table 5 below.

【表】 実施例 5 配合; トリメチロールプロパントリアクリレート
2%対耐火物骨材 N・N−ジメチルアニリン 2%対エステル オクテン酸コバルト 5%対エステル アクリル酸 2%対エステル 実施例1と同様に硅砂以外の耐火物骨材を「自
硬性」として硬化せしめた結果は次の第6表の如
くである。
[Table] Example 5 Formulation; Trimethylolpropane triacrylate
2% to refractory aggregate N・N-dimethylaniline 2% to ester cobalt octenoate 5% to ester acrylic acid 2% to ester Similarly to Example 1, refractory aggregates other than silica sand were hardened as "self-hardening". The results are shown in Table 6 below.

【表】 実施例 6 配合; トリメチロールプロパントリアクリレート
2%対硅砂 N・N−ジメチルアニリン 5%対エステル オクテン酸コバルト 5%対エステル カルボン酸酸(第7表) 各5%対エステル 同様に「自硬性」としての硬化を起こさしめた
結果は次の第7表の如くである。
[Table] Example 6 Formulation; Trimethylolpropane triacrylate
2% silica sand N・N-dimethylaniline 5% ester cobalt octenoate 5% ester carboxylic acid (Table 7) 5% each ester Similarly, the results of hardening as "self-hardening" are as follows: As shown in Table 7.

【表】 実施例 7 配合; M−8030(東亜合成化学工業(株)製)2%対硅砂 N・N−ジメチルアニリン 5%対エステル オクテン酸コバルト 5%対エステル カルボン酸(第8表) (第8表)対エステル 同様に「自硬性」としての硬化特性は次の第8
表の如くである。
[Table] Example 7 Formulation; M-8030 (manufactured by Toagosei Kagaku Kogyo Co., Ltd.) 2% to silica sand N.N-dimethylaniline 5% to ester cobalt octenoate 5% to ester carboxylic acid (Table 8) Table 8) For esters, similarly, the curing characteristics as "self-hardening" are as follows:
It is as shown in the table.

【表】 実施例 8 トリメチロールプロパントリアクリレートを2
%硅砂に対して加えて下記第9表の様な配合系
で、「嫌気的」に窒素ガスを用いて硬化せしめ
た。25℃にて10秒間の通ガス110秒間の保持の後
の抗圧力を2分後抗圧力として示す。
[Table] Example 8 Trimethylolpropane triacrylate
% silica sand as shown in Table 9 below, and was cured ``anaerobically'' using nitrogen gas. The counter pressure after passing gas for 10 seconds and holding for 110 seconds at 25° C. is shown as the counter pressure after 2 minutes.

【表】 実施例 9 配 合 ノボラツクエポキシアクリレート* 2%対硅砂 N・N−ジメチルアニリン 3%対エステル オクテン酸コバルト 3%対エステル アクリル酸 3%対エステル *日本化薬製R−113とネオペンチルグリコー
ルジアクリレートの混合物 上記配合に於て調整した混練砂を混練後直ちに
型込めし、空気中即ち自硬性としての硬化特性を
評価した。結果は次の如くであつた。
[Table] Example 9 Compound Novolac epoxy acrylate * 2% to silica sand N・N-dimethylaniline 3% to ester cobalt octenoate 3% to ester acrylic acid 3% to ester *Nippon Kayaku R-113 and Neo Mixture of Pentyl Glycol Diacrylate The kneaded sand prepared in the above formulation was immediately poured into a mold after being kneaded, and its curing characteristics in air, that is, as self-hardening, were evaluated. The results were as follows.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ナフテン酸コバルトまたはオクテン酸コバル
トとカルボン酸とからなるアミン活性化剤とN・
N−ジアルキルアリルアミンとを含む重合促進剤
と、微粒子状固体物質と、アクリル酸エステルま
たはメタアクリル酸エステルとを混合しパーオキ
サイド不在下で重合・硬化させることを特徴とす
る鋳型の製造方法。
1 An amine activator consisting of cobalt naphthenate or cobalt octenoate and carboxylic acid and N.
A method for producing a mold, which comprises mixing a polymerization accelerator containing N-dialkylallylamine, a particulate solid substance, and an acrylic ester or a methacrylic ester, and polymerizing and curing the mixture in the absence of peroxide.
JP1787081A 1981-02-09 1981-02-09 Manufacture of formed body of fine granular solid substance Granted JPS57134233A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1787081A JPS57134233A (en) 1981-02-09 1981-02-09 Manufacture of formed body of fine granular solid substance
GB8203284A GB2092602A (en) 1981-02-09 1982-02-05 Improvements in and relating to the production of shaped articles from granular solids
DE19823204270 DE3204270A1 (en) 1981-02-09 1982-02-08 METHOD FOR PRODUCING MOLDED OBJECTS USING GRANULATED SOLID SUBSTANCES
FR8202036A FR2499432A1 (en) 1981-02-09 1982-02-09 PROCESS AND COMPOSITION FOR PRODUCING SHAPED ARTICLES FROM GRANULAR SOLID SUBSTANCES AND ARTICLES THUS OBTAINED

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1787081A JPS57134233A (en) 1981-02-09 1981-02-09 Manufacture of formed body of fine granular solid substance

Publications (2)

Publication Number Publication Date
JPS57134233A JPS57134233A (en) 1982-08-19
JPS6144583B2 true JPS6144583B2 (en) 1986-10-03

Family

ID=11955702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1787081A Granted JPS57134233A (en) 1981-02-09 1981-02-09 Manufacture of formed body of fine granular solid substance

Country Status (4)

Country Link
JP (1) JPS57134233A (en)
DE (1) DE3204270A1 (en)
FR (1) FR2499432A1 (en)
GB (1) GB2092602A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4678819A (en) * 1984-08-30 1987-07-07 Mitsubishi Rayon Co., Ltd. Compositions for artificial marbles and process for producing artificial marbles therefrom
JP6173130B2 (en) * 2013-08-30 2017-08-02 旭有機材株式会社 Urethane curable organic binder for mold, foundry sand composition and mold obtained using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB828894A (en) * 1955-03-11 1960-02-24 Ici Ltd Improvements in polymerisation
GB1419800A (en) * 1973-04-14 1975-12-31 Ciba Geigy Ag Making shaped articles from particulate material and an anaerobic adhesive
GB1510645A (en) * 1974-12-11 1978-05-10 Ciba Geigy Ag Making shaped articles from particulate material and an anaerobic adhesive
US4197225A (en) * 1976-05-19 1980-04-08 Rohm And Haas Company Polymer concrete compositions and cured products thereof

Also Published As

Publication number Publication date
GB2092602A (en) 1982-08-18
JPS57134233A (en) 1982-08-19
DE3204270A1 (en) 1982-09-16
FR2499432A1 (en) 1982-08-13

Similar Documents

Publication Publication Date Title
US4526219A (en) Process of forming foundry cores and molds utilizing binder curable by free radical polymerization
RU2010135727A (en) COMPOSITIONS CONTAINING DEFINED METAL PRICES AND THEIR APPLICATION
JPS6144583B2 (en)
CA1168831A (en) Process of forming foundry cores and molds utilizing binder curable by free radical polymerization
KR101126949B1 (en) Cold-box binders containing an epoxy resin, acrylate, and certain alkyl esters
JPS583779B2 (en) Manufacturing method for water-soluble molds
JPH0847745A (en) Binder composition,casting mold forming composition containing said binder composition and manufacture of casting core or mold using said binder composition
WO1990002007A1 (en) Material for mold and process for forming mold using same
JPS5852735B2 (en) Binder composition for molds, molding composition for molds, and method for manufacturing molds
JPH04371342A (en) Binder composition for sand core for high-pressure casting
JPS62148558A (en) Unsaturated polyester resin composition
JP2986191B2 (en) Method of manufacturing sand core for casting
JPS63264625A (en) Mold-making resinous material for molding
JPS586747A (en) Production of mold
JP2903138B2 (en) Material for mold
GB2053932A (en) Resin composition for bonding foundry sand
CA2805317A1 (en) Free radical initiator compositions containing t-butyl hydroperoxide and their use
JPS63195156A (en) Manufacture of high strength cement set body
JPH0417742B2 (en)
JPS6221442A (en) Binder composition for casting mold
JPS5842772B2 (en) Mold manufacturing method
JPS63177940A (en) Production of resin cured casting mold
JPS63265907A (en) Composition for artificial, marble
JPS62252635A (en) Binder composition for casting mold
JPH03208845A (en) Resin composition for resin concrete and resin concrete molded product