JPS6144362B2 - - Google Patents

Info

Publication number
JPS6144362B2
JPS6144362B2 JP54001506A JP150679A JPS6144362B2 JP S6144362 B2 JPS6144362 B2 JP S6144362B2 JP 54001506 A JP54001506 A JP 54001506A JP 150679 A JP150679 A JP 150679A JP S6144362 B2 JPS6144362 B2 JP S6144362B2
Authority
JP
Japan
Prior art keywords
compound
superconducting
superconducting wire
tape
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54001506A
Other languages
Japanese (ja)
Other versions
JPS5593607A (en
Inventor
Akira Murase
Koichiro Inomata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP150679A priority Critical patent/JPS5593607A/en
Publication of JPS5593607A publication Critical patent/JPS5593607A/en
Publication of JPS6144362B2 publication Critical patent/JPS6144362B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 本発明は超電導特性と、生産性に優れた化合物
超電導線の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a compound superconducting wire with excellent superconducting properties and productivity.

従来、化合物系超電導線としては、例えば
Nb3Sn,V3Caなどの超電導化合物層を常電導金
属中に形成したものが実用化されている。
Conventionally, compound-based superconducting wires include, for example,
Products in which a superconducting compound layer such as Nb 3 Sn or V 3 Ca is formed in a normal conducting metal have been put into practical use.

これら化合物超電導線の製造方法としては、例
えば次のような方法が従来行なわれているが、こ
こではNb3Sn層を形成する場合を例に挙げて説明
する。
As a method for manufacturing these compound superconducting wires, for example, the following method has been conventionally performed, but here, the case of forming a Nb 3 Sn layer will be described as an example.

() Cu―Sn合金マトリツクス中に多数の挿通
孔を穿設して、この中に芯となるNb棒を挿入
して複合体を形成する。次にこの複合体を減面
加工して細線化した後、熱処理を施してNb棒
の表面にNb3Sn層を形成するブロンズ法。
() Numerous insertion holes are drilled in the Cu-Sn alloy matrix, and a core Nb rod is inserted into these holes to form a composite. The bronze method then involves reducing the area of this composite to make it into a thin wire, and then heat-treating it to form a Nb 3 Sn layer on the surface of the Nb rod.

() CuにNb,Snを添加した合金を溶解後、冷
却して得たインゴツトを減面加工し細線化した
後、熱処理を施して導体中にNb3Sn層を継続し
た繊維状に形成させ、近接効果によつ電流を流
すツエイ(TSUEI)法。
() After melting an alloy of Cu with Nb and Sn added, the resulting ingot is processed to reduce its area and made into fine wires, and then heat-treated to form a continuous fibrous Nb 3 Sn layer in the conductor. , the TSUEI method, in which current is passed through the proximity effect.

() CuにNbを添加した合金を溶解後急冷して
得たインゴツトを減面加工して細線化し、この
内部にNbが継続した繊維状に分布した状態と
する。次にこの細線化した導体の表面にSnを
付着した後、熱処理を施してこのSnを拡散さ
せ、繊維状Nbの表面にNb3Sn層を形成させる
インシチユー(IN SITU)法。
() An ingot obtained by melting and quenching an alloy containing Cu and Nb is processed to reduce its area and become a thin wire, so that Nb is distributed inside the wire in the form of continuous fibers. Next, after Sn is attached to the surface of this thin conductor, heat treatment is performed to diffuse this Sn and form an Nb 3 Sn layer on the surface of the fibrous Nb using the IN SITU method.

しかしながら、これら方法は何れも押出し、引
抜きなどの減面加工を必要とするため、工程が複
雑で生産性が低い欠点がある。特に上記()の
ブロンズ法はCu―Sn合金の加工性が悪く歪に対
して臨界電流値の劣化が大きい。また()のツ
エイ法は歪に対する臨界電流値の劣化は少ない
が、Cu基合金の可撓性を考慮するとNbの添加量
は10原子%、Snは5原子%が限度である。従つ
て超電導体全体(オーバーオール)の臨界電流値
(Jc)はブロンズ法に比べて1〜2桁小さく実用
的でない。また()のインシチユー法はCu―
Nb合金を用いるため可撓性が良くNbの添加量も
30原子%まで許容されるので臨界電流値もブロン
ズ法に匹敵するが、Snの付着工程、Snの溶融、
脱落などがあり、しかもNb3Sn層の生成に長時間
を要する欠点がある。
However, since all of these methods require surface reduction processing such as extrusion and drawing, they have the drawback of complicated processes and low productivity. In particular, the bronze method described in () above has poor workability for Cu-Sn alloys, and the critical current value deteriorates significantly with strain. Furthermore, in the Zei method (), there is little deterioration of the critical current value with respect to strain, but considering the flexibility of the Cu-based alloy, the limit for the addition amount of Nb is 10 atomic % and the limit for Sn is 5 atomic %. Therefore, the critical current value (Jc) of the entire superconductor (overall) is one to two orders of magnitude smaller than that of the bronze method, which is not practical. In addition, the in-situ method in () is Cu-
Since Nb alloy is used, it has good flexibility and the amount of Nb added can be reduced.
The critical current value is comparable to the bronze method because it allows up to 30 atom%, but the Sn adhesion process, Sn melting,
There are drawbacks such as shedding and the fact that it takes a long time to generate the Nb 3 Sn layer.

本発明はかかる点に鑑みなされたもので、超電
導線を成す合金融液を直接薄いテープに成形する
ことにより、複雑な減面加工を省いて生産性を向
上させると共に、NbやSnなど超電導層形成元素
の添加量の上限を拡大して特性を向上させた化合
物超電導線の製造方法を開発したものである。
The present invention was made in view of the above points, and by directly forming the alloy liquid forming the superconducting wire into a thin tape, it is possible to improve productivity by omitting complicated surface reduction processing, and to improve productivity by forming superconducting layers such as Nb and Sn. We have developed a method for manufacturing compound superconducting wires with improved characteristics by expanding the upper limit of the amount of forming elements added.

即ち本発明はノズルを有する容器内に入れた前
記超電導線を構成する元素からなる合金融液を前
記ノズルから不活性ガス圧により高速回転ロール
上に噴射し、急冷させてテープ状に形成し、しか
る後これを熱処理して超電導体層を形成すること
を特徴とする化合物超電導線の製造方法を第1の
発明とするものである。
That is, the present invention injects an alloy liquid made of the elements constituting the superconducting wire from the nozzle into a container having a nozzle onto a high-speed rotating roll by inert gas pressure, rapidly cools it, and forms it into a tape shape. The first invention provides a method for manufacturing a compound superconducting wire, which is characterized in that the wire is then heat-treated to form a superconductor layer.

更に本発明はノズルを有する別個の容器内に入
れた超電導線本体を構成する元素からなる合金融
液と、安定化材となる常電導金属融液とを、不活
性ガス圧により前記各ノズルを通して1対の高速
回転ロールの各ロール上に夫々別個に噴射して急
冷し、形成された各テープを前記ロール間で密着
させ拡散接合させながら一本のテープに接合し、
しかる後これを熱処理して超電導体層を形成する
ことを特徴とする化合物超電導線の製造方法を第
2の発明とするものである。
Furthermore, the present invention allows a composite liquid consisting of elements constituting the superconducting wire body and a normal conductive metal melt serving as a stabilizing material, which are placed in separate containers each having a nozzle, to be passed through each of the nozzles under inert gas pressure. Spraying the mixture separately onto each roll of a pair of high-speed rotating rolls and rapidly cooling each roll, and joining each of the formed tapes into a single tape by bringing them into close contact between the rolls and diffusion bonding,
A second invention provides a method for manufacturing a compound superconducting wire, which is characterized in that the wire is then heat-treated to form a superconductor layer.

以下本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明による化合物超電導線は、Cu,Alなど
の常電導金属をマトリツクスとして超電導化合物
が含有された構造となつている。本発明において
超電導化合物としては、例えばNb3Sn,Nb3Al,
Nb3(Al,Ge),V3Ga,Nb3Ga,Nb3Ge,V3Siな
どのA―15型化合物などがある。またこの他Cu
の代りにNiまたはNi合金を用いた場合のNbCN、
あるいはV合金を用いた場合のV2(Hf,Zr)化
合物などの超電導化合物を生成する場合にも適用
することができる。
The compound superconducting wire according to the present invention has a structure in which a superconducting compound is contained in a matrix of normal conducting metals such as Cu and Al. In the present invention, superconducting compounds include, for example, Nb 3 Sn, Nb 3 Al,
Examples include A-15 type compounds such as Nb 3 (Al, Ge), V 3 Ga, Nb 3 Ga, Nb 3 Ge, and V 3 Si. In addition, Cu
NbCN when using Ni or Ni alloy instead of
Alternatively, it can be applied to the case of producing a superconducting compound such as a V 2 (Hf, Zr) compound using a V alloy.

先ず第1図に示すように石英管などで成形され
た先端にノズル1を有する容器2内に、化合物超
電導線を構成する元素からなる合金融液3を入れ
る。
First, as shown in FIG. 1, an alloy liquid 3 made of elements constituting a compound superconducting wire is poured into a container 2 made of a quartz tube or the like and having a nozzle 1 at its tip.

即ちこの合金融液3は、常電導金属と、超電導
化合物を形成する元素の合金であり、例えば常電
導金属としてCuを用い、超電導化合物として
Nb3Snを形成する場合にはCu―Nb―Sn合金の融
液となる。なおこの場合NbとSnの添加量はNb60
原子%,Sn30原子%まで許容される。またこれ
ら合金融液3の冷却効果を高めるため、P,C,
B,Siなどを少量添加しても良い。
That is, this alloy liquid 3 is an alloy of a normal conducting metal and an element that forms a superconducting compound. For example, Cu is used as the normal conducting metal and Cu is used as the superconducting compound.
When forming Nb 3 Sn, it becomes a melt of Cu--Nb--Sn alloy. In this case, the amount of Nb and Sn added is Nb60
atomic%, Sn up to 30 atomic% is allowed. In addition, in order to enhance the cooling effect of these alloy liquids 3, P, C,
A small amount of B, Si, etc. may be added.

なお合金融液3は電気炉、あるいは高周波炉に
より、容器2中で加熱,溶解しても良く、また別
の容器で溶解したものをノズル1を有する容器2
内に移しても良い。
The composite liquid 3 may be heated and melted in the container 2 using an electric furnace or a high frequency furnace, or the melted liquid in another container may be heated and melted in the container 2 having the nozzle 1.
You can move it inside.

次に前記容器2のノズル1を設けた側と反対側
からアルゴンガス,ヘリウムガスなどの不活性ガ
スを吹込み、前記ノズル1の下方に設けた双ロー
ル4a,4bの一方のロール4a上に合金融液3
を噴射する。この双ロール4a,4bは高速回転
し、この表面に噴射された合金融液3は急冷され
て凝固しテープ状になつた後、加圧された双ロー
ル4a,4b間を通つてテープ5が下方に引出さ
れるようになつている。
Next, an inert gas such as argon gas or helium gas is blown into the container 2 from the side opposite to the side where the nozzle 1 is provided, and onto one roll 4a of the twin rolls 4a and 4b provided below the nozzle 1. Joint financial liquid 3
Inject. The twin rolls 4a, 4b rotate at high speed, and the composite liquid 3 sprayed onto the surface is rapidly cooled and solidified into a tape shape.Then, the tape 5 is passed between the pressurized twin rolls 4a, 4b. It is designed to be pulled out downwards.

この場合、ノズル1から噴射された合金融液3
が接触するロール4aの外周位置と双ロール4
a,4bの接点間の角度θは合金融液3の冷却速
度によつて決められる。即ちロール4a上に噴射
された合金融液3が急冷されて、双ロール4a,
4bの接点に達するまでに少なくとも表面が凝固
した状態に冷却されていることが必要である。従
つてこのθは合金融液3の温度、噴射量およびロ
ール4aの温度、外径、回転速度を考慮して、合
金融液3が双ロール4a,4bの接点に達するま
でに表面が凝固するように決められるが、通常は
冷却速度が104〜105℃/秒となるようにθが決め
られる。
In this case, the composite liquid 3 injected from the nozzle 1
The outer circumferential position of the roll 4a where the twin rolls 4 contact
The angle θ between the contact points of a and 4b is determined by the cooling rate of the alloy liquid 3. That is, the combined liquid 3 injected onto the roll 4a is rapidly cooled, and the twin rolls 4a,
It is necessary that at least the surface has been cooled to a solidified state by the time it reaches the contact point 4b. Therefore, this θ takes into account the temperature of the alloy liquid 3, the amount of injection, and the temperature, outer diameter, and rotational speed of the roll 4a, and the surface of the alloy liquid 3 solidifies before it reaches the contact point between the twin rolls 4a and 4b. However, θ is usually determined so that the cooling rate is 10 4 to 10 5 ° C./sec.

このように合金融液3を急冷することにより常
電導金属マトリツクス中にNbなどの超電導化合
物を構成する元素が継続して繊維状に析出したテ
ープ5が得られる。
By rapidly cooling the alloy liquid 3 in this manner, a tape 5 is obtained in which elements constituting a superconducting compound such as Nb are continuously precipitated in the form of fibers in a normal-conducting metal matrix.

次いでこのようにして得られたテープ5を熱処
理して超電導化合物を生成する。この熱処理は
550〜900℃で数時間〜数百時間、加熱することに
より行なう。例えばCu〜Snマトリツクス中に繊
維状Nbが析出したテープ5では、熱処理を行な
うことにより第2図に示すようにNbの表面に
Nb3Sn超電導化合物層6が生成され、近接効果に
よつて電流の流れる化合物超電導線7が得られ、
このものは、小電流用の化合物超電導線7を製造
する場合に適し大電流用の化合物超電導線を製造
に適する場合を説明する。
The tape 5 thus obtained is then heat treated to produce a superconducting compound. This heat treatment
This is done by heating at 550 to 900°C for several hours to several hundred hours. For example, in tape 5 in which fibrous Nb was precipitated in a Cu-Sn matrix, heat treatment was performed to improve the Nb surface as shown in Figure 2.
A Nb 3 Sn superconducting compound layer 6 is generated, and a compound superconducting wire 7 through which current flows due to the proximity effect is obtained.
This example is suitable for manufacturing a compound superconducting wire 7 for small current use, and will be described below in a case where it is suitable for manufacturing a compound superconducting wire for large current use.

第3図に示すように高速回転する双ロール4
a,4bの上方にノズル1a,1bを有する2個
の容器2a〜2bを配置する。一方の容器2aに
は化合物超電導線を構成する元素からなる合金融
液3を入れ、他方の容器2bには安定化材となる
Cu,Alなどの常電導金属融液8を入れる。
Twin rolls 4 rotating at high speed as shown in Figure 3
Two containers 2a to 2b having nozzles 1a and 1b are arranged above a and 4b. One container 2a is filled with an alloy liquid 3 consisting of elements constituting the compound superconducting wire, and the other container 2b is filled with a stabilizing material.
Add normal conductive metal melt 8 such as Cu or Al.

次に前記各容器2a,2bのノズル1a,1b
を設けた側と反対側から不活性ガスを吹込み、前
記ノズル1a,1bの下方に設けた各ロール4
a,4b上に合金融液3と、常電導金属融液8を
噴射する。双ロール4a,4bの表面に噴射され
た合金融液3と、常電導金属融液8は急冷されて
テープ状に夫々成形された後、加圧された双方ロ
ール4a,4b間を通つて両テープ5a,5bが
接合され、一本のテープ5′に成形される。
Next, the nozzles 1a and 1b of each of the containers 2a and 2b are
Inert gas is blown into each roll 4 provided below the nozzles 1a and 1b.
The alloy metal liquid 3 and the normal conductive metal melt 8 are injected onto a and 4b. The composite metal liquid 3 and the normal conductive metal melt 8 sprayed onto the surfaces of the twin rolls 4a and 4b are rapidly cooled and formed into tape shapes, respectively, and then passed between the pressurized rolls 4a and 4b. The tapes 5a and 5b are joined and formed into a single tape 5'.

この場合、ノズル1aから噴射された合金融液
3が接触する一方のロール4aの外周位置と、双
ロール4a,4bの接点との間の角度θ、および
ノズル1bから噴射された常電導金属融液8が接
触する他方のロール4bの外周位置と、双ロール
4a,4bの接点との間の角度θ′は各融液3,
8が急冷されて接点間に達するまでに、両テープ
5a,5bが拡散接合する温度になるように冷却
速度から決められる。通常この冷却温度は、凝固
温度をTmとするとTm×(0.5〜0.95)の範囲が望
ましく、例えば常電導金属のテープ5bがCuの
場合には600〜1000℃、またAlの場合には400〜
600℃に冷却することが望ましく、この温度で両
テープ5a,5bは拡散により接合し、一本のテ
ープ5′となる。また合金融液3を急冷して得ら
れたテープ5aも同様に拡散接合する温度まで急
冷されることにより、常電導マトリツクス中に
Nbなどの超電導化合物を構成する元素が継続し
た繊維状に析出する。
In this case, the angle θ between the outer circumferential position of one roll 4a with which the composite metal liquid 3 injected from the nozzle 1a contacts and the contact point of the twin rolls 4a and 4b, and the normal conductive metal liquid injected from the nozzle 1b. The angle θ' between the outer peripheral position of the other roll 4b with which the liquid 8 contacts and the contact point of the twin rolls 4a, 4b is
The cooling rate is determined so that the temperature at which both the tapes 5a and 5b are diffusion bonded is reached by the time the tape 8 is rapidly cooled and reaches between the contact points. Normally, this cooling temperature is preferably in the range of Tm x (0.5 to 0.95), where Tm is the solidification temperature. For example, if the normal conductive metal tape 5b is Cu, it is 600 to 1000°C, and if it is Al, it is 400 to
It is desirable to cool the tape to 600 DEG C. At this temperature, both tapes 5a and 5b are bonded by diffusion to form one tape 5'. In addition, the tape 5a obtained by rapidly cooling the alloying liquid 3 is similarly rapidly cooled to the temperature for diffusion bonding, so that it is incorporated into the normal conductive matrix.
Elements that make up superconducting compounds, such as Nb, precipitate in continuous fibers.

次に、このように一本に接合されたテープ5′
を熱処理することにより近接効果によつて電流が
流れる超電導化合物層6が形成され、第4図に示
すように超電導状態が破壊された場合の安定化材
となる常電導金属テープ5bが複合した大電流用
の化合物超電導線7′を得ることができる。
Next, the tape 5′ joined in this way
By heat-treating, a superconducting compound layer 6 through which current flows due to the proximity effect is formed, and as shown in FIG. A compound superconducting wire 7' for electric current can be obtained.

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

実施例 1 第1図に示すように先端に0.4mmφの孔を形成
したノズル1を有する石英管の容器2内にNb30
原子%、Sn15原子%、残部Cuからなる合金を入
れ、アルゴンガス雰囲気中で加熱溶融した。次に
この合金融液3にアルゴンガスを吹込んで、
2000r・p・mで高速回転するロール4a上に噴
射して急冷し、厚さ50μm、幅1mmのテープ5を
形成した。
Example 1 As shown in FIG.
An alloy consisting of 15 atomic % Sn and the balance Cu was added and melted by heating in an argon gas atmosphere. Next, blow argon gas into this composite liquid 3,
The mixture was sprayed onto a roll 4a rotating at a high speed of 2000 r.p.m. and rapidly cooled to form a tape 5 having a thickness of 50 μm and a width of 1 mm.

次にこのテープ5を700℃で60時間熱処理して
第2図に示すようにCu―Snマトリツクス中に継
続した繊維状のNb3Sn超電導化合物層6を生成し
た化合物超電導線7を製造した。
Next, this tape 5 was heat-treated at 700° C. for 60 hours to produce a compound superconducting wire 7 in which a continuous fibrous Nb 3 Sn superconducting compound layer 6 was formed in a Cu--Sn matrix as shown in FIG.

このようにして得られた超電導線7について臨
界電流値Icとオーバーオール臨界電流密度Jcを測
定したところ外部磁場4テスラ(Tesla)でIc=
50A、Jc=1×103A/mm2であり、また外部磁場7
テスラではIc=28A,Jc=5.6×102A/mm2と優れ
た値が得られた。またこのテープ状の超電導線7
を4mmφの棒に巻回して、同様に測定したところ
臨界電流値の劣化は認められず歪に対しても安定
した特性が得られた。
The critical current value Ic and overall critical current density Jc of the superconducting wire 7 obtained in this way were measured. In an external magnetic field of 4 Tesla (Tesla), Ic =
50A, Jc=1×10 3 A/mm 2 , and external magnetic field 7
For Tesla, excellent values of Ic = 28A and Jc = 5.6×10 2 A/mm 2 were obtained. Also, this tape-shaped superconducting wire 7
When the material was wound around a 4 mmφ rod and measured in the same manner, no deterioration of the critical current value was observed and stable characteristics were obtained even against strain.

実施例 2 予め高周波溶解しておいたNb30原子%、Sn15
原子%、残部Cuからなる合金融液3と、Cuから
なる常電導金属融液8とを、第3図に示すように
ノズル1a,1bを有する1対の石英管容器2
a,2bに夫々別個に入れ、更にアルゴン雰囲気
中で電気炉により加熱溶融した。
Example 2 Nb30 atomic% and Sn15 pre-dissolved by high frequency
%, the balance being Cu, and a normal conducting metal melt 8 consisting of Cu are placed in a pair of quartz tube containers 2 having nozzles 1a and 1b as shown in FIG.
A and 2b were placed separately, and further heated and melted in an electric furnace in an argon atmosphere.

次いで容器2a,2bに1.5気圧のアルゴンガ
スを吹き込み、このガス圧によりノズル1a,1
bの下方に配置した2000r・p・mで回転する双
ロール4a,4b上に噴射して急冷し、テープ状
に成形する。このようにして得られた両テープ5
a,5bは双ロール4a,4b間で密着し、拡散
接合されて一本のテープ5′になり、下方に引出
される。次にこのテープ5′を700℃で60時間熱処
理して第4図に示すようにCu―Snマトリツクス
中に断続した繊維状のNb3Sn超電導化合物層6を
生成したテープ5aに安定化材となる常電導金属
(Cu)テープ5bが複合した化合物超電導線7′
を製造した。
Next, 1.5 atmospheres of argon gas is blown into the containers 2a and 2b, and this gas pressure causes the nozzles 1a and 1 to open.
The mixture is sprayed onto twin rolls 4a and 4b arranged below the rollers 4a and 4b rotating at 2000 r.p.m., quenched, and formed into a tape. Both tapes 5 obtained in this way
A and 5b are brought into close contact between the twin rolls 4a and 4b, and are diffusion bonded to form a single tape 5', which is pulled out downward. Next, this tape 5' was heat-treated at 700°C for 60 hours to form an intermittent fibrous Nb 3 Sn superconducting compound layer 6 in the Cu--Sn matrix as shown in Fig. 4.A stabilizing material was added to the tape 5a. A compound superconducting wire 7' composed of a normal conducting metal (Cu) tape 5b
was manufactured.

このようにして得られた超電導線7′について
臨界電流値を測定したところ4テスラの外部磁場
でIc=47A,Jc=4.7×102Amm2、7テスラでIc=
26A,Jc=2.6×102A/mm2であつた。またこの超
電導線の臨界電流測定におけるIc値での電圧発生
の仕方はゆるやかで安定であつた。
The critical current values of the superconducting wire 7' obtained in this way were measured. At an external magnetic field of 4 Tesla, Ic = 47 A, Jc = 4.7 × 10 2 Amm 2 , and at 7 Tesla, Ic =
26A, Jc=2.6×10 2 A/mm 2 . In addition, the way the voltage was generated at the Ic value in the critical current measurement of this superconducting wire was gradual and stable.

以上説明した如く、本発明に係る化合物超電導
線の製造方法によれば、超電導線を構成する元素
からなる合金融液を急冷して直接テープ状に成形
するため、従来の方法の如く減面加工や焼鈍、
Snの付着など複雑な工程を必要とせず極めて生
産性に優れている。
As explained above, according to the method for manufacturing a compound superconducting wire according to the present invention, the alloy liquid made of the elements constituting the superconducting wire is rapidly cooled and directly formed into a tape shape, so that the area reduction process is performed as in the conventional method. or annealing,
It is extremely productive as it does not require complicated processes such as adhesion of Sn.

更に本発明によれば合金融液を直接テープ状に
成形することから、従来の如く減面加工時の断線
や可撓性を考慮することなく、NbやSnなどの超
電導化合物を構成する元素の添加量の上限を大幅
に拡大することができ、この結果生成される超電
導化合物の量も多くなり臨界電流密度を1〜2桁
向上させることができる。
Furthermore, according to the present invention, since the alloy liquid is directly formed into a tape shape, elements constituting the superconducting compound such as Nb and Sn can be formed without considering wire breakage or flexibility during area reduction processing as in the conventional method. The upper limit of the amount added can be greatly expanded, and as a result, the amount of superconducting compound produced can be increased, making it possible to improve the critical current density by one to two orders of magnitude.

また従来のインシチユー法によつて得られる急
冷インゴツトは実用に併せられる冷却速度の速い
部分でも全体の10%程度である上、冷却速度も
1000℃/秒程度と低いが、本発明方法によるもの
は全体が急冷され、しかも溶融合金の100%が実
用に併せられるため、優れた超電導特性が得られ
るなど種々の効果を有するものである。
In addition, the rapidly cooled ingot obtained by the conventional in-situ method only accounts for about 10% of the total, even at the point where the cooling rate is fast enough for practical use.
Although it is low at about 1000°C/sec, the method of the present invention has various effects such as excellent superconducting properties because the entire molten alloy is rapidly cooled and 100% of the molten alloy is put into practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法により化合物超電導線を製
造する装置の概略を示す説明図、第2図は第1図
に示す装置を用いて製造した化合物超電導線の斜
視図、第3図は本発明の異なる方法により安定化
材となる常電導金属テープを複合した化合物超電
導線を製造する装置の概略を示す説明図、第4図
は第3図に示す装置を用いて製造した化合物超電
導線の斜視図である。 1,1a,1b…ノズル、2,2a,2b…容
器、3…合金融液、4a,4b…ロール、5,
5′,5a,5b…テープ、6…超電導化合物
層、7,7′…化合物超電導線、8…常電導金属
融液。
FIG. 1 is an explanatory diagram showing the outline of an apparatus for manufacturing a compound superconducting wire according to the method of the present invention, FIG. 2 is a perspective view of a compound superconducting wire manufactured using the apparatus shown in FIG. 1, and FIG. An explanatory diagram showing the outline of a device for manufacturing a compound superconducting wire composited with a normal-conducting metal tape as a stabilizing material by different methods, and FIG. 4 is a perspective view of a compound superconducting wire manufactured using the device shown in FIG. 3. It is a diagram. 1, 1a, 1b... Nozzle, 2, 2a, 2b... Container, 3... Combined liquid, 4a, 4b... Roll, 5,
5', 5a, 5b...Tape, 6...Superconducting compound layer, 7,7'...Compound superconducting wire, 8...Normal conducting metal melt.

Claims (1)

【特許請求の範囲】 1 常電導金属をマトリツクスとし超電導化合物
とから成る超電導線の製造方法において、ノズル
を有する容器内に入れた前記超電導線を構成する
元素からなる合金融液を不活性ガス圧により、前
記ノズルを通して高速回転ロール上に噴射し、急
冷させてテープ状に形成し、しかる後これを熱処
理して超電導化合物層を形成することを特徴とす
る化合物超電導線の製造方法。 2 常電導金属をマトリツクスとし超電導化合物
とから成る超電導線の製造方法において、ノズル
を有する別個の容器に入れた、超電導線本体を構
成する元素からなる合金融液と、安定化材となる
常電導金属融液とを、不活性ガス圧により前記各
ノズルを通して1対の高速回転ロールの各ロール
上に夫々別個に噴射して急冷し、形成された各テ
ープを前記ロール間で密着させ拡散接合させなが
ら一本のテープに接合し、しかる後、これを熱処
理して超電導化合物層を形成することを特徴とす
る化合物超電導線の製造方法。
[Scope of Claims] 1. A method for manufacturing a superconducting wire consisting of a matrix of normal conducting metal and a superconducting compound, in which an alloy liquid consisting of elements constituting the superconducting wire placed in a container having a nozzle is heated under inert gas pressure. A method for producing a compound superconducting wire, comprising: injecting the compound superconducting wire through the nozzle onto a high-speed rotating roll, rapidly cooling it to form a tape shape, and then heat-treating the tape to form a superconducting compound layer. 2. In a method for manufacturing a superconducting wire consisting of a matrix of normal conducting metal and a superconducting compound, a composite liquid consisting of the elements constituting the superconducting wire body and a normal conducting compound serving as a stabilizing material are placed in separate containers with a nozzle. The metal melt is separately injected onto each roll of a pair of high-speed rotating rolls using inert gas pressure through the respective nozzles and quenched, and the formed tapes are brought into close contact between the rolls and diffusion bonded. 1. A method for manufacturing a compound superconducting wire, which comprises joining the wire into a single tape, and then heat-treating the wire to form a superconducting compound layer.
JP150679A 1979-01-10 1979-01-10 Method of fabricating compound superconductive wire Granted JPS5593607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP150679A JPS5593607A (en) 1979-01-10 1979-01-10 Method of fabricating compound superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP150679A JPS5593607A (en) 1979-01-10 1979-01-10 Method of fabricating compound superconductive wire

Publications (2)

Publication Number Publication Date
JPS5593607A JPS5593607A (en) 1980-07-16
JPS6144362B2 true JPS6144362B2 (en) 1986-10-02

Family

ID=11503354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP150679A Granted JPS5593607A (en) 1979-01-10 1979-01-10 Method of fabricating compound superconductive wire

Country Status (1)

Country Link
JP (1) JPS5593607A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474698A (en) * 1977-11-28 1979-06-14 Univ Tohoku Superconductive thin band and method of fabricating same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474698A (en) * 1977-11-28 1979-06-14 Univ Tohoku Superconductive thin band and method of fabricating same

Also Published As

Publication number Publication date
JPS5593607A (en) 1980-07-16

Similar Documents

Publication Publication Date Title
JP2866265B2 (en) Method for producing high critical temperature superconducting flexible conductor
US5362331A (en) Process and apparatus for producing Nb3 Al super-conducting wire
US3710844A (en) Method of producing superconducting strips
JPS6144362B2 (en)
US3346467A (en) Method of making long length superconductors
US5261151A (en) Multifilamentary superconducting cable and a method of manufacturing it
Clapp et al. New processing technique for forming flexible A‐15 superconducting tapes with extremely high critical current densities and magnetic fields
JPH01143744A (en) Production of oxide superconducting fine wire
JPS59125246A (en) Producing device for light-gage metallic strip
JPH08315655A (en) Superconducting wire and manufacture thereof
US3409468A (en) Method of making a niobium stannide coated niobium wire
JPH01212747A (en) Production of thin superconducting composite strip
JPS5818998Y2 (en) Multilayer amorphous alloy manufacturing equipment
JP3117519B2 (en) Oxide superconducting wire
JPS5647247A (en) Production of compound superconductive wire
JPS6018128B2 (en) Manufacturing method of magnetic tape
JPH0273930A (en) Manufacture of sn-ti alloy
JPS586602Y2 (en) Multilayer amorphous alloy manufacturing equipment
JPH0343724B2 (en)
JPH01134819A (en) Manufacture of oxide superconductive wire material
JP3117521B2 (en) Manufacturing method of oxide superconducting wire
JPH02152116A (en) Manufacture of oxide superconducting filament material
JP3117520B2 (en) Manufacturing method of oxide superconducting wire
JPH04105755A (en) Manufacture of amorphous metal-made wire rod
JPH06302232A (en) Oxide superconductive element material and manufacture of oxide superconductive wire