JPH0273930A - Manufacture of sn-ti alloy - Google Patents

Manufacture of sn-ti alloy

Info

Publication number
JPH0273930A
JPH0273930A JP22441988A JP22441988A JPH0273930A JP H0273930 A JPH0273930 A JP H0273930A JP 22441988 A JP22441988 A JP 22441988A JP 22441988 A JP22441988 A JP 22441988A JP H0273930 A JPH0273930 A JP H0273930A
Authority
JP
Japan
Prior art keywords
alloy
melting
gaseous atmosphere
casting
nb3sn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22441988A
Other languages
Japanese (ja)
Other versions
JPH0676625B2 (en
Inventor
Yoshiaki Nakabayashi
中林 美明
Shoji Miyashita
章志 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22441988A priority Critical patent/JPH0676625B2/en
Publication of JPH0273930A publication Critical patent/JPH0273930A/en
Publication of JPH0676625B2 publication Critical patent/JPH0676625B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture an Sn-Ti alloy having high purity as the material for the formation of an Nb3Sn super conducting wire rod by heating and melting Sn in an inert gaseous atmosphere, thereafter holding the melt to a specific temp., adding Ti thereto to melt and successively casting it at a specific temp. CONSTITUTION:High purity Sn is melted by an electric furnace or a high frequency melting furnace in an inert gaseous atmosphere such as Ar and is held to 600 to 1750 deg.C, to which 0.3 to 6.5wt.% sponge Ti is added and the admixture is melted into the molten metal of an Sn-Ti alloy. The molten metal is cast at 500 to 1750 deg.C in a stainless steel made mold similarly in an Ar gaseous atmosphere. The ingot of an Sn-Ti alloy having no generation of an oxide film can be obtd. by executing melting, alloying and casting in an Ar gaseous atmosphere. The Sn-Ti alloy excellent as the material for an Nb3Sn super conducting wire can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は例えばNb5Sn超電導線等に好ましく用いる
ことができるSn−Ti合金の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a Sn--Ti alloy that can be preferably used, for example, in Nb5Sn superconducting wires.

L従来の技術] 超電線材を用いると電力消費がほとんどなく大電流を流
すことが出来、かつ高磁界まで超電導状態が保たれるこ
とから、高磁界発生用電磁石の巻線材として利用か進め
られている。現在液も広く利用されている線材はNb−
Ti系の合金線材であるか、このr1金線材の発生磁界
は9テスラの限界があり、これ以上の高磁界を必要とす
る場合には、臨界磁界の高いN1)aSn系の化合物線
材が用いられる。このNb331線材として、Cu−3
n合金基体とNb基体の王者より成るものがあり、この
王者にTi添加することにより高磁界での超電導特性の
著しく改善されたNb3Sn化合物線材の製造方法があ
る。
L Conventional technology] Superconducting wires can be used to conduct large currents with almost no power consumption, and the superconducting state is maintained even in high magnetic fields, so their use as winding materials for electromagnets for generating high magnetic fields is progressing. ing. The wire rod that is currently widely used in liquid form is Nb-
The magnetic field generated by Ti-based alloy wire or R1 gold wire has a limit of 9 Tesla, and if a higher magnetic field than this is required, N1) aSn-based compound wire with a high critical magnetic field is used. It will be done. As this Nb331 wire, Cu-3
There is a method for producing an Nb3Sn compound wire material, which is made of a combination of an n-alloy base and a Nb base material, and the superconducting properties in a high magnetic field are significantly improved by adding Ti to this base material.

しかしこの製法では、TiはNb基体あるいはCu−3
n合金基体に添加するため、塑性加工性が劣り断面縮径
加工率約40%毎に中間焼鈍を必要とし実用線材を製作
するのに焼鈍回数が極めて多くなり製造コスト上問題で
あった。
However, in this manufacturing method, Ti is Nb-based or Cu-3
Since it is added to the n-alloy base, the plastic workability is poor and intermediate annealing is required every 40% reduction in cross-sectional diameter, resulting in an extremely large number of annealing operations to produce a practical wire rod, which poses a problem in terms of production costs.

さらに従来の複合加工法に用いるCu−3n合金基体で
は塑性加工性の保持からSnの固溶量が限定されそのた
めに拡散生成熱処理で得られるNb3Sn化合物相が線
材断面積当り少なく、臨界電流の大きな線材製作に難点
があった。他のNb5Sn超電導線の製造方法として、
純Cu、 Sn基体、Nb基体の三者より成るものがあ
り、これら王者にTi添加する方法かあるが純Cu及び
Nb基体にTi添加することはやはり加工性に問題かあ
る。これらを解決するため特開昭60−86704号公
報に記載されているように、極めて加工性に優れたSn
基体にTi添加しSn−Ti合金とした加工の容易な方
法で高磁界での超電導特性か改善されたNb3Sn超電
導線材の製造方法も提案されている。
Furthermore, in the Cu-3n alloy substrate used in the conventional composite processing method, the amount of solid solution of Sn is limited in order to maintain plastic workability, and therefore the Nb3Sn compound phase obtained by diffusion generation heat treatment is small per wire cross-sectional area, resulting in a large critical current. There were some difficulties in making the wire. As another method for manufacturing Nb5Sn superconducting wire,
There are three types: pure Cu, Sn base, and Nb base, and there is a method of adding Ti to these bases, but adding Ti to pure Cu and Nb bases still poses problems in processability. In order to solve these problems, as described in Japanese Patent Application Laid-Open No. 60-86704, Sn
A method for producing a Nb3Sn superconducting wire with improved superconducting properties in a high magnetic field has also been proposed by adding Ti to the base material and forming an Sn-Ti alloy by an easy-to-process method.

[発明か解決しようとする課題] しかしながらT1添加Sn基体を製造するに当ってSn
の融点232°CとTiの融点1670″Cに大きな差
があり、又Tiにおいては酸化か著しく通常の溶解鋳造
法では未熔融T1及びTi酸化物の混入による欠陥か発
生する。従って目的とするT1濃度とならず不均質なS
n−Ti合金となり実用Nb5Sn超電導線材に使用出
来るものか得られなかった。 本発明は上記の問題点を
解決するためになされたものて、Nb3Sn Mi電導
線材に使用することのできる欠陥のない均質なSn4i
合金の製造方法を提供することを目的とする。
[Problem to be solved by the invention] However, when manufacturing a T1-added Sn substrate, Sn
There is a large difference between the melting point of 232°C for Ti and the melting point of 1670"C for Ti, and in the case of Ti, there is a significant oxidation or defectiveness due to the contamination of unmelted T1 and Ti oxides in the conventional melting and casting method. Heterogeneous S without T1 concentration
It was not possible to obtain an n-Ti alloy that could be used as a practical Nb5Sn superconducting wire. The present invention has been made in order to solve the above-mentioned problems.
The purpose of the present invention is to provide a method for producing an alloy.

[課題を解決するための手段] 本発明に係るSn−Ti合金の製造方法は、不活性カス
雰囲気下T、Snを600〜1750℃に加熱溶解し、
これに03〜65重量%のTiを添加し、500〜17
50℃で鋳造するものである。
[Means for Solving the Problems] The method for producing a Sn-Ti alloy according to the present invention includes heating and melting T and Sn at 600 to 1750°C in an inert gas atmosphere,
To this, 03 to 65% by weight of Ti was added, and 500 to 17% by weight was added.
It is cast at 50°C.

[作 用] 本発明においては、Sn−Ti合金の製造過程で、不活
性ガス雰囲気を用いて鋳造することにより、酸化を抑制
し、欠陥の発生を防ぐ。
[Function] In the present invention, oxidation is suppressed and defects are prevented by casting in an inert gas atmosphere during the manufacturing process of the Sn-Ti alloy.

[実施例] 本発明のNb3Sn超電導線材に使用される重↑%で0
3〜6.5%Ti添加Sn合金の典型的な製造方法は次
の通りである。
[Example] Weight ↑% used in the Nb3Sn superconducting wire of the present invention is 0
A typical manufacturing method for a 3-6.5% Ti-added Sn alloy is as follows.

即ち、まず純Snを例えば電気炉あるいは高周波溶解炉
等で溶解温度範囲60(1〜1750℃で溶解し、少な
くとも1分以上加熱保持する。次にあらかじめ目的成分
比で計量準備されたスボンヂT1又は水素T i (T
 i H2)を添加し、撹拌棒て撹拌しSn−Tiの溶
湯とする。この溶湯を500°C以上、好ましくは55
0°C以−Lで鋳鉄又はステンレス鋳型に鋳造しSn−
Ti合金鋳塊とする。
That is, first, pure Sn is melted at a melting temperature range of 60° C. (1 to 1750° C.) in an electric furnace or a high-frequency melting furnace, and heated and held for at least 1 minute. Next, a sponge T1 or Hydrogen T i (T
i H2) is added and stirred with a stirring bar to form a molten Sn-Ti. This molten metal is heated to 500°C or higher, preferably 55°C.
Cast in cast iron or stainless steel molds at temperatures below 0°C.
A Ti alloy ingot is made.

」王妃工程はすべて例えばN、又はAr等の不活性カス
雰囲気中で実施する。不活性雰囲気中で行う理由はSn
の融点232°Cより高い温度での溶解となるため基材
であるSnの酸化を防止する。又T1は高温で著しく酸
化するため不活性雰囲気中でなければTi酸化物の生成
によりTiの摩耗かあり目的成分比が得られないばかり
か酸化物の混入欠陥の原因となる。鋳造においても鋳塊
表面の酸化防止からも不活性ガス雰囲気は必要となる。
All queen steps are carried out in an inert gas atmosphere, such as N or Ar. The reason for doing this in an inert atmosphere is that Sn
Since it melts at a temperature higher than the melting point of 232°C, oxidation of the base material Sn is prevented. Furthermore, since T1 is significantly oxidized at high temperatures, if it is not in an inert atmosphere, Ti oxides will be produced and the Ti will be worn out, making it impossible to obtain the desired component ratio and also causing defects due to oxide contamination. In casting, an inert gas atmosphere is necessary to prevent oxidation of the ingot surface.

不活性ガスはN、でも可能であるがより不活性なArガ
スか望ましい。
Although it is possible to use N as the inert gas, it is preferable to use Ar gas, which is more inert.

−・方溶解温度@囲については600℃以下では、スポ
ンチTi又は水素Tiは溶湯Snに固溶又微細均−分散
されず未溶融状態で偏在し均一な5i−Ti合金が得ら
れない。−力1750°C以上ては不活性カス雰囲気中
でも1′1の摩耗か激しく、目的成分比を得ることが難
しくなることとガス吸収があり欠陥が発生する。又溶解
炉材等の耐火物の消耗も激しく、工業的生産性に劣るた
めl750°C以下とすることか望ましい。また、鋳造
温度500°C以下では鋳造時の溶出の流動性か著しく
悪く戸り鋳造作業が困難となるため50 Q ’C以上
さらに好ましくは550°C以上とすることが望ましい
。一方上限は−1−記溶融時ヒ同様の理由により溶解温
度1750°C以下か望ましい。
- When the melting temperature is below 600° C., the spongy Ti or hydrogen Ti is not solidly dissolved or finely uniformly dispersed in the molten Sn, but is unevenly distributed in an unmolten state, making it impossible to obtain a uniform 5i-Ti alloy. - If the force exceeds 1750°C, even in an inert gas atmosphere, 1'1 wear is severe, it becomes difficult to obtain the desired component ratio, and gas absorption occurs, resulting in defects. In addition, the consumption of refractories such as melting furnace materials is severe and industrial productivity is poor, so it is desirable to keep the temperature below 1750°C. Furthermore, if the casting temperature is below 500°C, the fluidity of the elution during casting will be extremely poor and the door casting operation will be difficult, so it is desirable that the casting temperature be at least 50 Q'C, more preferably at least 550°C. On the other hand, the upper limit is desirably a melting temperature of 1750°C or less for the same reason as in -1- Melting time.

また、T1のSnに対する添加量か03重量%以1Sで
は強磁界ての超電導特性の改善が不十分であり、6.5
重量%以」二では、加工性が悪くなるので、03〜65
重量%の範囲内とすることが望ましい以下実施例につい
てさらに具体的に説明〆する。
Furthermore, if the amount added to Sn in T1 exceeds 1S by 0.3% by weight, the improvement in superconducting properties in a strong magnetic field is insufficient;
If it exceeds 0.3 to 65% by weight, the processability will deteriorate.
The following examples, in which the weight percentage is preferably within the range, will be described in more detail.

5i−Ti合金の製造は、不活性ガス雰囲気が保持され
る溶解鋳造が可能な高周波溶解炉にてArガス雰囲気中
で実施した。まず純Sn20 kgを1300℃で溶解
しこの温度で約1時間保持したのぢ粒状のスボンチTi
 0.5kg (2,5重量%Ti配合)をSnの溶湯
中に添加し炭素棒で撹拌後、5分間保持し溶湯表面のス
ラグを除去し溶湯温度1210°Cで、内用i4 h<
φ100X33CH!のステンレス製鋳型内に鋳造した
。この方法で23重■%Tiの健全なSn−Ti合金の
鋳塊が得られた。
The 5i-Ti alloy was manufactured in an Ar gas atmosphere in a high-frequency melting furnace capable of melting and casting in which an inert gas atmosphere is maintained. First, 20 kg of pure Sn was melted at 1300°C and kept at this temperature for about 1 hour.
Add 0.5 kg (2.5% by weight of Ti) into the Sn molten metal, stir with a carbon rod, hold for 5 minutes to remove slag on the surface of the molten metal, and maintain the molten metal temperature at 1210°C for internal use.
φ100X33CH! Cast in a stainless steel mold. By this method, a healthy Sn--Ti alloy ingot containing 23% Ti was obtained.

次にこのSn−Ti合金鋳塊をNb3Sn超電導線材の
複合N法とするため以下の加工を実施した。鋳塊頭部・
底部の収縮巣の部分を切断除去しかつ生機なし機て外形
φ30mmまて押出し加工した。これ以後はNb+Sn
超電導線材の複合寸法に合わせるため、ドローヘンチ引
抜により要求される種々の径に引抜加工をした。
Next, the following processing was performed on this Sn-Ti alloy ingot in order to make it into a composite N method of Nb3Sn superconducting wire. Ingot head/
The shrinkage cavity portion at the bottom was cut off and extruded using a greigeless machine to an outer diameter of 30 mm. From now on, Nb+Sn
In order to match the complex dimensions of the superconducting wire, drawing was performed to various diameters required by draw hench drawing.

第1図にNb3Sn超電導線に使用されたSn−Ti合
金棒の複合実施例を示す。図において(1)は上記実施
例によって得られたSn−Ti合金、(2)はNb線、
(3)は純銅である。このようにして本発明の方法によ
るSn−Ti合金を用いて得たNb3Sn超電導線は、
何れもその製造が容易であり、特性的にも高磁界での超
電導特性に著しく優れた実用的なものであった。
FIG. 1 shows a composite example of a Sn--Ti alloy rod used in a Nb3Sn superconducting wire. In the figure, (1) is the Sn-Ti alloy obtained in the above example, (2) is the Nb wire,
(3) is pure copper. The Nb3Sn superconducting wire thus obtained using the Sn-Ti alloy according to the method of the present invention is
All of them were easy to manufacture and had extremely excellent superconducting properties in high magnetic fields, making them practical.

なお、上記実施例ではTiをSnに対し2.3重量%含
むものについて説明したが、Tiの割合か0.3〜6.
Sn量%の範囲内のものは何れも同様の効果が確認され
た。
In addition, in the above-mentioned example, an explanation has been given of a case containing 2.3% by weight of Ti based on Sn, but the proportion of Ti is 0.3 to 6% by weight.
Similar effects were confirmed for all cases where the amount of Sn was within the range of %.

また、Sn−Ti合金の形状は板・テープ・線材等であ
っても差し支えるものではない。
Further, the shape of the Sn-Ti alloy may be a plate, tape, wire, etc. without any problem.

上記の他、この発明の精神の範囲内で種々の変更や変形
が可能であることはいうまでもない。例えば、Snに加
えるT1はスポンジTi1水素T1に限定されるもので
はない。
It goes without saying that in addition to the above, various changes and modifications can be made within the spirit of the invention. For example, T1 added to Sn is not limited to sponge Ti1 hydrogen T1.

[発明の効果] 以上のようにこの発明によれば、不活性ガス雰囲気下で
Snを600〜1750’Cに加熱溶融し、これに0.
3〜6.5重量%のTiを添加し、500〜1750°
Cで鋳造することにより、得られるSn−Ti合金を健
全かつ均質とし、実用的にすぐれたNb3Sn超電導線
材を与え得るという効果がある。
[Effects of the Invention] As described above, according to the present invention, Sn is heated and melted at 600 to 1750'C in an inert gas atmosphere, and then 0.00 to 0.05% is added to the Sn.
Add 3-6.5 wt% Ti, 500-1750°
Casting with C has the effect of making the resulting Sn-Ti alloy sound and homogeneous and providing a practically excellent Nb3Sn superconducting wire.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例/によって得られたSn−T
i合金を用いて製造されたNb3Sn超電導線複合状況
を示す断面構成図である。 図において、(1)はSn−Ti合金、(2)はNb。 1 : Sn−Ti合金 Nb 3:Cu
FIG. 1 shows Sn-T obtained according to an embodiment of the present invention.
FIG. 2 is a cross-sectional configuration diagram showing a composite state of Nb3Sn superconducting wire manufactured using i alloy. In the figure, (1) is a Sn-Ti alloy, and (2) is Nb. 1: Sn-Ti alloy Nb 3: Cu

Claims (1)

【特許請求の範囲】[Claims] 不活性ガス雰囲気下で、Snを600〜1750℃に加
熱溶解し、これに0.3〜6.5重量%のTiを添加し
、500〜1750℃で鋳造することを特徴とするSn
−Ti合金の製造方法。
Sn characterized by heating and melting Sn at 600 to 1750°C in an inert gas atmosphere, adding 0.3 to 6.5% by weight of Ti, and casting at 500 to 1750°C.
-Method for producing Ti alloy.
JP22441988A 1988-09-09 1988-09-09 Method for producing Sn-Ti alloy Expired - Lifetime JPH0676625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22441988A JPH0676625B2 (en) 1988-09-09 1988-09-09 Method for producing Sn-Ti alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22441988A JPH0676625B2 (en) 1988-09-09 1988-09-09 Method for producing Sn-Ti alloy

Publications (2)

Publication Number Publication Date
JPH0273930A true JPH0273930A (en) 1990-03-13
JPH0676625B2 JPH0676625B2 (en) 1994-09-28

Family

ID=16813483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22441988A Expired - Lifetime JPH0676625B2 (en) 1988-09-09 1988-09-09 Method for producing Sn-Ti alloy

Country Status (1)

Country Link
JP (1) JPH0676625B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0905218A2 (en) * 1997-09-26 1999-03-31 IRT-Innovative Recycling Technologie GmbH Process for making a granulate for generate ignition germs in fuel and propellants
US6548187B2 (en) 2001-04-19 2003-04-15 Mitsubishi Denki Kabushiki Kaisha Sn based alloy containing Sn—Ti compound, and precursor of Nb3SN superconducting wire
KR100968483B1 (en) * 2008-01-11 2010-07-07 케이. 에이. 티. (주) Continuous casting method of Sn-based alloy for the precursor of Nb3Sn-based superconducting wire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0905218A2 (en) * 1997-09-26 1999-03-31 IRT-Innovative Recycling Technologie GmbH Process for making a granulate for generate ignition germs in fuel and propellants
EP0905218A3 (en) * 1997-09-26 1999-11-03 IRT-Innovative Recycling Technologie GmbH Process for making a granulate for generate ignition germs in fuel and propellants
US6548187B2 (en) 2001-04-19 2003-04-15 Mitsubishi Denki Kabushiki Kaisha Sn based alloy containing Sn—Ti compound, and precursor of Nb3SN superconducting wire
KR100968483B1 (en) * 2008-01-11 2010-07-07 케이. 에이. 티. (주) Continuous casting method of Sn-based alloy for the precursor of Nb3Sn-based superconducting wire

Also Published As

Publication number Publication date
JPH0676625B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
CN108315581A (en) A kind of low beryllium content copper alloy and preparation method thereof of high intensity high softening temperature
JPH0273930A (en) Manufacture of sn-ti alloy
JPS6117325B2 (en)
JPS60423B2 (en) Manufacturing method of Nb↓3Sn composite material
CN110643875B (en) Smelting method for preparing fine-crystal pure niobium ingot
US3188198A (en) Method for deoxidizing metals
JPS6263626A (en) Production of low oxygen ti alloy
CN106906386B (en) A kind of method of regulation and control Al-La strength of alloy and plasticity
JPH03177523A (en) Production of sn-ta alloy
KR100485257B1 (en) A method for manufacturing aluminium based alloy using plasma
KR102588732B1 (en) Ti-15Zr manufacturing method with improved casting process applied
US1023604A (en) Metal-casting.
JPS59219446A (en) Production of fe-ti alloy for occluding hydrogen
JPS61174355A (en) Manufacture of mother alloy for amorphous alloy
JPS63179032A (en) Alloy for superconducting material and its production
US1024476A (en) Article composed essentially of titanium and silver and method of producing the same.
JPS58221243A (en) Method for refining copper alloy
JPS633012B2 (en)
JPS63225413A (en) Manufacture of compound superconductive wire
JPS6352753A (en) Continuous casting method using heating mold
US1020516A (en) Article composed essentially of titanium and lead and method of producing the same.
CN112048654A (en) CuCrZr intermediate alloy with high Cr content and magnetic suspension smelting production method thereof
JPH01143744A (en) Production of oxide superconducting fine wire
JPS61223172A (en) Manufacture of intermetallic compound tial base alloy
JPH04246137A (en) Production of ti-al alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 14

EXPY Cancellation because of completion of term