JPS63179032A - Alloy for superconducting material and its production - Google Patents

Alloy for superconducting material and its production

Info

Publication number
JPS63179032A
JPS63179032A JP1018787A JP1018787A JPS63179032A JP S63179032 A JPS63179032 A JP S63179032A JP 1018787 A JP1018787 A JP 1018787A JP 1018787 A JP1018787 A JP 1018787A JP S63179032 A JPS63179032 A JP S63179032A
Authority
JP
Japan
Prior art keywords
alloy
superconducting
calcia
content
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1018787A
Other languages
Japanese (ja)
Other versions
JPH0355530B2 (en
Inventor
Toru Degawa
出川 通
Kinya Kamata
勤也 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP1018787A priority Critical patent/JPS63179032A/en
Publication of JPS63179032A publication Critical patent/JPS63179032A/en
Publication of JPH0355530B2 publication Critical patent/JPH0355530B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PURPOSE:To improve critical current density and workability, by restricting impurities in Cu-Nb or Cu-V alloy to specific amounts of O and C and specifying a dendritic diameter. CONSTITUTION:This alloy has a composition consisting of, by weight, 10-60% Nb or V, <=250ppm O, 10-500ppm Ca, and the balance Cu and, in this alloy, the dendritic diameter is regulated to 50-300mu. In order to obtain this alloy, first refining is carried out in vacuum or under a nonoxidizing atmosphere by the use of a vessel in which at least internal surface is constituted of calcia refractory material of >=95wt.% CaO content so as to prepare an alloy containing Cu and Nb or V. Then the resulting molten alloy is cast in a calcia mold. This alloy has extremely excellent workability and mechanical properties and, moreover, it provides high critical current density owing to its dendritic size and also has superior superconductivity.

Description

【発明の詳細な説明】 [a業上の利用分野] 本発明は超伝導材料用合金及びその製造方法に係り、特
に臨界電流密度(Jc)及び加工性等が著しく高い超伝
導材料用合金及びその製造方法に関する。
Detailed Description of the Invention [Field of Application in Industry A] The present invention relates to an alloy for superconducting materials and a method for producing the same, and particularly relates to an alloy for superconducting materials and a method for manufacturing the same. It relates to its manufacturing method.

[従来の技術] 超伝導状態で電力消費なしに高密度の電流を流す超伝導
現象を示す金属材料は、高磁界を経済的に発生できるこ
とから、極めて幅広い利用法が提案されている。
[Prior Art] Metal materials exhibiting a superconducting phenomenon in which a high-density current flows without power consumption in a superconducting state can economically generate a high magnetic field, and an extremely wide range of uses have been proposed.

超伝導材料のうちNbaSn多芯線材等は、従来、ブロ
ンズ法といわれる複合加工法により製作されている。ブ
ロンズ法は、ブロンズ即ち、Cu−3n(〜8at、%
)合金のマトリックス中にNbの芯を入れた複合体を線
引き加工し、約700℃で熱処理を行い、この熱処理に
よってNbの芯の表面にNb3Snの層を生成するもの
である(「固体物理J VoJ2.14.No。
Among superconducting materials, NbaSn multicore wires and the like have conventionally been manufactured by a composite processing method called the bronze method. The bronze method is a method for bronze, that is, Cu-3n (~8at, %
) A composite with a Nb core in an alloy matrix is wire-drawn and heat-treated at approximately 700°C, and this heat treatment produces a layer of Nb3Sn on the surface of the Nb core ("Solid State Physics J. VoJ2.14.No.

6.1979)。6.1979).

このようにして得られる超伝導材料のうち、小型の応用
はすでに実用段階に入っているものがいくつかある。ま
た、現在においては、超伝導発電機、超伝導高エネルギ
ー加速器、核融合装置あるいは大型電子計算機などで超
伝導の利用の研究が盛んになされている。このような応
用拡大のために、超伝導材料、冷凍・冷却技術、超伝導
電磁石製作技術などの基盤技術の総合的レベルアップが
望まれており、特に超伝導材料の分野では、すでに実用
されている超伝導材料も材質面や製造方法の研究により
、特性の一層の向上が期待されている。しかして、現在
、特に、化合物系線材においては新しい製造方法として
In 5itu法、Infiltration法、粉末
冶金法が注目されている。
Among the superconducting materials obtained in this way, some small-scale applications have already entered the practical stage. Furthermore, research is currently being actively conducted on the use of superconductivity in superconducting power generators, superconducting high-energy accelerators, nuclear fusion devices, large-scale electronic computers, and the like. In order to expand such applications, it is desired to comprehensively improve basic technologies such as superconducting materials, refrigeration/cooling technology, and superconducting electromagnet manufacturing technology.In particular, in the field of superconducting materials, there is a need for improvements that have already been put into practical use. The properties of superconducting materials currently available are expected to further improve through research into materials and manufacturing methods. Therefore, at present, especially in compound wire rods, the In 5 Ittu method, Infiltration method, and Powder Metallurgy method are attracting attention as new manufacturing methods.

In 5itu法は、Cu−Nb−5nあるいはCu−
V−Ga3元合金インゴットを使ってNb3Snあるい
はV2 Ga化合物の不連続の極細繊維を多量に含む線
材を作製する方法である。適当な組成のCu−Nb−5
n合金あるいはCu−V−Ga合金インゴットでは、C
u基合金のマトリックス中にNbあるいはVのデンドラ
イトが分散した相組織をもつ。この2相はともに冷間加
工が可能であり、圧延線引きなどにより細線まで強加工
するとNbあるいはVの繊維が多数密接してCu合金中
に配列した線材が得られる。これを適当な温度で拡散熱
処理するとNb3SnあるいはV3 Ga層が生成する
。In 5itu型線材において不連続超伝導繊維が電
気抵抗零を示す理由として、超伝導近接効果や繊維間の
部分的接触が考えられている。
In 5itu method, Cu-Nb-5n or Cu-
This method uses a V-Ga ternary alloy ingot to produce a wire containing a large amount of discontinuous ultrafine fibers of Nb3Sn or V2Ga compounds. Cu-Nb-5 with appropriate composition
In n alloy or Cu-V-Ga alloy ingot, C
It has a phase structure in which Nb or V dendrites are dispersed in the matrix of the u-based alloy. Both of these two phases can be cold-worked, and when they are strongly worked to a fine wire by rolling and drawing, a wire rod in which a large number of Nb or V fibers are closely arranged in a Cu alloy can be obtained. When this is subjected to diffusion heat treatment at an appropriate temperature, an Nb3Sn or V3Ga layer is generated. Superconducting proximity effects and partial contact between fibers are considered to be the reason why discontinuous superconducting fibers exhibit zero electrical resistance in In 5 itu type wires.

In 5itu法では、Cu−V(又はCu−Nb)2
元合金インゴットを作り、これを細線に線引き加工した
後、表面にGa (Sn)をメッキし、適当な温度で熱
処理して、Ga (Sn)を線材内部へ拡散させ、V3
 Ga (Nbs Sn)繊維を生成させる方法も開発
されている。この方法によれば合金の加工が著しく容易
になるばかりでなく、Ga (Sn)量を任意に増加さ
せることができるため大きい臨界電流密度(Jc)が得
られる。
In the In 5 itu method, Cu-V (or Cu-Nb)2
After making an original alloy ingot and drawing it into a thin wire, the surface is plated with Ga (Sn) and heat treated at an appropriate temperature to diffuse Ga (Sn) into the wire, and V3
Methods for producing Ga(NbsSn) fibers have also been developed. According to this method, not only the processing of the alloy becomes extremely easy, but also a large critical current density (Jc) can be obtained because the amount of Ga (Sn) can be increased arbitrarily.

特にVs G a  In 5itu線材は複合加工法
による極細多心線をしのぐ20ステラ(T)の磁場中で
2X10’A/cm’の全所面積当たりのJcを示す。
In particular, the Vs Ga In 5 itu wire exhibits a Jc per total area of 2×10'A/cm' in a magnetic field of 20 Stella (T), which exceeds that of an ultrafine multifilamentary wire produced by a composite processing method.

In 5itu法は極細多心線を複合加工法によっても
簡単に作製でき、またこの微細繊維自身が線材を機械的
に強化しているため、曲げや、引っ張りなどの応力に対
して超伝導特性の劣化が少ない等の優れた効果を有し、
工業的に極めて有利な方法である([日本の科学と技術
J  ’82/超伝導P81〜88)。
With the In 5 itu method, ultra-fine multi-filament wires can be easily produced using a composite processing method, and since the fine fibers themselves mechanically strengthen the wire, superconducting properties are maintained against stresses such as bending and tension. It has excellent effects such as less deterioration,
This is an industrially extremely advantageous method ([Japanese Science and Technology J'82/Superconductivity P81-88).

このようなIn 5itu法による超伝導材料の製造に
は、まずCu−V合金、Cu−Nb合金を製造する必要
があり、その方法としては、■ 耐火物容器中で高周波
誘導加熱によりインダクション加熱溶解し、水冷Cuモ
ールドへ鋳込む。
In order to manufacture superconducting materials using the In 5 itu method, it is first necessary to manufacture Cu-V alloys and Cu-Nb alloys, and the methods include: (1) induction heating melting using high-frequency induction heating in a refractory container; Then, cast into a water-cooled Cu mold.

■ 消耗電極法又は非消耗電極法によりアーク溶解法で
鋳造する。(現在、偏析の少ない点から消耗電極法が主
に採用あれ、Cu / N b複合材が電極として使用
されており、この方法は、工業的大量生産に有利である
。) の2方法がある。
■ Cast by arc melting method using consumable electrode method or non-consumable electrode method. (Currently, the consumable electrode method is mainly adopted due to its low segregation, and Cu/Nb composite material is used as the electrode, and this method is advantageous for industrial mass production.) .

[発明が解決しようとする問題点コ しかるに、■及びNbはともに極めて融点が高<(Vの
融点は1900±25℃、Nbの融点は2468±10
℃)、かつ酸素、窒素、炭素等との親和力が強く高反応
性であることから、V。
[Problems to be Solved by the Invention]However, both (1) and Nb have extremely high melting points.
℃), and has a strong affinity with oxygen, nitrogen, carbon, etc., and is highly reactive.

Nbを含む合金の溶解は極めて困難であり、■の方法に
おいて、通常の耐火物容器を用いた溶解では良好な溶製
を行うことができない。
It is extremely difficult to melt an alloy containing Nb, and in the method (2), good melting cannot be achieved by melting using a normal refractory container.

即ち、一般に知られている溶製用耐火材であるマグネシ
ア質、アルミナ質、ジルコニア貿等の炉材では、175
0℃程度の溶解が上限であり、それよりも高い融点の金
属や合金を溶製することはできなかった。また、溶融し
得ても、O,N等の不純物含有量の高いものとなってい
る。
That is, for furnace materials such as magnesia, alumina, and zirconia, which are generally known refractory materials for melting, 175
The upper limit of melting is about 0°C, and it has not been possible to melt metals and alloys with higher melting points than that. Further, even if it can be melted, it has a high content of impurities such as O and N.

また、高温溶製用高周波炉材として、グラファイト貿の
耐火材料があるが、V、Nbは炭素と非常に反応し易く
、コンタミネーションによって合金の超伝導特性は劣化
を避けられない。
In addition, there is a graphite refractory material used as a high-frequency furnace material for high-temperature melting, but V and Nb react very easily with carbon, and contamination inevitably deteriorates the superconducting properties of the alloy.

しかも、In 5itu法に用いるCu−Nb合金又は
Cu−V合金は、超伝導材料とする場合には、前述の如
く、この合金を加工して線材とした後、Sn又はGaメ
ッキを施すことにより、Sn又はGaの拡散処理する必
要があるが、線材への加工性に優れた合金を得るために
は、合金系の酸素、窒素、炭素等の混入量が極めて少な
いことが重要な要件となる。
Moreover, when the Cu-Nb alloy or Cu-V alloy used in the In 5 itu method is to be made into a superconducting material, as described above, after processing this alloy into a wire rod, it can be coated with Sn or Ga. However, in order to obtain an alloy with excellent workability into wire rods, it is important that the amount of oxygen, nitrogen, carbon, etc. mixed into the alloy system is extremely small. .

しかしながら、従来においては、■の高周波訪導加熱法
では、超伝導材料として使用するに好適な、優れた加工
性を有する低酸素Cu−Nb合金あるいはCu−V合金
は得られていなかった。
However, conventionally, low-oxygen Cu--Nb alloys or Cu--V alloys with excellent workability suitable for use as superconducting materials have not been obtained by the high-frequency conductive heating method (2).

これに対し、■のアーク溶解法では、■のような耐火容
器からの不純物の混入等の問題はないが、この方法では
合金の初期デンドライト径が1〜20μmと細かくなり
すぎ、そのまま使用に供することができる合金が得られ
ず、何らかの後処理を要するという問題があった。
On the other hand, with the arc melting method (■), there is no problem such as the contamination of impurities from the fireproof container as in (■), but with this method, the initial dendrite diameter of the alloy is too small, 1 to 20 μm, and it cannot be used as is. There was a problem in that an alloy that could be used as an alloy could not be obtained, and that some kind of post-treatment was required.

本出願人は、このような問題を解決する、超伝導材料用
合金として好適な、優れた特性を有するCu−Nb合金
又はCu−V合金及びその溶製方法として、 Nb又はVを10〜60重量%、AJZ及び/又はTi
を0.01〜0.5重量%、0を250ppm以下、C
aを10〜500ppm含み、残部は実質的にCuであ
ることを特徴とする超伝導材料用合金、 及び 少なくとも内面が電融カルシアで構成された容器中のC
uとNb又はVとを有する合金溶湯中に、真空又は非酸
化性雰囲気下でA1及び/又はTiを存在せしめること
により、上記合金を得ることを特徴とする超伝導材料用
合金の製造方法、 を先に特許出願した(特願昭61−1064号。
The present applicant has proposed a Cu-Nb alloy or a Cu-V alloy having excellent properties suitable as an alloy for superconducting materials and a method for producing the same, which solves such problems. Weight %, AJZ and/or Ti
0.01 to 0.5% by weight, 0 to 250 ppm or less, C
An alloy for a superconducting material, characterized in that it contains 10 to 500 ppm of a, the remainder being substantially Cu, and a container in which at least the inner surface is composed of fused calcia.
A method for producing an alloy for superconducting materials, characterized in that the above alloy is obtained by making A1 and/or Ti exist in a molten alloy containing u and Nb or V in a vacuum or a non-oxidizing atmosphere. I filed a patent application for it first (Japanese Patent Application No. 1064/1983).

以下「先願」という)。(hereinafter referred to as "prior application").

上記先願によれば、超伝導材料として要求される加工性
、機械的特性を十分に満足し得る合金が提供されるが、
超伝導材料分野においては、常により優れた特性を有す
る材料が求められており、臨界電流密度(Jc)、加工
性等をより一層向上することができる技術の出現が望ま
れている。
According to the above-mentioned prior application, an alloy is provided that fully satisfies the workability and mechanical properties required as a superconducting material.
In the field of superconducting materials, there is always a demand for materials with better properties, and the emergence of technology that can further improve critical current density (Jc), workability, etc. is desired.

[問題点を解決するための手段] 本発明は、Jcや加工性等がより一層改善された超伝導
材料用合金及びその製造方法を提供するものであって、 Nb又はVを10〜60重量%、Oを250ppm以下
、Caを10〜500ppm含み、残部は実質的にCu
であって、デンドライト径が50〜300μmであるこ
とを特徴とする超伝導材料用合金、 及び 少なくとも内面がCaO含有量95重量%以上のカルシ
ア買耐火材で構成された容器を用いて、真空又は非酸化
性雰囲気下で溶製して得たCuとNb又はVとを含有す
る合金溶湯を、カルシア質鋳型で鋳造することにより、
Nb又はVを10〜60重量%、0を250ppm以下
、Caを10〜500ppm含み、残部は実質的にCu
であって、デンドライト径が50〜300μmである合
金鋳塊を得ることを特徴とする超伝導材料用合金の製造
方法、 を要旨とするものである。
[Means for Solving the Problems] The present invention provides an alloy for superconducting materials that has further improved Jc, workability, etc., and a method for producing the same. %, contains 250 ppm or less of O, 10 to 500 ppm of Ca, and the remainder is substantially Cu.
A container made of an alloy for superconducting material characterized by having a dendrite diameter of 50 to 300 μm, and a calcia refractory material having at least an inner surface of 95% by weight or more of CaO, is used in a vacuum or By casting a molten alloy containing Cu and Nb or V obtained by melting in a non-oxidizing atmosphere in a calcia mold,
Contains 10 to 60% by weight of Nb or V, 250 ppm or less of 0, 10 to 500 ppm of Ca, and the remainder is substantially Cu.
The gist of the present invention is a method for producing an alloy for superconducting material, which is characterized by obtaining an alloy ingot having a dendrite diameter of 50 to 300 μm.

即ち、本発明者らは、超伝導材料の臨界電流密度(Jc
)等の特性を高めるべく鋭意検討を重ねた結果、合金中
の初期デンドライトの寸法が非常に重要であること、ま
た合金の線引加工性は、合金中のCa量に影響されるこ
とを見出し、本発明を完成させた。
That is, the present inventors have determined that the critical current density (Jc
) and other properties, we discovered that the initial dendrite size in the alloy is very important, and that the wire drawability of the alloy is affected by the amount of Ca in the alloy. , completed the present invention.

以下に本発明につき詳細に説明する。The present invention will be explained in detail below.

なお、本明細書において「%」は「重量%」を表す。In addition, in this specification, "%" represents "weight %".

本発明の超伝導材料合金は、Nb又はVを10〜60%
、0を250ppm以下、Caを10〜500ppm含
有し、残部は実質的にCuであって、デンドライト径が
50〜300μmの合金である。
The superconducting material alloy of the present invention contains 10 to 60% Nb or V.
, 250 ppm or less of 0, 10 to 500 ppm of Ca, the remainder being substantially Cu, and the dendrite diameter is 50 to 300 μm.

合金中の0含有量が250ppmを超えた場合、あるい
はCa含有量が10ppm未満又は500ppmを超え
た場合には、良好な加工性が得られない。本発明におい
ては、特に0含有量100〜200ppm、Ca含有量
200〜400ppmであることが好ましい。
If the Ca content in the alloy exceeds 250 ppm, or if the Ca content is less than 10 ppm or more than 500 ppm, good workability cannot be obtained. In the present invention, it is particularly preferable that the 0 content is 100 to 200 ppm and the Ca content is 200 to 400 ppm.

一方、合金鋳塊のデンドライト径が50μm未満又は3
00μmを超える場合には高い臨界電流密度が得られな
い。本発明においては、デンドライト径は特に100〜
300μmであることが好ましい。
On the other hand, the dendrite diameter of the alloy ingot is less than 50 μm or 3
If it exceeds 00 μm, a high critical current density cannot be obtained. In the present invention, the dendrite diameter is particularly 100~
Preferably, it is 300 μm.

ところで、■又はNbの含有量は、多い程、熱処理によ
りVsCa又はNb3Snの生成量が大きくなるが、あ
まりに多いとV又はNbがCa又はSnの拡散障壁とな
り、またJc値の低下、加工性の劣化を招く。このため
V又はNbは10〜60%、好ましくは20〜40%と
する。
By the way, the larger the content of (■) or Nb, the greater the amount of VsCa or Nb3Sn produced by heat treatment, but if it is too large, V or Nb will act as a diffusion barrier for Ca or Sn, and may also reduce the Jc value and impair workability. lead to deterioration. Therefore, the content of V or Nb is 10 to 60%, preferably 20 to 40%.

このような本発明の超伝導材料用合金は、以下に説明す
る本発明の方法に従って容易に製造することができる。
Such an alloy for superconducting materials of the present invention can be easily manufactured according to the method of the present invention described below.

本発明の方法においては、まず、■又はNbを含有する
合金を、少なくとも内面がCaO含有量95%以上のカ
ルシア質耐人材で構成された容器を用い、真空又は非酸
化性雰囲気(例えば、アルゴン、ヘリウムなど)下で、
常法例えば高周波あるいは低周波誘導加熱法等で加熱し
て溶解させて溶製する。
In the method of the present invention, first, (1) or an alloy containing Nb is placed in a vacuum or non-oxidizing atmosphere (for example, argon , helium, etc.) under
It is heated and melted using a conventional method such as a high frequency or low frequency induction heating method.

容器を構成するカルシア質耐火材としては、CaO含有
率の高いもの程好適である。カルシア質耐火材に含有さ
れる他の成分としては、Z ro2.MgO,Y203
等の他の高融点酸化物が挙げられる。なお、S to2
.AfL203 。
As the calcia refractory material constituting the container, one with a higher CaO content is more suitable. Other components contained in the calcia refractory material include Z ro2. MgO, Y203
Other high melting point oxides such as In addition, S to2
.. AfL203.

Fe2O3,B203 、TiO2等の耐火材の融点を
低下させるような成分は、耐熱性を低下させ、高温溶解
が不可能となることから総量で3%以下とりわけ1%以
下とするのが好ましい。
Components that lower the melting point of the refractory material, such as Fe2O3, B203, and TiO2, lower the heat resistance and make high-temperature melting impossible, so the total amount is preferably 3% or less, particularly 1% or less.

このようなCaO含有量の高いカルシア質耐火材は酸化
物、硫化物を吸着し易く、溶湯中の酸化物、硫化物を吸
収し、酸化物、硫化物系の非金属介在物量を大幅に減少
させることができ、また、熱力学的に安定であり、Nb
、Vのような易酸化性金属に対する安定性が高く、高温
溶解が可能である。本発明において、カルシア質耐火材
としては、特に電融カルシアを用い、そのCaO含有量
は98%以上であることが好ましい。
Such calcia refractory materials with high CaO content easily adsorb oxides and sulfides, absorbing oxides and sulfides in molten metal, and greatly reducing the amount of oxide and sulfide-based nonmetallic inclusions. It is also thermodynamically stable and Nb
, V and other easily oxidizable metals, and can be melted at high temperatures. In the present invention, especially fused calcia is used as the calcia refractory material, and the CaO content thereof is preferably 98% or more.

本発明に係る耐火材を製造するには、例えば電融カルシ
ア粉末並びに必要に応じてZrO2゜MgO,Y2O3
などを適宜の割合で混合し、これを金型成形、スリップ
キャスティング、ラバープレス等で坩堝形状に成形し、
焼成する。なお、常法に従って定形耐火物あるいは不定
形耐火物となし、かかる耐火物によって容器内面を電融
カルシア製としても良い。
In order to produce the refractory material according to the present invention, for example, fused calcia powder and, if necessary, ZrO2°MgO, Y2O3
etc. in an appropriate ratio, and mold this into a crucible shape using die molding, slip casting, rubber press, etc.
Fire. In addition, a shaped refractory or an unshaped refractory may be made according to a conventional method, and the inner surface of the container may be made of fused calcia using such a refractory.

本発明においては、少なくとも内面がこのようなカルシ
ア質耐人材で構成された容器中のCuとV又はNbとの
合金溶湯中に、A1及び/又はTiを冷却固化後のA1
及び/又はTi残留量が001〜0.5%となるように
添加しても良い。
In the present invention, A1 and/or Ti is cooled and solidified in a molten alloy of Cu and V or Nb in a container whose inner surface is made of such a calcia-based material.
And/or it may be added so that the residual amount of Ti is 0.001 to 0.5%.

A2及び/又はTiを溶湯中に存在させることにより、
溶湯中の0含有量は、Aλ及び/又はT1の脱O作用に
より低減され、得られる合金中の0含有量を容易に25
0ppm以下とすることができる。
By making A2 and/or Ti exist in the molten metal,
The 0 content in the molten metal is reduced by the O removal action of Aλ and/or T1, and the 0 content in the resulting alloy is easily reduced to 25
It can be set to 0 ppm or less.

この場合、溶製に用いる容器の内面を電融カルシアとす
ることにより、Aλ及び/又はTiの添加により溶湯中
へのCaのコンタミを防止し、得られる合金中のCa含
有量を容易に10〜500ppmの範囲とすることが可
能となる。
In this case, by making the inner surface of the container used for melting into fused calcia, contamination of Ca into the molten metal can be prevented by adding Aλ and/or Ti, and the Ca content in the resulting alloy can be easily reduced to 10 It becomes possible to set it as the range of 500 ppm.

なお、本発明方法においては、合金の超伝導特性、加工
特性を改善するため溶製に際し、溶湯中にY、Hf、T
a、Mo、Zr、希土類元素の1種又は2種以上を添加
しても良い。希土類元素としては、Ce、Pr、Nd、
Pm、Sm、En。
In addition, in the method of the present invention, in order to improve the superconducting properties and processing properties of the alloy, Y, Hf, T,
One or more of a, Mo, Zr, and rare earth elements may be added. Rare earth elements include Ce, Pr, Nd,
Pm, Sm, En.

Gd、Tb、Dy、Ho、Er、Tm、Yb。Gd, Tb, Dy, Ho, Er, Tm, Yb.

Lnのいずれでも良いが、通常はCeを用いる。Although any of Ln may be used, Ce is usually used.

これらのY、Hf、Ta、Mo、Zr、希土類元素の添
加量は、合金中の残留量が2%以下となるような量とす
るのが好ましい。Y、Hf、Ta。
The amounts of Y, Hf, Ta, Mo, Zr, and rare earth elements to be added are preferably such that the amount remaining in the alloy is 2% or less. Y, Hf, Ta.

Mo、Zr、希土類元素の添加により、脱酸効果及び超
伝導特性等は更に向上される。
By adding Mo, Zr, and rare earth elements, the deoxidizing effect and superconducting properties are further improved.

このようにして得られたCu−V又はCu−Nb合金溶
湯は次いでカルシア質鋳型に注湯して鋳造する。
The Cu-V or Cu-Nb alloy molten metal thus obtained is then poured into a calcia mold and cast.

この場合、用いるカルシア買鋳型のCaO含有量も高い
もの程好ましく、CaO含有量95%以上、特に98%
以上のものが好適である。
In this case, it is preferable that the CaO content of the calcia mold used is higher, and the CaO content is 95% or more, especially 98%.
The above are preferred.

カルシア質鋳型による鋳造により、適当な鋳造条件を設
定することが可能となり、しかも鋳造中における溶湯の
汚染等を防止して、本発明の0含有量250ppm以下
、Ca含有量10〜250ppmで、デンドライト径5
0〜300μmのCu−V又はCu−Nb合金が容易に
得られる。
Casting using a calcia mold makes it possible to set appropriate casting conditions, and prevents contamination of the molten metal during casting. Diameter 5
Cu-V or Cu-Nb alloys of 0 to 300 μm are easily obtained.

本発明の超伝導材料用合金は、特にIn 5itu法に
よる超伝導材料の製造原料として極めて有用である。
The alloy for superconducting materials of the present invention is extremely useful as a raw material for producing superconducting materials, particularly by the In 5 itu method.

[作用] CaOは高融点であると共に、高温で極めて安定であり
、易酸化性高融点金属であるNb、■を含む合金溶湯に
対する安定性が極めて高く、高温溶解が可能である。し
かして、溶製、鋳造にあたり、金属酸化物を生成して溶
湯を不純物により汚染することがない。しかも、CaO
を主体とする耐火物は酸化物や硫化物などといわゆる炉
壁反応し易く、溶湯中の酸化物、硫化物等を吸収し、非
金属介在量を大幅に減少させることができ、その上、酸
素、水素、窒素等による汚染を防止する。
[Function] CaO has a high melting point and is extremely stable at high temperatures, and has extremely high stability with respect to molten alloys containing easily oxidizable high melting point metals such as Nb and (2), and can be melted at high temperatures. Therefore, during melting and casting, metal oxides are not generated and the molten metal is not contaminated with impurities. Moreover, CaO
Refractories mainly composed of oxides and sulfides easily react with so-called furnace walls, and can absorb oxides and sulfides in the molten metal, greatly reducing the amount of nonmetallic inclusions. Prevent contamination by oxygen, hydrogen, nitrogen, etc.

このため、本発明の方法によれば、特定のO含有量、C
a含有量でしかも特定のデンドライト径の合金を容易に
鋳造することができる。
Therefore, according to the method of the present invention, specific O content, C
An alloy with a specific dendrite diameter and a content can be easily cast.

しかして、このような方法により得られる本発明の超伝
導材料用合金は、高清浄であり加工性に著しく優れ、超
伝導特性にも極めて優れる。
Therefore, the alloy for superconducting materials of the present invention obtained by such a method is highly clean, has extremely excellent workability, and has extremely excellent superconducting properties.

[実施例コー 以下に本発明を実施例により更に具体的に説明するが、
本発明はその要旨を超えない限り以下の実施例に限定さ
れるものではない。
[Example] The present invention will be explained in more detail with reference to Examples below.
The present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例I K 融カルシア(CaO含有率99%)でカルシア製坩
堝を製作した。これを用いて、Ar7囲気下でCu−4
0%Nb合金又はCu−40%■合金の溶解を行い、得
られた溶湯を電融カルシア(CaO含有率99%)製鋳
型で鋳造して、0含有量250ppm以下、Ca含有量
10〜5o。
Example I K A calcia crucible was manufactured using fused calcia (CaO content: 99%). Using this, Cu-4 under Ar7 atmosphere
0%Nb alloy or Cu-40%■ alloy is melted, and the obtained molten metal is cast in a mold made of fused calcia (CaO content 99%), with a content of 0% of 250ppm or less and a content of Ca of 10 to 5o. .

P P m sデンドライト径50〜300μmの本発
明のCu−Nb又はCu−V合金を得た。
A Cu-Nb or Cu-V alloy of the present invention having a P P m s dendrite diameter of 50 to 300 μm was obtained.

また、比較のため、坩堝の耐火材質及び鋳型材質を変え
て溶製、鋳造を行って、0含有量、Ca含有量及びデン
ドライト径のいずれかが本発明の範囲をはずれる合金を
製造した。
For comparison, melting and casting were performed with different refractory materials and mold materials, and alloys were produced in which any of the zero content, Ca content, and dendrite diameter was outside the range of the present invention.

各合金を用いて、デンドライト径と臨界電流密度(Jc
H外部磁場ITcの場合)との関係、Ca含有量と線引
可能径との関係及び0含有量と線引可能径との関係を調
べた。
Using each alloy, dendrite diameter and critical current density (Jc
H external magnetic field ITc), the relationship between the Ca content and the drawable diameter, and the relationship between the 0 content and the drawable diameter were investigated.

結果を第1図〜第3図に示す。The results are shown in FIGS. 1 to 3.

第1図〜第3図より、本発明の超伝導材料用合金は、J
c値が高く、しかも加工性も極めて良好であることが明
らかである。
From FIGS. 1 to 3, it is clear that the alloy for superconducting materials of the present invention is J
It is clear that the c value is high and the workability is also extremely good.

[発明の効果コ 以上詳述した通り、本発明の超伝導材料用合金は、Nb
又はVを10〜60重量%、0を250ppm以下、C
aを10〜500ppm含み、残部は実質的にCuであ
って、デンドライト径が50〜300ppmであるもの
であり、0含有量、Ca含有量がともに低く、極めて優
れた加工性、機械的特性を有する上に、そのデンドライ
ト寸法から高いJc値が得られ、超伝導特性に優れる。
[Effects of the Invention] As detailed above, the alloy for superconducting materials of the present invention contains Nb
or 10 to 60% by weight of V, 250 ppm or less of 0, C
It contains 10 to 500 ppm of a, the remainder is substantially Cu, and the dendrite diameter is 50 to 300 ppm, and has low 0 content and low Ca content, and has extremely excellent workability and mechanical properties. In addition, a high Jc value can be obtained from its dendrite size, and it has excellent superconducting properties.

このような本発明の超伝導材料用合金は、特にIn 5
itu法による超伝導材料の製造原料として極めて有用
である。
Such an alloy for superconducting materials of the present invention is particularly suitable for In 5
It is extremely useful as a raw material for producing superconducting materials using the itu method.

しかして、このような本発明の超伝導材料用合金は、少
なくとも内面がCaO含有率95%以上のカルシア質耐
火物で構成された容器による溶製及びカルシア質鋳型に
よる鋳造を必須条件とする本発明の方法により容易に製
造される。
Therefore, the alloy for superconducting materials of the present invention must be melted in a container whose inner surface is made of a calcia refractory with a CaO content of 95% or more, and cast in a calcia mold. easily manufactured by the method of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は実施例1で得られた結果を示すグラフ
であって、各々、第1図はデンドライト径とJc値との
関係、第2図はCa含有量と線引き可能径との関係、第
3図は0含有量と線引可能径との関係を示す。 代理人  弁理士  重 野  剛 第1図 デンドライト径(μm) 第2図 0含有量(ppm)
Figures 1 to 3 are graphs showing the results obtained in Example 1. Figure 1 shows the relationship between dendrite diameter and Jc value, and Figure 2 shows the relationship between Ca content and drawable diameter. Figure 3 shows the relationship between the zero content and the drawable diameter. Agent Patent Attorney Tsuyoshi Shigeno Figure 1 Dendrite diameter (μm) Figure 2 0 content (ppm)

Claims (2)

【特許請求の範囲】[Claims] (1)Nb又はVを10〜60重量%、Oを250pp
m以下、Caを10〜500ppm含み、残部は実質的
にCuであって、デンドライト径が50〜300μmで
あることを特徴とする超伝導材料用合金。
(1) 10 to 60% by weight of Nb or V, 250pp of O
An alloy for superconducting material, characterized in that it contains 10 to 500 ppm of Ca, the remainder is substantially Cu, and has a dendrite diameter of 50 to 300 μm.
(2)少なくとも内面がCaO含有量95重量%以上の
カルシア質耐火材で構成された容器を用いて、真空又は
非酸化性雰囲気下で溶製して得たCuとNb又はVとを
含有する合金溶湯を、カルシア質鋳型で鋳造することに
より、Nb又はVを10〜60重量%、Oを250pp
m以下、Caを10〜500ppm含み、残部は実質的
にCuであって、デンドライト径が50〜300μmで
ある合金鋳塊を得ることを特徴とする超伝導材料用合金
の製造方法。
(2) Contains Cu and Nb or V obtained by melting in a vacuum or non-oxidizing atmosphere using a container whose inner surface is made of a calcia refractory material with a CaO content of 95% by weight or more. By casting the molten alloy in a calcia mold, 10 to 60% by weight of Nb or V and 250pp of O are added.
1. A method for producing an alloy for superconducting materials, the method comprising obtaining an alloy ingot containing 10 to 500 ppm of Ca, the remainder being substantially Cu, and having a dendrite diameter of 50 to 300 μm.
JP1018787A 1987-01-20 1987-01-20 Alloy for superconducting material and its production Granted JPS63179032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1018787A JPS63179032A (en) 1987-01-20 1987-01-20 Alloy for superconducting material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1018787A JPS63179032A (en) 1987-01-20 1987-01-20 Alloy for superconducting material and its production

Publications (2)

Publication Number Publication Date
JPS63179032A true JPS63179032A (en) 1988-07-23
JPH0355530B2 JPH0355530B2 (en) 1991-08-23

Family

ID=11743280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1018787A Granted JPS63179032A (en) 1987-01-20 1987-01-20 Alloy for superconducting material and its production

Country Status (1)

Country Link
JP (1) JPS63179032A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267797A (en) * 2007-03-28 2008-11-06 Mitsubishi Heavy Ind Ltd Metal melting crucible and its surface treatment method
JP2009243723A (en) * 2008-03-28 2009-10-22 Mitsubishi Heavy Ind Ltd Crucible for melting metal and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267797A (en) * 2007-03-28 2008-11-06 Mitsubishi Heavy Ind Ltd Metal melting crucible and its surface treatment method
JP2009243723A (en) * 2008-03-28 2009-10-22 Mitsubishi Heavy Ind Ltd Crucible for melting metal and its manufacturing method

Also Published As

Publication number Publication date
JPH0355530B2 (en) 1991-08-23

Similar Documents

Publication Publication Date Title
KR20060103160A (en) Method for manufacturing powder-metallurgy processed nb3sn superconducting wire, precursor to powder-metallurgy processed nb3sn superconducting wire
US4861751A (en) Production of high temperature superconducting materials
US4435228A (en) Process for producing NB3 SN superconducting wires
JP2002525790A (en) Protected superconducting component and its manufacturing method
Verhoeven et al. Deformation processed Cu-refractory metal composites
Fihey et al. I n situ multifilamentary superconducting wires fabricated using a controlled high‐temperature gradient
JPS63179032A (en) Alloy for superconducting material and its production
JP2002317232A (en) Tin based alloy containing tin-titanium based compound, production method therefor and precursory body of triniobium stannide superconducting wire rod using the alloy
Sharma Review on the fabrication techniques of A-15 superconductors
KR100596998B1 (en) Sn based alloy for the precursor of Nb3Sn superconducting wire, and the manufacturing method of the same
US20050016854A1 (en) Materials fabrication method and apparatus
KR100968483B1 (en) Continuous casting method of Sn-based alloy for the precursor of Nb3Sn-based superconducting wire
KR940006616B1 (en) Super conductive wire
JP3866926B2 (en) Powder method Nb (3) Superconducting connection structure manufacturing method using Sn superconducting wire
JP3945600B2 (en) Method for producing Nb 3 Sn superconducting wire
JPH0123539B2 (en)
JP4791346B2 (en) Nb3Sn superconducting wire, precursor therefor, and Nb composite single core wire for precursor
JPS63225413A (en) Manufacture of compound superconductive wire
Otubo et al. Submicron multifilamentary high performance Nb3Sn produced by powder metallurgy processing of large powders
JPH0676625B2 (en) Method for producing Sn-Ti alloy
JPS63257125A (en) Manufacture of superconductive wire
KR100676958B1 (en) Sn based alloy for the precursor of nb3sn superconducting wire, and the manufacturing method of the same
JPS63313416A (en) Superconductive wire rod and its manufacture
Verhoeven et al. Production techniques for discontinuous filament A-15 superconductor wire
JPH01204314A (en) Manufacture of oxide superconductor