JPS6144270A - Absorption type refrigerator - Google Patents
Absorption type refrigeratorInfo
- Publication number
- JPS6144270A JPS6144270A JP16491584A JP16491584A JPS6144270A JP S6144270 A JPS6144270 A JP S6144270A JP 16491584 A JP16491584 A JP 16491584A JP 16491584 A JP16491584 A JP 16491584A JP S6144270 A JPS6144270 A JP S6144270A
- Authority
- JP
- Japan
- Prior art keywords
- condenser
- absorber
- heat
- refrigerant
- partition wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、空気調和等に用いられる吸収式冷凍機に係り
、特に吸収式冷凍機のコンパクト化に好適な吸収器と凝
縮器に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an absorption refrigerating machine used for air conditioning and the like, and particularly to an absorber and a condenser suitable for making the absorption refrigerating machine more compact.
従来のこの種の装置としては、特開昭54−54554
号公報に記載のようK、
1)吸収器の上方に凝縮器を配置し、吸収器と凝縮器と
の熱交換を行っていた。A conventional device of this type is disclosed in Japanese Patent Application Laid-Open No. 54-54554.
As described in the publication, 1) A condenser was placed above the absorber to exchange heat between the absorber and the condenser.
2)吸収器に送られる濃溶液と冷媒を熱交換するための
予冷器を凝縮器内部に設けた。2) A precooler was installed inside the condenser to exchange heat between the concentrated solution sent to the absorber and the refrigerant.
ものが知られている。something is known.
しかし、1)のものは、凝縮器底部に冷媒は満液状態と
なっているため、冷媒は蒸発し難く、より多くの蒸発潜
熱を吸収器から奪うといった点にはあまり配慮されてい
なかったっ
また2)の点では、予冷器内での濃溶液の結晶が生じ易
く、その点に対しては、何も対策がとられていなかった
。However, in the case of 1), since the bottom of the condenser is filled with refrigerant, it is difficult for the refrigerant to evaporate, and little consideration was given to the fact that more latent heat of vaporization is taken away from the absorber. Regarding point 2), crystals are likely to form in the concentrated solution in the precooler, and no measures have been taken against this point.
本発明は、吸収器と凝縮器の熱交換を利用してより小さ
い冷却水伝熱管の体面を持った吸収器を利用することK
より、コンパクトな吸収式冷凍機を提供することにあろ
う
〔発明の概要〕
吸収器内での冷却管の熱通過率は、50〜60に、1/
−・S・℃である。それに対して、凝縮器内での冷却管
の熱通過率は、約250 K−17y?−s ACであ
る。さらK、吸収器内での溶液の飽和温度は、50℃で
あるのに対し、凝縮器内での冷媒の飽和温度は、40℃
である。The present invention utilizes absorber and condenser heat exchange to utilize an absorber with a smaller cooling water heat transfer tube body surface.
[Summary of the Invention] The heat passage rate of the cooling pipe in the absorber is 50 to 60, 1/
-・S・℃. On the other hand, the heat transfer rate of the cooling pipe in the condenser is approximately 250 K-17y? -s AC. Additionally, the saturation temperature of the solution in the absorber is 50°C, while the saturation temperature of the refrigerant in the condenser is 40°C.
It is.
上記の点に基づき、吸収器内の溶液から凝縮器内の冷媒
に熱を移動し、移動熱量を凝縮器において冷却水に排出
する。その際、熱通過率の違いKより、同量の熱Iを排
出する場合、吸収器で排出するより凝縮器で排出するほ
ど冷却水伝熱管の体面は小さくてよい。また上記の方法
で熱交換を行う場合には、結晶の心配は全くない。すな
わち、交換熱量をQ、熱伝達率をα、温度差をΔT、伝
熱面積をAとすると
Q=ΔT・α・A
である。沸とう、凝縮のαはα中10 ’ Kd/rr
/h℃(10KW/&K ) と非常に大きい。Based on the above points, heat is transferred from the solution in the absorber to the refrigerant in the condenser, and the transferred heat is discharged to the cooling water in the condenser. At this time, due to the difference K in heat transfer rate, when discharging the same amount of heat I, the body surface of the cooling water heat transfer tube may be smaller if it is discharged through a condenser rather than through an absorber. Furthermore, when heat exchange is performed using the above method, there is no need to worry about crystals. That is, if the amount of heat exchanged is Q, the heat transfer coefficient is α, the temperature difference is ΔT, and the heat transfer area is A, then Q=ΔT·α·A. α of boiling and condensation is 10' Kd/rr in α
/h℃ (10KW/&K), which is extremely large.
以上の考えを最大限に利用するためK、吸収器と凝縮器
の隔壁の面積を大きくするとともに、吸収器において濃
溶液の一部を隔壁に散布し、又、凝縮器において低温再
生器からの冷媒を隔壁に散布することを特徴とするもの
である。In order to make maximum use of the above idea, the areas of the partition walls between the absorber and condenser are increased, and a portion of the concentrated solution is sprayed onto the partition wall in the absorber, and a portion of the concentrated solution is distributed from the low-temperature regenerator in the condenser. It is characterized by dispersing refrigerant onto the partition wall.
以下、本発明の実施例を図に従って説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第1図は、本発明の一実施例である。まず、この図を用
いて冷房サイクルを説明する。蒸発器4内で伝熱管4a
iCスプレーされた冷媒は、4a内を通る冷水と熱交換
して蒸発する。その際、冷水より蒸発潜熱を奪い、冷房
作用を行う。発生した冷媒蒸気は吸収器5内に入り、伝
熱管10内を通る冷却水によって冷却された濃溶液によ
って吸収される。その際、冷却水に凝縮潜熱を排出する
。FIG. 1 shows one embodiment of the present invention. First, the cooling cycle will be explained using this diagram. Heat exchanger tube 4a in evaporator 4
The iC sprayed refrigerant exchanges heat with the cold water passing through 4a and evaporates. At that time, the latent heat of vaporization is taken away from the cold water, resulting in a cooling effect. The generated refrigerant vapor enters the absorber 5 and is absorbed by a concentrated solution cooled by cooling water passing through the heat transfer tube 10. At this time, the latent heat of condensation is discharged to the cooling water.
冷媒蒸気を吸収して、薄くなった稀溶液は、溶液ポンプ
8によって低温熱交換器6.つづいて高温熱交換器7に
送られ、その間に、稀溶液は高温となり高温再生器1に
流入する。高温再生器1において冷媒は蒸気となり、満
液式低温再生器2に送られ、ここにおいて低温熱交換器
6より出た稀溶液を加熱し冷媒蒸気と濃溶液に分離する
。濃溶液’ +31 ’
は、高温再生器1で濃縮され高温熱交換器7を経た濃溶
液と合流して、低温熱交換器を経た後、吸収器内でスプ
レーされる。一方、満液式低温再生器2で発生l−だ蒸
気は、凝縮器5内に入り、凝縮器5内で凝縮する。また
、高温再生器2からの冷媒蒸気は、低温再生器ドレーン
11内で凝縮して、凝縮器5に流入する。さらに、凝縮
器5内で凝縮した冷媒と共に、蒸発器に流入する。この
サイクルを有する二重効用吸収式冷凍機において、吸収
器5と凝縮器6の間の隔壁12に5吸収器5側では壁面
12に濃溶液をスプレーし、又、凝縮器5側では、低温
再生器ドレーン11の排出口を凝縮器5−ヒ部に配置し
、排出口より隔壁12に冷媒を散布する構造とする。After absorbing the refrigerant vapor, the diluted solution is transferred to a low temperature heat exchanger 6. by a solution pump 8. Subsequently, the dilute solution is sent to the high temperature heat exchanger 7, during which time the dilute solution becomes high temperature and flows into the high temperature regenerator 1. In the high-temperature regenerator 1, the refrigerant becomes vapor and is sent to the flooded low-temperature regenerator 2, where the dilute solution discharged from the low-temperature heat exchanger 6 is heated and separated into refrigerant vapor and concentrated solution. The concentrated solution '+31' is concentrated in the high-temperature regenerator 1, merges with the concentrated solution that has passed through the high-temperature heat exchanger 7, passes through the low-temperature heat exchanger, and then is sprayed in the absorber. On the other hand, the l-vapor generated in the flooded low-temperature regenerator 2 enters the condenser 5 and is condensed therein. Additionally, the refrigerant vapor from the high temperature regenerator 2 is condensed within the low temperature regenerator drain 11 and flows into the condenser 5 . Furthermore, the refrigerant condensed in the condenser 5 flows into the evaporator. In a double-effect absorption refrigerator having this cycle, a concentrated solution is sprayed on the partition wall 12 between the absorber 5 and the condenser 6, and on the absorber 5 side, a concentrated solution is sprayed on the wall surface 12, and on the condenser 5 side, a low temperature The discharge port of the regenerator drain 11 is disposed in the condenser 5-1 section, and the structure is such that the refrigerant is sprayed onto the partition wall 12 from the discharge port.
上記構造による作用について説明する。The effect of the above structure will be explained.
吸収器5における溶液飽和温度は、50℃、凝縮器5に
おける冷媒飽和温度は、40℃である。The solution saturation temperature in the absorber 5 is 50°C, and the refrigerant saturation temperature in the condenser 5 is 40°C.
故に吸収器5から凝縮器5への熱移動がおこるっ又、凝
縮器6においては、沸騰熱伝達のため、隔壁12に冷媒
を散布することで、隔壁12は薄い・ (4)・
液膜を生じ、より蒸発1〜易い状態となり、交換熱量が
増加する。これにより、凝縮器3での冷却水との交換熱
量を増加さすことができる。一定の熱量を交換する場合
、熱通過率の大きい側で多くの熱交換を行うほうがより
少い体面でよいので、前記において、冷却水伝熱管10
の体面を小さくすることが可能となる。Therefore, heat transfer occurs from the absorber 5 to the condenser 5.In addition, in the condenser 6, for boiling heat transfer, refrigerant is sprayed on the partition wall 12, so that the partition wall 12 is thin (4). This results in a state in which evaporation becomes easier, and the amount of heat exchanged increases. Thereby, the amount of heat exchanged with the cooling water in the condenser 3 can be increased. When exchanging a certain amount of heat, it is better to exchange more heat on the side with a higher heat transfer rate, which requires less body surface.
It becomes possible to reduce the size of the body.
第2図は、他の実施例である。前述の実施例に対し、さ
らに、吸収器5へ流入する濃溶液と低温再生器ドレーン
11を流れる冷媒との熱交換をあらかじめ行うためK、
濃溶液側は低温熱交換器6から吸収器50間に、また冷
媒側は低温再生器2から凝縮器5に流入する間に熱交換
器16を設けたものである。これにより、まず熱交換器
16により濃溶液と冷媒の熱交換が行われ、さらK、隔
壁12においても前記の通り熱交換が行われる結果とな
り冷却水伝熱管10の体面を小さくする点では、より効
果を増す。FIG. 2 shows another embodiment. In addition to the above-described embodiment, in order to perform heat exchange between the concentrated solution flowing into the absorber 5 and the refrigerant flowing through the low-temperature regenerator drain 11, K,
A heat exchanger 16 is provided between the low temperature heat exchanger 6 and the absorber 50 on the concentrated solution side, and between the low temperature regenerator 2 and the condenser 5 on the refrigerant side. As a result, heat exchange is first performed between the concentrated solution and the refrigerant in the heat exchanger 16, and then heat exchange is also performed in the partition wall 12 as described above, so that the body surface of the cooling water heat transfer tube 10 is reduced. Increase the effect.
第5図、第4図は、第1図、第2図の実施例をスプレ一
式低温再生器2に適応したものである。FIGS. 5 and 4 show the embodiments of FIGS. 1 and 2 applied to a low-temperature spray regenerator 2. In FIGS.
他の構造及び動作、効果は、第5図の実施例は第1図の
実施例と、また、第4図の実施例は第2図の実施例と同
様である。故に、スプレ一式底温再止器2を有する二重
効用吸収式冷凍機に対しても本発明は十分適応可能であ
ろう
さらK、第1図〜第4図で示された実施例において、隔
壁12にテフロン加工を行った板を使用することは、蒸
気核を安定に保持する効果が有るため、わずかな加熱で
蒸気泡を発生し、伝熱性能を高める効果がある。また隔
壁の表面に凹凸を設けた板を使用したり、隔壁にフィン
を設けることも、体面を増し、交換熱量を増す効果とな
る。Other structures, operations, and effects are the same in the embodiment shown in FIG. 5 as in the embodiment in FIG. 1, and in the embodiment in FIG. 4 as in the embodiment in FIG. 2. Therefore, the present invention may be fully applicable to a dual-effect absorption refrigerator having a spray bottom temperature resetting device 2. Furthermore, in the embodiments shown in FIGS. 1 to 4, Using a Teflon-treated plate for the partition wall 12 has the effect of stably holding the steam core, so that steam bubbles are generated by slight heating, and the heat transfer performance is improved. Furthermore, using a plate with irregularities on the surface of the partition wall or providing fins on the partition wall has the effect of increasing the body surface and the amount of heat exchanged.
以上、発明の効果を冷房サイクルを基にして説明を行っ
たが、暖房サイクルにおいても同様の効果を得る。Although the effects of the invention have been explained above based on the cooling cycle, similar effects can be obtained in the heating cycle as well.
以上のようシこ本発明によれば、吸収器5と凝縮器5の
隔壁12を効率のよい伝熱面として使用することが可能
となり、より多くの熱を吸収器5から凝縮器5へ移送す
ることが可能となる。As described above, according to the present invention, the partition wall 12 between the absorber 5 and the condenser 5 can be used as an efficient heat transfer surface, and more heat can be transferred from the absorber 5 to the condenser 5. It becomes possible to do so.
その結果、排出熱量の多くを熱通過率の高い凝縮器5で
排出することで、吸収器5で排出するのに用する冷却水
伝熱管10の伝熱面よ抄もより小さい熱体面でよいこと
になり、しいては、二重効用吸収式冷凍機をコンパクト
化できひいては低価格にもなるという効果がある。As a result, by discharging most of the discharged heat through the condenser 5, which has a high heat transfer rate, the heat transfer surface of the cooling water heat transfer tube 10 used for discharging the heat through the absorber 5 can be made smaller. This has the effect of making the dual-effect absorption chiller more compact and lower in price.
第1図、第2図は、本発明を実施した満液式低、温再生
器を有する二重効用吸収式冷凍機のサイクル図、第5図
、第4図は、本発明を実施したスプレ一式低温再生器を
有する二重効用吸収式冷凍機のサイクル図である。
1・・・高温再生器、2・・・低温再生器、6・・・凝
縮器、4・・・蒸発器、4a・・・冷水伝熱管、5・・
・吸収器、6・・・低温熱交換器、7・・・高温熱交換
器、8・・・溶液ポンプ、9・・・冷媒ポンプ、10・
・・冷却水伝熱管、11・・・低温再生器ドレーン、1
2・・・吸収器−凝縮器隔壁、15・・・冷媒スプレー
へラダー、14・・・溶液スプレーへラダー、15.1
6・・・エリミネータ−117・・・熱交換器。Figures 1 and 2 are cycle diagrams of a dual-effect absorption refrigerating machine with a liquid-filled low and temperature regenerator embodying the present invention, and Figures 5 and 4 are cycle diagrams of a dual-effect absorption refrigerator embodying the present invention. FIG. 2 is a cycle diagram of a dual-effect absorption refrigerator with a set of low temperature regenerators. 1... High temperature regenerator, 2... Low temperature regenerator, 6... Condenser, 4... Evaporator, 4a... Cold water heat transfer tube, 5...
・Absorber, 6... Low temperature heat exchanger, 7... High temperature heat exchanger, 8... Solution pump, 9... Refrigerant pump, 10.
... Cooling water heat transfer tube, 11 ... Low temperature regenerator drain, 1
2... Absorber-condenser partition, 15... Ladder to refrigerant spray, 14... Ladder to solution spray, 15.1
6... Eliminator-117... Heat exchanger.
Claims (1)
冷凍機において、吸収器と凝縮器を隔壁1枚を介して横
に配置したことを特徴とする吸収式冷凍機。 2、隔壁に対して、吸収器側では、溶液をスプレーし、
凝縮器側では、低温再生器からの冷媒を散布することを
特徴とする特許請求の範囲第1項記載の吸収式冷凍機。 3、吸収器と凝縮器との間の隔壁の表面に凹凸を設けた
ことを特徴とする特許請求の範囲第1項記載の吸収式冷
凍機。[Claims] 1. An absorption refrigerator comprising an evaporator, an absorber, a regenerator, a condenser, etc., characterized in that the absorber and the condenser are arranged side by side with one partition wall in between. type refrigerator. 2. Spray the solution on the absorber side against the partition wall,
2. The absorption refrigerator according to claim 1, wherein refrigerant from a low-temperature regenerator is sprayed on the condenser side. 3. The absorption refrigerator according to claim 1, wherein the partition wall between the absorber and the condenser has an uneven surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16491584A JPS6144270A (en) | 1984-08-08 | 1984-08-08 | Absorption type refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16491584A JPS6144270A (en) | 1984-08-08 | 1984-08-08 | Absorption type refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6144270A true JPS6144270A (en) | 1986-03-03 |
Family
ID=15802272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16491584A Pending JPS6144270A (en) | 1984-08-08 | 1984-08-08 | Absorption type refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6144270A (en) |
-
1984
- 1984-08-08 JP JP16491584A patent/JPS6144270A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61110852A (en) | Absorption heat pump/refrigeration system | |
JPS61110853A (en) | Absorption heat pump/refrigeration system | |
US2167663A (en) | Refrigeration | |
JPS6144270A (en) | Absorption type refrigerator | |
JPH0446339B2 (en) | ||
JPS61147062A (en) | Absorption water chiller | |
JP2783876B2 (en) | Absorption refrigerator | |
JPS5991188A (en) | Absorbing solution | |
JPS59176552A (en) | Absorber for absorption refrigerator | |
KR100334933B1 (en) | Absorber of plate heat exchanger type in Absorption heating and cooling system | |
JPS5825234Y2 (en) | Single effect absorption refrigerator | |
JPS5913667B2 (en) | Absorption type water cooler/heater | |
JP2000266422A (en) | Absorption refrigerating machine | |
JPS6122225B2 (en) | ||
JPS5899661A (en) | Engine waste-heat recovery absorption type cold and hot water machine | |
KR0184216B1 (en) | Ammonia absorptive refrigerator | |
JP3762217B2 (en) | refrigerator | |
JP3785737B2 (en) | Refrigeration equipment | |
KR100262718B1 (en) | Solution Heat Regenerator Structure of Ammonia Absorption System | |
JP3489934B2 (en) | Evaporator in absorption refrigerator | |
JPS59107158A (en) | Absorption type heat pump | |
JPH0198863A (en) | Absorption refrigerator | |
JPH0124521B2 (en) | ||
JPS5878063A (en) | Multiple-effect absorption refrigerator | |
JPS6044777A (en) | Absorption type cold and hot medium obtaining device |