JPS5878063A - Multiple-effect absorption refrigerator - Google Patents

Multiple-effect absorption refrigerator

Info

Publication number
JPS5878063A
JPS5878063A JP17440781A JP17440781A JPS5878063A JP S5878063 A JPS5878063 A JP S5878063A JP 17440781 A JP17440781 A JP 17440781A JP 17440781 A JP17440781 A JP 17440781A JP S5878063 A JPS5878063 A JP S5878063A
Authority
JP
Japan
Prior art keywords
temperature regenerator
solution
temperature
refrigerant
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17440781A
Other languages
Japanese (ja)
Inventor
石橋 敏宏
佐登志 内藤
近藤 雅行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP17440781A priority Critical patent/JPS5878063A/en
Publication of JPS5878063A publication Critical patent/JPS5878063A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は再生器を複数段設けた多重効用吸収冷凍機に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-effect absorption refrigerator having multiple stages of regenerators.

吸収冷凍機は吸収溶液としてリチウム塩水溶液、冷媒と
して水を用いるものが一般的であり、冷水を得るために
蒸発器にて蒸発した蒸発冷媒を吸収器にて吸収溶液に吸
収させ、冷媒を吸収した溶液を再生器にて加熱して濃縮
することにより吸収溶液と冷媒を再生し、再度蒸発器及
び吸収器にて冷水を得るために使用されるように循環系
を備えている。
Absorption refrigerators generally use a lithium salt aqueous solution as the absorption solution and water as the refrigerant.In order to obtain cold water, the evaporated refrigerant evaporated in the evaporator is absorbed into the absorption solution in the absorber, and the refrigerant is absorbed. The absorbent solution and refrigerant are regenerated by heating and concentrating the solution in a regenerator, and are then used again in the evaporator and absorber to obtain cold water.

ところで、この種吸収冷凍機として、再生器を2段設け
て、初段再生器ではガスバーナ等の外部熱源によって吸
収器からの稀溶液を加熱し、ここで発生した高温冷媒蒸
気を次段の再生器へ加熱用熱源として供給する二重効用
吸収冷凍機が良く知られている。しかし、このような構
造の二重効用吸収冷凍機では、初段再生器の入熱量に対
する冷凍能力の割合を示す成績係数は1.2〜1.3が
理論的限界であった。
By the way, this kind of absorption chiller is equipped with two stages of regenerators, and the first stage regenerator heats the dilute solution from the absorber using an external heat source such as a gas burner, and the high temperature refrigerant vapor generated here is sent to the next stage regenerator. A dual-effect absorption refrigerator that supplies heat as a heating source to a refrigerator is well known. However, in a dual-effect absorption refrigerator having such a structure, the theoretical limit of the coefficient of performance, which indicates the ratio of the refrigerating capacity to the heat input of the first stage regenerator, is 1.2 to 1.3.

しかし、成績係数向上の試みがなされ、第1図に示すよ
うに再生器を3段設ける三重効用吸収冷凍機が提案され
た。そこでまず、第1図について説明する。
However, attempts were made to improve the coefficient of performance, and a triple-effect absorption refrigerating machine with three stages of regenerators as shown in Figure 1 was proposed. First, FIG. 1 will be explained.

(1)は稀溶液を加熱して第1中間#溶液とする第1高
温再生器、(2)は第1中間濃浴液を第1高温再−−生
器(1)からの高温冷媒蒸気で加熱し、第2中間濃溶液
とする第2扁温再生器、(3)は第2中間濃溶液を第2
高温再生器(2)からの冷媒蒸気で加熱しfIk溶液と
する低温再生器、(4)は冷媒蒸気を凝縮して液冷媒と
する凝縮器、(5)は凝縮器14】から液冷媒な散布し
、冷水から気化熱を奪って蒸発させる蒸発器、(6)は
蒸発器(5)にて蒸発した冷媒を低温再生器(3)から
の濃溶液に吸収させて稀溶液とする吸収器である。
(1) is a first high-temperature regenerator that heats the dilute solution to form the first intermediate #solution; (2) is the first high-temperature regenerator that converts the first intermediate concentrated bath solution into a high-temperature refrigerant vapor from the regenerator (1); (3) heats the second intermediate concentrated solution to produce a second intermediate concentrated solution;
A low-temperature regenerator heats the refrigerant vapor from the high-temperature regenerator (2) to form an fIk solution, (4) a condenser that condenses the refrigerant vapor to form a liquid refrigerant, and (5) a liquid refrigerant from the condenser 14. The evaporator (6) absorbs the refrigerant evaporated in the evaporator (5) into the concentrated solution from the low-temperature regenerator (3) to form a dilute solution. It is.

また、(7)は吸収器(6)からの稀溶液を第1高温再
生器(1)へ送るための溶液循環ポンプ、(8)は稀溶
液と濃溶液との熱交換を行ない、稀溶液を昇温させると
ともに濃溶液を降温させる低温熱交換器、(9)は低温
熱交換器(8)にて昇温さ′れた稀溶液と第2中間濃溶
液との熱交換を行なう第2高温熱交換器、a〔は第2高
温熱交換器(9)にて更に昇温された稀溶液と第1中間
濃溶液との熱交換を行なう第1高温熱交換器である。
In addition, (7) is a solution circulation pump for sending the dilute solution from the absorber (6) to the first high temperature regenerator (1), and (8) is for exchanging heat between the dilute solution and the concentrated solution. A low-temperature heat exchanger (9) raises the temperature of the concentrated solution while lowering the temperature of the concentrated solution; The high-temperature heat exchanger a is a first high-temperature heat exchanger that exchanges heat between the dilute solution further heated in the second high-temperature heat exchanger (9) and the first intermediate concentrated solution.

更に、αυは第1高温再生器において稀溶液を加熱する
ための例えばガスバーナ等の熱源、(2)は第1高温再
生器(1)で生じた高温冷媒蒸気が導入される第2高温
再生器熱交換器、a3は第2高温再生器(2)で生じた
冷媒蒸気及び第2高温再生器熱交換器(6)での放熱に
より凝縮した高温の液体冷媒が導入される低温再生器熱
交換器、(ロ)は冷媒を凝縮するだめの冷却水が導入さ
れる冷却水コイル、(至)は図示しない負荷からの冷水
が導入される冷水コイル、(イ)は濃溶液に冷媒蒸気が
吸収される際に生ずる吸収熱を除却するための冷却水が
導入される冷却水コイルである。
Furthermore, αυ is a heat source such as a gas burner for heating the dilute solution in the first high-temperature regenerator, and (2) is a second high-temperature regenerator into which the high-temperature refrigerant vapor generated in the first high-temperature regenerator (1) is introduced. The heat exchanger a3 is a low temperature regenerator heat exchanger into which refrigerant vapor generated in the second high temperature regenerator (2) and high temperature liquid refrigerant condensed by heat radiation in the second high temperature regenerator heat exchanger (6) are introduced. (b) is the cooling water coil into which the cooling water for condensing the refrigerant is introduced, (to) is the chilled water coil into which the chilled water from the load (not shown) is introduced, (a) is the refrigerant vapor absorbed by the concentrated solution. This is a cooling water coil into which cooling water is introduced to remove the absorbed heat generated when the

次に、上記のように構成された従来の三重効用吸収冷凍
機の作用を説明する。
Next, the operation of the conventional triple effect absorption refrigerator configured as described above will be explained.

吸収器(5)からの稀溶液は溶液循環ポンプ(7)に依
って低温熱交換器(8)に送られ、後述する濃溶液と熱
交換し、昇温しで第2高温熱交換器(9)に入る。
The dilute solution from the absorber (5) is sent to the low-temperature heat exchanger (8) by the solution circulation pump (7), where it exchanges heat with the concentrated solution (described later), is heated, and then sent to the second high-temperature heat exchanger (8). Enter 9).

そしてここで後述する第2中間濃溶液と熱交換し、昇温
しで第1高温熱交換器α〔に入り、第1高温再生器(1
)から(る第1中間濃溶液と熱交換し、昇温しで第1高
温再生器(1)に入る。
Here, it exchanges heat with a second intermediate concentrated solution, which will be described later, and is heated and enters the first high-temperature heat exchanger α.
) exchanges heat with the first intermediate concentrated solution () to raise the temperature and enter the first high temperature regenerator (1).

第1高温再生器(1)に流入した稀溶液は外部熱源Iに
依って加熱濃縮され、第1中間−溶液となり圧力差に依
り第1高温熱交換器Qlに入る。そしてここで降温せら
れた後、第2高温再生器(2)に入り。
The dilute solution flowing into the first high temperature regenerator (1) is heated and concentrated by the external heat source I to become a first intermediate solution and enters the first high temperature heat exchanger Ql due to the pressure difference. After being cooled here, it enters the second high temperature regenerator (2).

第2高温再生器熱交換器四内の高温冷媒蒸気に依って加
熱濃縮される。そして第2中間濃溶液となって、圧力差
に依り、第2高温熱交換器(9)に入る。
It is heated and concentrated by the high temperature refrigerant vapor in the second high temperature regenerator heat exchanger 4. Then, it becomes a second intermediate concentrated solution and enters the second high temperature heat exchanger (9) due to the pressure difference.

ここで該溶液は先程の稀溶液と熱交換して降温せられ低
温再生器(3)に入り、第2高温再生器@からの高温冷
媒蒸気に依って加熱濃縮されて濃溶液となり、圧力差及
び重力に依って低温熱交換器(B)K入る。そしてここ
で降温せられた後、吸収器(6)に入り冷却水コイル(
イ)に依って冷却せられ、蒸発器(5)からの冷媒蒸気
を吸収して稀溶液となる。
Here, the solution is cooled by heat exchange with the dilute solution, enters the low-temperature regenerator (3), is heated and concentrated by the high-temperature refrigerant vapor from the second high-temperature regenerator, and becomes a concentrated solution, resulting in a pressure difference. and enters the low temperature heat exchanger (B)K by gravity. After the temperature is lowered here, it enters the absorber (6) and the cooling water coil (
It is cooled by step (b) and becomes a dilute solution by absorbing refrigerant vapor from the evaporator (5).

一方、第1高温再生器(1)で外部熱源(ロ)に依って
発生した高温の冷媒蒸気は第2高温再生器熱交換器@に
送られる。そして前述の第1中間濃溶液を加熱し、熱を
奪われて凝縮し、高温の液体冷媒となる。
On the other hand, high-temperature refrigerant vapor generated by the external heat source (b) in the first high-temperature regenerator (1) is sent to the second high-temperature regenerator heat exchanger @. Then, the first intermediate concentrated solution described above is heated, and heat is removed and condensed to become a high-temperature liquid refrigerant.

第2高温再生器(2)で発生した高温冷媒蒸気は前述の
第2高温再生器熱交換器(2)内で凝縮した液体媒とと
もに圧力差により低温再生器熱交換器叫内に流入し第2
中間濃溶液を加熱し、熱を奪われて凝縮し凝縮器14)
へ送られる。低温再生器(3)で蒸発した冷媒蒸気も凝
縮器(4)へ送られ、゛ここで冷却水によって冷却され
て液体冷媒となる。この液体冷媒は前述のとおり、蒸発
器(5)の冷水コイル(ト)上に散布され、冷水から気
化熱を奪って蒸発し、この冷媒蒸気は吸収器(6)にて
濃溶液に吸収される。以下同様のサイクルを繰り返す。
The high-temperature refrigerant vapor generated in the second high-temperature regenerator (2) flows into the low-temperature regenerator heat exchanger due to the pressure difference together with the liquid medium condensed in the second high-temperature regenerator heat exchanger (2). 2
The intermediate concentrated solution is heated, heat is removed and condensed, and the condenser 14)
sent to. The refrigerant vapor evaporated in the low-temperature regenerator (3) is also sent to the condenser (4), where it is cooled by cooling water and becomes a liquid refrigerant. As mentioned above, this liquid refrigerant is sprayed onto the cold water coil (g) of the evaporator (5), removes the heat of vaporization from the cold water and evaporates, and this refrigerant vapor is absorbed into a concentrated solution in the absorber (6). Ru. The same cycle is repeated thereafter.

このような従来の三重効用吸収冷凍機では、冷水コイル
(至)からの冷水出口温度を7℃程度としかつ成績係数
を1.8程度とすることが可能である。
In such a conventional triple effect absorption refrigerating machine, it is possible to set the chilled water outlet temperature from the chilled water coil to about 7°C and the coefficient of performance to about 1.8.

しかし、そのためには第1高温再生器(1)の温度を2
20℃〜230℃程度としなければならず、このような
高温にすると第1高温再生器(1)の構成材料と溶液と
の反応によって、大量の水素ガスを発生させるという新
らたな問題が生じ、この問題が解決されないため、三重
効用吸収冷凍機の実用化運転をすることができなかった
However, in order to do so, the temperature of the first high temperature regenerator (1) must be increased to 2
The temperature must be approximately 20°C to 230°C, and if the temperature is set to such a high temperature, a new problem arises in that a large amount of hydrogen gas is generated due to the reaction between the constituent materials of the first high-temperature regenerator (1) and the solution. Since this problem has not been solved, it has been impossible to put the triple-effect absorption refrigerator into practical operation.

本発明はこのような事情にもとづきなされたものであり
、第1高温再生器の温度をあまり上げずに三重効用吸収
冷凍機の運転を可能にすることを目的とする。
The present invention was made based on such circumstances, and an object of the present invention is to enable operation of a triple-effect absorption refrigerator without significantly increasing the temperature of the first high-temperature regenerator.

以下本発明の実施例を第2図ないし第4図を参照して詳
細に説明する。
Embodiments of the present invention will be described in detail below with reference to FIGS. 2 to 4.

第2図は本発明に係る多重効用吸収冷凍機の一実施例を
示す系統図である。なお第2図において第1図と同一部
分には同一符号を附して示しであるので、その部分の詳
細な説明は省略する。
FIG. 2 is a system diagram showing an embodiment of the multi-effect absorption refrigerator according to the present invention. Note that in FIG. 2, the same parts as in FIG. 1 are indicated by the same reference numerals, so detailed explanations of those parts will be omitted.

本発明は、第1高温再生器(1)から第2高温再生器熱
交換器(2)へ冷媒蒸気を供給するに際し、この冷媒蒸
気を圧縮した上で供給するようにしたことを特徴として
おり、七のだ・めに第1高温再生器(1)と第2高温再
生器熱交換器@とを連結する蒸気管路中に圧縮機αηを
設けている。その他は第1図と同様である。
The present invention is characterized in that when refrigerant vapor is supplied from the first high temperature regenerator (1) to the second high temperature regenerator heat exchanger (2), the refrigerant vapor is compressed and then supplied. , a compressor αη is provided in the steam line connecting the first high temperature regenerator (1) and the second high temperature regenerator heat exchanger @. Other details are the same as in FIG.

このような第2図に示した本発明の吸収冷凍機の動きを
蒸気圧線図上に示すと第3図のようになる。なお、第3
図において、 a点は稀溶液の吸収器(6)出口の状態、b点は第1高
温再生器+1)での溶液の沸騰開始の状態、 C点は第1高温再生器(1)出口の溶液の状態、d点は
第2高温再生器(2)での溶液の沸騰開始の状態、 e点は第2高温再生器(2)出口の溶液の状態。
The movement of the absorption refrigerator of the present invention shown in FIG. 2 is shown on a vapor pressure diagram as shown in FIG. 3. In addition, the third
In the figure, point a is the state at the exit of the dilute solution absorber (6), point b is the state at the start of boiling of the solution in the first high temperature regenerator (+1), and point C is the state at the exit of the first high temperature regenerator (1). The state of the solution, point d is the state when the solution starts boiling in the second high temperature regenerator (2), and point e is the state of the solution at the outlet of the second high temperature regenerator (2).

f点は低温再生器(3)での溶液の沸騰開始の状態、g
点は低温再生器(3)出口の溶液の状態、h点は吸収器
(6)で吸収を開始する溶液の状態、i点は圧縮器αη
で圧縮された飽和蒸気(水)の状態、 j点は第1高温再生器(1)で発生した蒸気が飽和した
場合の状態、 を夫々示している。
Point f is the state where the solution starts boiling in the low temperature regenerator (3), g
The point is the state of the solution at the outlet of the low temperature regenerator (3), the h point is the state of the solution when absorption starts in the absorber (6), and the i point is the state of the solution at the compressor αη
Point j shows the state of saturated steam (water) compressed at , and point j shows the state when the steam generated in the first high temperature regenerator (1) is saturated.

ここにおいてd −+ 6の沸騰に依って発生する蒸気
量は第1高温熱交換器ααを十分なる設計とすればl)
 −+ Cの沸騰に依って発生し、圧縮機αηに依って
圧縮された冷媒量とほぼ同量となる。又f −+ Hの
沸騰に依って発生する冷媒量とd +eの沸騰に依って
発生する冷媒量もほぼ同量であるから、(a −+ d
 −+ e −+ f −+ g −+ hのサイクル
は従来の二重効用のサイクルと同じである。)従来の2
重効用QB= の成績係数を□ 1.3  とすれば、本発明に依G る冷凍機の成績係数はQ。を一定として考えればQ、 
+ 0.5 QB = 1.3 X 1.5 = 1.95  となる。
Here, the amount of steam generated due to boiling of d − + 6 is calculated by designing the first high temperature heat exchanger αα sufficiently.
-+ The amount of refrigerant is generated due to the boiling of C, and is approximately the same amount as the amount of refrigerant compressed by the compressor αη. Also, since the amount of refrigerant generated by the boiling of f −+ H and the amount of refrigerant generated by the boiling of d + e are almost the same, (a − + d
The cycle −+ e −+ f −+ g −+ h is the same as the conventional double effect cycle. ) Conventional 2
If the coefficient of performance of heavy-effect QB= is □ 1.3, then the coefficient of performance of the refrigerator according to the present invention is Q. If we consider Q as constant,
+ 0.5 QB = 1.3 x 1.5 = 1.95.

G 又圧縮機αηの仕事量も1点の温度を130”C1、i
点の温度を160℃とし、ポリトロープ圧縮として計算
すると、冷、媒1kl?当り約40 kcalであり、
かつ圧力の関係により比容積も小さいことから、圧縮に
要するエネルギーは第2高温熱交換器0で発生する凝縮
熱に比し無視しえる程小さい。
G Also, the work of the compressor αη is 130”C1, i
Assuming the temperature at the point is 160℃ and calculating as polytropic compression, 1kl of cold medium? It is about 40 kcal per serving,
Moreover, since the specific volume is also small due to the pressure relationship, the energy required for compression is negligibly small compared to the condensation heat generated in the second high temperature heat exchanger 0.

このように本発明によれば、第1高温再生器(1)で生
じた冷媒蒸気を圧縮機αηで圧縮した後で、後段にある
第2高温再生器(2)の第2高温再生器熱交換器(6)
へ供給するようにしたので、第1高温再生器(1)の温
度をあまり上げなくとも成績係数を大幅に向上すること
ができる。よって水素ガス発生の問題も解消され、三重
効用吸収冷凍機の実用的な運転が可能となる。
According to the present invention, after the refrigerant vapor generated in the first high-temperature regenerator (1) is compressed by the compressor αη, the second high-temperature regenerator heat of the second high-temperature regenerator (2) in the subsequent stage is compressed. Exchanger (6)
Therefore, the coefficient of performance can be significantly improved without raising the temperature of the first high-temperature regenerator (1) much. Therefore, the problem of hydrogen gas generation is also solved, and the triple effect absorption refrigerator can be operated practically.

第4図は本発明の他の実施例を示したものである。FIG. 4 shows another embodiment of the invention.

この実施例では、第1高温再生器(1)に第1高温再生
器熱交換器(財)を設け、この熱交換器(至)と第2高
温再生器熱交換器(6)とを閉回路αつを形成するよう
に連結し、かつこの閉回路aIに圧縮機αηを設けたも
ので、第1高温再生器(1)で発生した冷媒蒸気は低温
再生器熱交換器(2)へ供給するよ5にしている。なお
翰は凝縮冷媒を溜める受皿である。その他は第2図に示
した実施例と同じである。
In this embodiment, the first high temperature regenerator (1) is provided with a first high temperature regenerator heat exchanger (6), and this heat exchanger (1) and the second high temperature regenerator heat exchanger (6) are closed. The circuits are connected to form α circuits, and a compressor αη is provided in this closed circuit aI, and the refrigerant vapor generated in the first high temperature regenerator (1) is transferred to the low temperature regenerator heat exchanger (2). I'll supply it to 5. The kiln is a saucer that stores condensed refrigerant. The rest is the same as the embodiment shown in FIG.

閉口路0りを形成する系内圧は冷媒が封入されているも
ので、第1高温再生器(1)で発生した冷媒蒸気で熱交
換器(至)を加熱し、系内の冷媒を蒸発させる。この蒸
発した系内の冷媒蒸気は、圧縮機α♂で圧縮されて加圧
・昇温されたものが第2高温再生器熱交換器(2)へ供
給され、溶液を加熱するとともに冷媒は凝縮される。以
下冷媒は閉回路Qo内を循環する。なお、第1高温再生
器t1)で発生した冷媒蒸気は、第1高温再生器熱交換
器(至)との熱交換により高温の液体冷媒となって受皿
翰に溜り、ここから低温再生器熱交換器(至)へ導入さ
れる。
The internal pressure of the system that forms the closed path is filled with refrigerant, and the refrigerant vapor generated in the first high-temperature regenerator (1) heats the heat exchanger (to) and evaporates the refrigerant in the system. . This evaporated refrigerant vapor in the system is compressed by compressor α♂, pressurized and heated, and then supplied to the second high temperature regenerator heat exchanger (2), which heats the solution and condenses the refrigerant. be done. Thereafter, the refrigerant circulates within the closed circuit Qo. The refrigerant vapor generated in the first high-temperature regenerator t1) becomes a high-temperature liquid refrigerant through heat exchange with the first high-temperature regenerator heat exchanger (to) and accumulates in the saucer pan, from where it is transferred to the low-temperature regenerator heat. Introduced to the exchanger (to).

この第4図の実施例では、圧縮機αつを含む閉回路CJ
つは、冷凍機の真空を維持すべき回路に対してシールさ
れた状態となり、圧縮機αηを含む閉回路Qlを修理等
のために取外すような場合にも、冷凍機本体の真空を破
壊することがないという効果が更に付加されることにな
る。
In the embodiment of FIG. 4, a closed circuit CJ including one compressor α is used.
First, the circuit that is supposed to maintain the vacuum of the refrigerator is in a sealed state, and even when the closed circuit Ql containing the compressor αη is removed for repairs etc., the vacuum of the refrigerator body is destroyed. This will further add the effect that there will be no problems.

本発明は上述の実施例に限定されることなく、要旨を逸
脱しな、い範囲内で種々変形して実施できることは云う
までもない。再生器は3段に限らず4段以上あってもよ
(1また2段の場合にも本発明は適用できる。また、圧
縮機は再生器の初段と2段の間に限らず、前段と後段の
間に設ければよい0
It goes without saying that the present invention is not limited to the above-described embodiments, but can be implemented with various modifications without departing from the scope of the invention. The regenerator is not limited to three stages, but may have four or more stages (the present invention is also applicable to the case of one or two stages. Also, the compressor is not limited to between the first and second stage of the regenerator, but between the previous stage and the regenerator). It can be installed between the latter stages0

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の多重効用吸収冷凍機を示す系統図、第2
図は本発明に係る多重効用吸収冷凍機の一実施例を示す
系統図、第3図は第2図に示した冷凍機の動作状態を説
明する蒸気圧線図、第4図は本発明の他の実施例の系統
図である。 (1)・・第1高温再生器、(2)・・第2高温再生器
、(3)・・低温再生器、(4]・・凝縮器、(5)・
・蒸発器、(6)・・吸収器、(ロ)・・第2高温再生
器熱交換器、αη・・圧縮器。 v11図
Figure 1 is a system diagram showing a conventional multi-effect absorption refrigerator;
The figure is a system diagram showing an embodiment of the multiple effect absorption refrigerator according to the present invention, FIG. 3 is a vapor pressure diagram explaining the operating state of the refrigerator shown in FIG. 2, and FIG. FIG. 3 is a system diagram of another embodiment. (1)...First high temperature regenerator, (2)...Second high temperature regenerator, (3)...Low temperature regenerator, (4)...Condenser, (5)...
-Evaporator, (6)...Absorber, (B)...Second high temperature regenerator heat exchanger, αη...Compressor. v11 diagram

Claims (1)

【特許請求の範囲】[Claims] 冷媒を吸収qた溶液を加熱して濃縮する再生器を複数段
設けた多重効用吸収冷凍機において、前段の再生器にて
加熱された冷媒蒸気を圧縮して後段の再生器へ加熱用熱
源として供給する圧縮機を設けたことを特徴とする多重
効用吸収冷凍機。
In a multi-effect absorption refrigerator equipped with multiple stages of regenerators that heat and condense a solution that has absorbed refrigerant, the refrigerant vapor heated in the first stage regenerator is compressed and sent to the second stage regenerator as a heating heat source. A multi-effect absorption refrigerating machine characterized by being equipped with a compressor for supplying the air.
JP17440781A 1981-11-02 1981-11-02 Multiple-effect absorption refrigerator Pending JPS5878063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17440781A JPS5878063A (en) 1981-11-02 1981-11-02 Multiple-effect absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17440781A JPS5878063A (en) 1981-11-02 1981-11-02 Multiple-effect absorption refrigerator

Publications (1)

Publication Number Publication Date
JPS5878063A true JPS5878063A (en) 1983-05-11

Family

ID=15978012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17440781A Pending JPS5878063A (en) 1981-11-02 1981-11-02 Multiple-effect absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS5878063A (en)

Similar Documents

Publication Publication Date Title
JPS61119954A (en) Absorption heat pump/refrigeration system
JPS61110852A (en) Absorption heat pump/refrigeration system
GB2166534A (en) Absorption refrigeration system
KR19990022970A (en) Compression and Absorption Hybrid Heat Pump
JPS5878063A (en) Multiple-effect absorption refrigerator
JPS6045328B2 (en) heating device
JP2628023B2 (en) Absorption refrigerator
JPS5991188A (en) Absorbing solution
JPS6122225B2 (en)
JPS5825234Y2 (en) Single effect absorption refrigerator
JPS5899661A (en) Engine waste-heat recovery absorption type cold and hot water machine
JPH05256535A (en) Sorption heat pump system
WO2002018851A1 (en) Absorption refrigerating machine
JPS6218935Y2 (en)
JPS6023266B2 (en) Double effect absorption chiller
JPH0350373Y2 (en)
JP2858921B2 (en) Control device for absorption refrigerator
JPS6315049A (en) Absorption heat pump type heat accumulator
JPS60207867A (en) Engine waste-heat recovery absorption type cold and hot water machine
JPS6024901B2 (en) Waste heat heating and cooling equipment
JP3488953B2 (en) Absorption type simultaneous cooling / heating water supply type heat pump
JPS6119404Y2 (en)
JPH11223408A (en) Absorption refrigerating device
JPS59107158A (en) Absorption type heat pump
JPS58120063A (en) Absorption type refrigerator