JPS58120063A - Absorption type refrigerator - Google Patents

Absorption type refrigerator

Info

Publication number
JPS58120063A
JPS58120063A JP199382A JP199382A JPS58120063A JP S58120063 A JPS58120063 A JP S58120063A JP 199382 A JP199382 A JP 199382A JP 199382 A JP199382 A JP 199382A JP S58120063 A JPS58120063 A JP S58120063A
Authority
JP
Japan
Prior art keywords
refrigerant
cycle
heat
refrigeration cycle
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP199382A
Other languages
Japanese (ja)
Inventor
良隆 川崎
足立 欣一
清 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP199382A priority Critical patent/JPS58120063A/en
Publication of JPS58120063A publication Critical patent/JPS58120063A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は吸収式冷凍機に関するもので、その目的とする
ところは、外部熱源から与えられる熱の利用効率を上昇
させるとともに、冷凍B至冷房に供せられる冷熱レベル
を二段にして多目的利用を可能にすることにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absorption refrigerating machine, and its purpose is to increase the utilization efficiency of heat provided from an external heat source, and to increase the level of cold heat provided for cooling from freezing B to cooling. The idea is to make it two-tiered so it can be used for multiple purposes.

一般に、吸収式冷凍機は発生器、凝縮器、蒸発器および
吸収器を備え1発生器において冷媒と吸収剤との混合溶
液から加熱によって冷媒を蒸発分離させ、凝縮器におい
てこの冷媒蒸気を液化させ。
Generally, an absorption refrigerating machine includes a generator, a condenser, an evaporator, and an absorber.A generator evaporates and separates a refrigerant from a mixed solution of a refrigerant and an absorbent by heating, and the refrigerant vapor is liquefied in a condenser. .

次に蒸発器において冷媒を再度蒸発させて、この時の蒸
発潜熱によって直接または熱媒体を介して冷凍を行い、
さらに蒸発した冷媒を吸収器において吸収剤の富なる濃
溶液に吸収させるという経路を有する。この吸収器で得
られる冷媒蒸気を充分吸収した希溶液は再度前記の発生
器に送られて冷媒を蒸発させ、一方この発生器で得られ
る濃溶液が吸収器に運ばれて上記サイクルは連続的に動
作する。
Next, the refrigerant is evaporated again in the evaporator, and the latent heat of vaporization at this time performs freezing directly or via a heat medium,
Furthermore, there is a path in which the evaporated refrigerant is absorbed into a concentrated solution rich in absorbent in an absorber. The dilute solution obtained in this absorber, which has sufficiently absorbed the refrigerant vapor, is again sent to the generator to evaporate the refrigerant, while the concentrated solution obtained in this generator is conveyed to the absorber, and the cycle is continued continuously. works.

ところで発生器は前記のように外部熱源から与えられた
熱によって、希溶液(冷媒の富なる溶液)から冷媒を蒸
発させるものであるが、構成上次の3種が従来より用い
られている。すなわち外部熱源によって加熱される第1
発生器から直接凝縮器に連接される、いわゆる単効用サ
イクルと、この第1発生器から発する冷媒蒸気の凝縮熱
を用いて、第2発生器を動作させる直列接続の二重効用
サイクルおよび同じ冷媒−吸収剤系の上記単効用サイク
ルを並列に接続し、第1サイクルの凝縮熱を第2サイク
ル熱源としたものの3種である。しかし。
By the way, as mentioned above, the generator evaporates the refrigerant from a dilute solution (refrigerant-rich solution) using heat provided from an external heat source, and the following three types of generators have been conventionally used in terms of construction. i.e. the first heated by an external heat source.
A so-called single-effect cycle, in which the generator is connected directly to the condenser, and a series-connected double-effect cycle, in which the heat of condensation of the refrigerant vapor emanating from this first generator is used to operate a second generator, and the same refrigerant. - There are three types in which the above single-effect cycles of the absorbent system are connected in parallel and the heat of condensation of the first cycle is used as the heat source of the second cycle. but.

これ以外の部分は始んど変らず、凝縮器、蒸発器。Other than this, the parts remain the same, the condenser and evaporator.

吸収器などの構成および機能に大差なく、いずれにして
も冷媒は単一成分であり、その一種のみを使用している
。したがって冷却温度は単効用でも二重効用でもあるい
は並列単効用でも一種しか得られず、目的に応じた別個
の冷却温度を得ることは不可能であった。
There is no major difference in the structure and function of the absorber, etc., and in any case, the refrigerant is a single component, and only one type of refrigerant is used. Therefore, only one type of cooling temperature can be obtained for single effect, double effect, or parallel single effect, and it has been impossible to obtain separate cooling temperatures depending on the purpose.

本発明は上記従来例に鑑みて、1熱源によって独立して
運転せる少くとも冷媒の異なる2サイクルを並列に接続
せしめたもので、以下その一実施例について添付図面に
基づき説明する。
In view of the above-mentioned conventional example, the present invention connects in parallel at least two cycles using different refrigerants that are operated independently by one heat source.One embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図において、11は第1発生器、12は第1凝縮器
、13は第1蒸発器、14は第1吸収器、15は第1熱
交換器、16は第1室内器であり。
In FIG. 1, 11 is a first generator, 12 is a first condenser, 13 is a first evaporator, 14 is a first absorber, 15 is a first heat exchanger, and 16 is a first indoor unit.

第1サイクルを構成している。一方21は第2発生器、
22は第2凝縮器、23は第2蒸発器、24は第2吸収
器、26は第2熱交換器、26は第2室内器で、これら
は第2サイクルを構成している。
It constitutes the first cycle. On the other hand, 21 is a second generator,
22 is a second condenser, 23 is a second evaporator, 24 is a second absorber, 26 is a second heat exchanger, and 26 is a second indoor unit, which constitute a second cycle.

また31は加熱器、32は冷水塔である。また図中Pは
ポンプを示し、矢印はそれぞれ液まだは蒸気の流れ方向
を示している。ここで実線は第1サイクルの流れ、一点
鎖線は第2サイクルの流れを示し、破線は冷却水の流れ
を表わしている。
Further, 31 is a heater, and 32 is a cooling water tower. Further, in the figure, P indicates a pump, and arrows indicate the flow direction of liquid and steam, respectively. Here, the solid line represents the flow of the first cycle, the dashed line represents the flow of the second cycle, and the broken line represents the flow of cooling water.

ここで第1サイクルは水を冷媒とし、臭化リチウム(L
iBr)  を吸収剤とする溶液を用い、第2サイクル
はメタノール(CiH30H)を冷媒として臭化リチウ
ムを吸収剤とする溶液を用いている。
Here, in the first cycle, water is used as a refrigerant, and lithium bromide (L
The second cycle uses a solution using methanol (CiH30H) as a refrigerant and lithium bromide as an absorbent.

上記構成においてその動作を詳述する。まず第1サイク
ルでは、第1熱交換器16から第1発生器11へ希溶液
(水の富なる臭化リチウム水溶液;濃度約68重量%)
が流入し、加熱器31によって約146°Cに加熱され
る。水は蒸発して第1凝縮器12へと流れ、一方濃縮さ
れた濃溶液(臭化リチウムの富なる水溶液;濃度約63
重量%)は第1熱交換器16へと戻る。第1凝縮器12
へ流れた水蒸気はここで放熱して約90’Cで液化し。
The operation of the above configuration will be explained in detail. First, in the first cycle, a dilute solution (water-rich lithium bromide aqueous solution; concentration of about 68% by weight) is supplied from the first heat exchanger 16 to the first generator 11.
flows in and is heated to approximately 146°C by the heater 31. The water evaporates and flows into the first condenser 12 while a concentrated concentrated solution (aqueous solution rich in lithium bromide; concentration of about 63
% by weight) is returned to the first heat exchanger 16. First condenser 12
The water vapor that flows into the tank radiates heat here and liquefies at about 90'C.

第1蒸発器13へ流入し、蒸発潜熱を奪って約6°Cで
蒸発して第1吸収器14へ流れる。第1蒸発器13では
約7°Cに冷却された熱媒体が得られ。
It flows into the first evaporator 13, removes latent heat of vaporization, evaporates at about 6°C, and flows to the first absorber 14. In the first evaporator 13, a heat medium cooled to about 7°C is obtained.

これが第1室内放熱器16へ送られて冷房に供せられる
。第1吸収器14へ流れた水蒸気は第1熱交換器16よ
り流下する濃溶液に吸収され、希溶液となって再度第1
熱交換器15へと戻される。
This is sent to the first indoor radiator 16 for cooling. The water vapor that has flowed into the first absorber 14 is absorbed by the concentrated solution flowing down from the first heat exchanger 16, becomes a dilute solution, and is then reused in the first absorber 14.
It is returned to the heat exchanger 15.

なお第1吸収器14は、冷水塔32で冷却された冷却水
によって約42°Cに冷却される〇一方第2サイクルは
上記第1サイクルと同様に動作するが、ここでは冷媒が
メタノールであり。
The first absorber 14 is cooled to approximately 42°C by the cooling water cooled by the cooling water tower 32. On the other hand, the second cycle operates in the same manner as the first cycle, but here the refrigerant is methanol. can be.

したがって温度、濃度等の条件は異なる。すなわち第2
発生器21は約90’Cであり、濃溶液は約58重量係
、希溶液は約63重量係で、第2吸収器24は約46°
C9第2凝縮−器22が約48°Cに。
Therefore, conditions such as temperature and concentration are different. That is, the second
The generator 21 is at about 90'C, the concentrated solution is about 58% by weight, the dilute solution is about 63% by weight, and the second absorber 24 is at about 46°C.
C9 second condenser 22 reaches approximately 48°C.

それぞれ冷却水によって冷却される。したがって第2蒸
発器23では熱媒体が約−3°Cまで冷却され、第1室
内放熱器16に比し第2室内放熱器26では約10°C
低い温度が得られる。しかも第2室内放熱器26は冷凍
にも使い得る温度であり。
Each is cooled by cooling water. Therefore, the heat medium is cooled down to about -3°C in the second evaporator 23, and about 10°C in the second indoor radiator 26 compared to the first indoor radiator 16.
A lower temperature can be obtained. Moreover, the temperature of the second indoor radiator 26 is such that it can be used for freezing.

1熱源で二様の使途が可能となる。One heat source can be used in two ways.

また熱利用の効率について見れば、上記条件では第1サ
イクルでのCOPが約Q、61 、第2サイクルではC
OPが約0.67となり、総合のCOPは約1.06と
なって、熱利用効率も向上する。
Also, looking at the efficiency of heat utilization, under the above conditions, the COP in the first cycle is approximately Q, 61, and in the second cycle COP
The OP becomes about 0.67, the total COP becomes about 1.06, and the heat utilization efficiency is also improved.

なお、吸収剤−冷媒の系については、必要な温度条件に
応じて変えることが可能であり、上記のように臭化リチ
ウム−水および臭化リチウム−メタノールに限定されな
いが、この系で用いることによって冷房と冷凍が同時に
できる効果を発揮する。
Note that the absorbent-refrigerant system can be changed depending on the required temperature conditions, and is not limited to lithium bromide-water and lithium bromide-methanol as described above, but it can be used in this system. This provides the effect of cooling and freezing at the same time.

以上のように本発明の吸収式冷凍機は2つの吸収冷凍サ
イクルを用い、一方の吸収冷凍サイクルの凝縮熱を他方
のサイクルの発生熱と17で用い。
As described above, the absorption refrigerating machine of the present invention uses two absorption refrigerating cycles, and the condensation heat of one absorption refrigerating cycle is used in conjunction with the generated heat of the other cycle.

両サイクルにおいて異なる冷媒を用いているので2種の
低温が得られ、たとえば冷房と冷凍が同時にできる優れ
た効果を奏するものである。
Since different refrigerants are used in both cycles, two types of low temperatures can be obtained, and this has an excellent effect of being able to perform cooling and freezing at the same time, for example.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の吸収式冷凍機の一実施例の回路構成図であ
る。 11・・・・・・第1発生器、12・・・・・・第1凝
縮器。 13・・・・・・第1蒸発器、14・・・・・・第1吸
収器、15・・・・・・第1熱交換器、16・・・・・
・第1室内器、21・・・・・第2発生器、22・・・
・・・第2凝縮器、23・・・・・・第2蒸発器、24
・・・・・・第2吸収器、26・・・・・・第2熱交換
器、26・・・・・・第2室内器、31・・・・加熱器
、32・・・・・・冷水塔。
The figure is a circuit diagram of an embodiment of an absorption refrigerator according to the present invention. 11...First generator, 12...First condenser. 13...First evaporator, 14...First absorber, 15...First heat exchanger, 16...
・First indoor unit, 21...Second generator, 22...
...Second condenser, 23...Second evaporator, 24
...Second absorber, 26...Second heat exchanger, 26...Second indoor unit, 31...Heater, 32...・Cold water tower.

Claims (3)

【特許請求の範囲】[Claims] (1)  外部熱源を用いて動作せしめる第1吸収冷凍
サイクルと、前記第1サイクルの凝縮器において発する
凝縮熱によって動作せしめ、少くとも冷媒の異なる第2
吸収冷凍サイクルとを盤側に備えた吸収式冷凍機。
(1) A first absorption refrigeration cycle that is operated using an external heat source, and a second absorption refrigeration cycle that is operated by the heat of condensation generated in the condenser of the first cycle and that uses at least a different refrigerant.
An absorption chiller equipped with an absorption refrigeration cycle on the panel side.
(2)前記第2吸収冷凍サイクルの蒸発器において得ら
れる冷媒の温度を前記第1吸収冷凍サイクルの蒸発器に
おける冷媒温度よシ低温にした特許請求の範囲第1項記
載の吸収式冷凍機。
(2) The absorption refrigerator according to claim 1, wherein the temperature of the refrigerant obtained in the evaporator of the second absorption refrigeration cycle is lower than that of the refrigerant in the evaporator of the first absorption refrigeration cycle.
(3)前記第1の吸収冷凍サイクルの冷媒は水(H2O
)とし、第2の吸収冷凍サイクルの冷媒をメタノール(
C1bOH)とした特許請求の範囲第1項または第2項
記載の吸収式冷凍機。
(3) The refrigerant of the first absorption refrigeration cycle is water (H2O
), and the refrigerant in the second absorption refrigeration cycle is methanol (
C1bOH) according to claim 1 or 2.
JP199382A 1982-01-08 1982-01-08 Absorption type refrigerator Pending JPS58120063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP199382A JPS58120063A (en) 1982-01-08 1982-01-08 Absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP199382A JPS58120063A (en) 1982-01-08 1982-01-08 Absorption type refrigerator

Publications (1)

Publication Number Publication Date
JPS58120063A true JPS58120063A (en) 1983-07-16

Family

ID=11516982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP199382A Pending JPS58120063A (en) 1982-01-08 1982-01-08 Absorption type refrigerator

Country Status (1)

Country Link
JP (1) JPS58120063A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257872A (en) * 1988-08-22 1990-02-27 Yazaki Corp Absorption refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257872A (en) * 1988-08-22 1990-02-27 Yazaki Corp Absorption refrigerator

Similar Documents

Publication Publication Date Title
US3483710A (en) Cascade absorption refrigeration system
US4732008A (en) Triple effect absorption chiller utilizing two refrigeration circuits
KR890000329B1 (en) Multi-stage absorption refrigeration system
US5946937A (en) Dual loop triple effect absorption chiller utilizing a common evaporator circuit
US4546620A (en) Absorption machine with desorber-resorber
KR19990022970A (en) Compression and Absorption Hybrid Heat Pump
JPH05172437A (en) Method and device for cooling fluid, particularly air by two separated absorption cooling system
JPS58120063A (en) Absorption type refrigerator
JP2009168358A (en) Chilled water generation system and absorption refrigerator
JP2628023B2 (en) Absorption refrigerator
KR200144045Y1 (en) Absorption type cooler
JP4164929B2 (en) Absorption refrigeration apparatus and refrigeration system including the absorption refrigeration apparatus
JPS6122225B2 (en)
JP2000266422A (en) Absorption refrigerating machine
JP3404225B2 (en) Absorption refrigerator
JPS5899661A (en) Engine waste-heat recovery absorption type cold and hot water machine
US3389570A (en) Refrigerant condensate circuit in multiple-effect absorption refrigeration systems
KR100234062B1 (en) Ammonia absorber cycle
RU2044966C1 (en) Refrigerating unit
JPH11211262A (en) Absorption type refrigerating machine system
JPH09229510A (en) Absorption refrigenerating machine
JPH04295555A (en) Multi-effect type absorption refrigerator
JPS60207867A (en) Engine waste-heat recovery absorption type cold and hot water machine
JP2892519B2 (en) Absorption heat pump equipment
DeVault et al. Seven-effect absorption refrigeration