JPS6144160Y2 - - Google Patents

Info

Publication number
JPS6144160Y2
JPS6144160Y2 JP3039982U JP3039982U JPS6144160Y2 JP S6144160 Y2 JPS6144160 Y2 JP S6144160Y2 JP 3039982 U JP3039982 U JP 3039982U JP 3039982 U JP3039982 U JP 3039982U JP S6144160 Y2 JPS6144160 Y2 JP S6144160Y2
Authority
JP
Japan
Prior art keywords
furnace
electrode
lower tubular
temperature
tubular electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3039982U
Other languages
Japanese (ja)
Other versions
JPS58135700U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3039982U priority Critical patent/JPS58135700U/en
Publication of JPS58135700U publication Critical patent/JPS58135700U/en
Application granted granted Critical
Publication of JPS6144160Y2 publication Critical patent/JPS6144160Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Description

【考案の詳細な説明】 本考案は、無煙炭、石油コークス、金属酸化物
−炭素造粒体等の炭素質粒体を直接通電により、
高温かつ均一温度に連続的に加熱するための竪型
電気加熱炉に関するものである。
[Detailed description of the invention] The invention is based on the method of directly energizing carbonaceous granules such as anthracite, petroleum coke, and metal oxide-carbon granules.
This invention relates to a vertical electric heating furnace for continuously heating to a high and uniform temperature.

現在広く使用されている竪型電気加熱炉は、第
1図縦断面図に示すように、耐火物で内張された
円筒状鉄製炉殻1と炭素質粒体に直接通電するた
めの上部電極2および下部電極3から構成され、
炭素質粒体は炉頂部から供給され、自重で炉内を
降下する間に加熱され、炉底部から連続的に排出
される。
As shown in the vertical cross-sectional view of Figure 1, the vertical electric heating furnace that is currently widely used includes a cylindrical iron furnace shell 1 lined with refractory material and an upper electrode 2 for directly applying electricity to the carbonaceous particles. and a lower electrode 3,
Carbonaceous particles are fed from the top of the furnace, heated while falling through the furnace under their own weight, and continuously discharged from the bottom of the furnace.

無煙炭やコークス類は、その加熱温度によつて
物理特性が著るしく異なり、電極用原料骨材とし
て使用する場合、均一温度加熱品が要求され、ま
た各種酸化物と炭素との混合造粒体を加熱し還元
炭化反応を行なわせる場合にも、副反応を防止し
完全に反応させるために、同様に所定温度に均一
加熱することが必要とされる。
The physical properties of anthracite and coke vary significantly depending on the heating temperature, and when used as raw material aggregate for electrodes, products heated at a uniform temperature are required, and mixed granules of various oxides and carbon are required. When heating the material to cause a reduction and carbonization reaction, uniform heating to a predetermined temperature is required in order to prevent side reactions and complete the reaction.

しかしながら、上記加熱炉では炉の中心部と炉
壁部の温度差をできるだけ少なくするため電極間
距離を拡げ、電流を炉壁方向にも流れるように操
業しても、中心部は2700℃にも達するが炉壁近傍
では、1500℃程度に過ぎず、炭素質粒体の加熱温
度は、1500〜2700℃の広範囲に加熱された炭素粒
体の混合物しか得られない。また電極間隔が広い
ため炉体放熱が多くなり、熱効率が低く、電力原
単位も悪い欠点があつた。
However, even if the heating furnace described above is operated so that the distance between the electrodes is increased to minimize the temperature difference between the center of the furnace and the furnace wall, and the current flows in the direction of the furnace wall, the temperature at the center still reaches 2700℃. However, near the furnace wall, the temperature is only about 1500°C, and only a mixture of carbon particles heated over a wide range of 1500 to 2700°C can be obtained. Furthermore, due to the wide electrode spacing, a large amount of heat is radiated from the furnace body, resulting in low thermal efficiency and low power consumption.

炭素質粒体を均一温度に加熱するために、例え
ば中心部と炉壁近傍の炭素質粒体を炉内で混合す
す回転式電気焙焼炉や撹拌式電気加熱炉が考案さ
れたが、なお中心部温度と混合温度との差は依然
として大きく、均一加熱とは言い難いものであ
る。
In order to heat the carbonaceous granules to a uniform temperature, for example, rotary electric roasting furnaces and stirring electric heating furnaces have been devised in which the carbonaceous granules in the center and near the furnace walls are mixed in the furnace. The difference between the temperature and the mixing temperature is still large, and it is difficult to say that heating is uniform.

本考案は、上述の連続式竪型電気加熱炉に関す
るもので、複雑な混合撹拌装置が不要で、しかも
少ない電力量で炭素質粒体を、連続的に均一加熱
することができる加熱炉を提供するものである。
The present invention relates to the above-mentioned continuous vertical electric heating furnace, and provides a heating furnace that does not require a complicated mixing and stirring device and can heat carbonaceous particles continuously and uniformly with a small amount of electric power. It is something.

本考案を図面に基いて説明すると、第2図は、
その縦断面図で、耐火物で内張りされた円筒状炉
殻1の炉の中心軸上に位置して円柱形の上部電極
2および、これに対向して下部管状電極3aが設
けられている。電極には炭素質、黒鉛質の何れも
使用可能であるが、人造黒鉛電極が好ましく用い
られる。炭素質粒体Bは炉頂部より供給され、炉
内を自重によつて降下し、下部管状電極の開口部
に形成される高温均一加熱帯を通つて、炭素質粒
体排出管を兼ねた下部管状電極の管内を降下し、
冷却筒4で冷却された後、炉底に設けられた排出
装置(図示せず)によつて炉外に連続的に排出さ
れる。下部管状電極3aの上端開口部周辺には、
炭素質粒体の流出角に応じて静止層5が形成さ
れ、内張耐火物を保護する。静止層5の部分と下
部管状電極の外周と炉壁との間には炭素質粒体よ
り電気抵抗が大きい高温断熱材層を介在させて炉
殻部への放熱を防止すると共に、下部管状電極外
側面に流入する無効電流をできるだけ小さくする
ことが好ましく、高温断熱材としてはカーボンブ
ラツク、木炭、フエルト状カーボン繊維、多孔質
炭素、炭化ケイ素等が用いられる。
To explain the present invention based on the drawings, Fig. 2 shows the following:
In the longitudinal cross-sectional view, a cylindrical furnace shell 1 lined with a refractory material is provided with a cylindrical upper electrode 2 located on the central axis of the furnace, and a lower tubular electrode 3a opposed thereto. Although either carbonaceous or graphite electrodes can be used, artificial graphite electrodes are preferably used. Carbonaceous granules B are supplied from the top of the furnace, descend inside the furnace under their own weight, pass through a high-temperature uniform heating zone formed at the opening of the lower tubular electrode, and pass through the lower tubular electrode, which also serves as a carbonaceous granule discharge pipe. descending through the pipe of
After being cooled in the cooling cylinder 4, it is continuously discharged out of the furnace by a discharge device (not shown) provided at the bottom of the furnace. Around the upper end opening of the lower tubular electrode 3a,
A stationary layer 5 is formed depending on the outflow angle of the carbonaceous particles and protects the lining refractory. A high-temperature insulating material layer with higher electrical resistance than the carbonaceous particles is interposed between the stationary layer 5, the outer periphery of the lower tubular electrode, and the furnace wall to prevent heat radiation to the furnace shell, and to prevent the heat from radiating to the furnace shell. It is preferable to minimize the reactive current flowing into the side surfaces, and carbon black, charcoal, felt-like carbon fiber, porous carbon, silicon carbide, etc. are used as the high-temperature insulating material.

本考案においては、下部管状電極3aの上端開
口部に最高温度の均熱帯を形成させ、炭素質粒体
の全てを、この均熱帯を通過させ、管状電極の管
内を通して炉底部に導くことにより、炭素質粒体
は最高温度に均一加熱される。加熱に際しては、
電流、電極間距離、炭素質粒体の排出速度等を調
節して所定温度に保持する。
In the present invention, a soaking zone with the highest temperature is formed at the upper end opening of the lower tubular electrode 3a, and all of the carbonaceous particles are passed through this soaking zone and guided to the bottom of the furnace through the tube of the tubular electrode. The solid granules are uniformly heated to the maximum temperature. When heating,
The current, distance between electrodes, discharge rate of carbonaceous particles, etc. are adjusted to maintain a predetermined temperature.

下部管状電極開口部に最高温度の均一加熱帯を
形成させる為には、1組の上部電極と下部管状電
極を炉の中心軸に沿つて配設する必要があり、上
部電極が複数であつたり、電極が中心軸を外れて
いると炉内の対称性が失われ、均一加熱帯が形成
されない。また下部管状電極の上端開口部を炉の
上下中心部に接近させることが必要である。即ち
電極は電気抵抗が小さいため、ジユール熱は主と
して上下電極間で発生し、また電極は炭素質粒体
より熱伝熱が良いので、電極先端は近傍の炭素質
粒体より低温となり易く、最高温度域から直接下
部管状電極を通じて炉外への放熱が生じ易いが、
下部管状電極の長さを充分にとつて、最高温度に
加熱された炭素質粒体の廃熱で下部管状電極を加
熱し、電極先端部を高温に保つことにより、上述
の放熱を防止する。
In order to form a uniform heating zone with the highest temperature at the opening of the lower tubular electrode, it is necessary to arrange one set of the upper electrode and the lower tubular electrode along the central axis of the furnace, and there may be multiple upper electrodes. If the electrode is off the center axis, the symmetry inside the furnace will be lost and a uniform heating zone will not be formed. It is also necessary to bring the upper end opening of the lower tubular electrode closer to the upper and lower center of the furnace. That is, since the electrical resistance of the electrode is small, Joule heat is mainly generated between the upper and lower electrodes, and since the electrode has better heat transfer than the carbonaceous particles, the tip of the electrode tends to be lower than the nearby carbonaceous particles, and the highest temperature range Although heat is likely to be radiated directly from the furnace to the outside of the furnace through the lower tubular electrode,
The above-mentioned heat dissipation is prevented by making the lower tubular electrode sufficiently long, heating the lower tubular electrode with waste heat from the carbonaceous particles heated to the highest temperature, and keeping the tip of the electrode at a high temperature.

次に、下部管状電極3aの上端開口部の内径は
上部電極の外径の1倍ないし3倍の範囲が適で、
3倍を超えると炭素質粒体を流れる電流の通過断
面積が増大し、発熱密度が減少して開口部に最高
温度帯が形成されず、炉の中心との温度差が大と
なる。また1倍未満では炭素質粒体の円滑な流れ
が阻害され閉塞の危険が増し、また下部管状電極
の外側面に流入する無効電流が増大し、熱効率が
低下し電力原単位が悪化する。
Next, the inner diameter of the upper end opening of the lower tubular electrode 3a is preferably in the range of 1 to 3 times the outer diameter of the upper electrode.
If it exceeds 3 times, the cross-sectional area of the current flowing through the carbonaceous particles increases, the heat generation density decreases, the highest temperature zone is not formed at the opening, and the temperature difference with the center of the furnace becomes large. If it is less than 1 times, the smooth flow of the carbonaceous particles will be inhibited, increasing the risk of blockage, and the reactive current flowing into the outer surface of the lower tubular electrode will increase, resulting in a decrease in thermal efficiency and a worsening of the power consumption rate.

さらに上下電極間の距離は上部電極外径の3倍
以下好ましくは2.5倍以下で、3倍を超えると最
高温度域は下部管状電極開口部を離れ上方に移行
し、均一加熱帯が形成されず、下部管状電極の外
側面に流入する無効電流を増大し、かつ高温部の
拡大により炉壁からの放熱量が増大するからであ
る。
Furthermore, the distance between the upper and lower electrodes should be 3 times or less than the outer diameter of the upper electrode, preferably 2.5 times or less; if it exceeds 3 times, the maximum temperature range will leave the lower tubular electrode opening and move upward, preventing the formation of a uniform heating zone. This is because the reactive current flowing into the outer surface of the lower tubular electrode is increased, and the amount of heat dissipated from the furnace wall is increased due to the expansion of the high temperature section.

本考案に係る電気加熱炉は上述のような構成を
有するので、炭素質粒体の高温均一加熱と高い熱
効率による村電力原単位の低下が達成される。
Since the electric heating furnace according to the present invention has the above-described configuration, it is possible to achieve high temperature uniform heating of carbonaceous particles and a reduction in the electricity consumption rate due to high thermal efficiency.

本考案に係る第2図の構造を有し、上部電極の
外径203mm、下部管状電極の内径350mm、外径450
mm、上下電極間距離300mmとし、下部管状電極外
側と炉殻間にカーボンブラツクを充填した
200kW電気加熱炉による石油コークスおよびピ
ツチコークスの黒鉛化例では、それぞれ良好な黒
鉛化製品が得られた。標準試料と対比して、黒鉛
化製品の温度分布を測定したところ、排出速度
110Kg/hrのときの石油コークスでは、すべて
2500〜2800℃の範囲内であり、排出速度が130
Kg/hrのときのピツチコークスでは、2200〜2500
℃の範囲内で加熱されており、熱効率もそれぞれ
85%(石油コークス)および86%(ピ歴ツ但チコ
ークス)の高い値が得られた。
It has the structure shown in Fig. 2 according to the present invention, the outer diameter of the upper electrode is 203 mm, the inner diameter of the lower tubular electrode is 350 mm, and the outer diameter is 450 mm.
mm, the distance between the upper and lower electrodes was 300 mm, and carbon black was filled between the outside of the lower tubular electrode and the furnace shell.
In the graphitization of petroleum coke and pitch coke using a 200kW electric heating furnace, good graphitized products were obtained. When we measured the temperature distribution of the graphitized product in comparison with the standard sample, we found that the discharge rate
For petroleum coke at 110Kg/hr, all
Within the range of 2500-2800℃ and the discharge rate is 130
Pitch coke when Kg/hr is 2200~2500
It is heated within the range of ℃, and the thermal efficiency is also
High values of 85% (petroleum coke) and 86% (petroleum coke) were obtained.

一方、第1図の電気加熱炉で上下電極とも外径
203mmの円筒電極を配設して石油コークスの黒鉛
化を行なつた比較例では黒鉛化は充分に進行せ
ず、温度分布も1400〜〜2800℃の間にあり、熱効
率も59%と低く、電力原単位も実施例の
1650kWh(石油コークス)、1400kWh(ピツチコ
ークス)に対し、1810kWhと大きく、本考案の
優れた効果が実証された。
On the other hand, in the electric heating furnace shown in Figure 1, the outer diameter of both the upper and lower electrodes is
In a comparative example in which petroleum coke was graphitized using a 203 mm cylindrical electrode, graphitization did not proceed sufficiently, the temperature distribution was between 1400 and 2800 degrees Celsius, and the thermal efficiency was low at 59%. The electricity intensity is also the same as in the example.
Compared to 1650kWh (petroleum coke) and 1400kWh (pitch coke), the output was 1810kWh, demonstrating the excellent effectiveness of this invention.

本考案による電気加熱炉で得られた黒鉛化骨材
は、アルミニウム電解炉用陰極、合金鉄製造炉用
電極、高炉用内張り用ブロツク材等として優れた
性能を発揮し、また本電気炉はアルミナ、珪砂等
の金属酸化物と炭素との混合造粒体を1700℃〜
2400℃の所定温度に均一加熱する場合にも極めて
有用である。
The graphitized aggregate obtained by the electric heating furnace of the present invention exhibits excellent performance as a cathode for aluminum electrolytic furnaces, electrodes for ferroalloy manufacturing furnaces, block materials for blast furnace linings, etc. , mixed granules of metal oxide such as silica sand and carbon at 1700℃~
It is also extremely useful when uniformly heating to a predetermined temperature of 2400°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の竪型電気加熱炉の縦断面図で、
第2図は本考案に係る竪型電気加熱炉の縦断面図
である。 1……鉄製炉殻、2……上部電極、3……下部
電極、3a……下部管状電極、4……冷却筒、5
……静止層。
Figure 1 is a vertical cross-sectional view of a conventional vertical electric heating furnace.
FIG. 2 is a longitudinal sectional view of the vertical electric heating furnace according to the present invention. DESCRIPTION OF SYMBOLS 1... Iron furnace shell, 2... Upper electrode, 3... Lower electrode, 3a... Lower tubular electrode, 4... Cooling cylinder, 5
...Stationary layer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 抵抗加熱式の連続竪型電気加熱炉において、炉
の中心軸に沿い1組の上部円筒電極と管内径が前
記上部円筒電極の外径の1倍ないし3倍で被処理
材排出管を兼ねた下部管状電極を配設し、両電極
の極間距離を前記上部円筒電極の外径の3倍以内
とし、かつ前記下部管状電極外壁との炉殻間に高
温断熱材層を介在させることを特徴とする竪型電
気加熱炉。
In a resistance heating type continuous vertical electric heating furnace, there is a set of upper cylindrical electrodes along the central axis of the furnace and a pipe whose inner diameter is 1 to 3 times the outer diameter of the upper cylindrical electrode and also serves as a discharge pipe for the material to be treated. A lower tubular electrode is provided, the distance between the two electrodes is within three times the outer diameter of the upper cylindrical electrode, and a high temperature insulation layer is interposed between the outer wall of the lower tubular electrode and the furnace shell. Vertical electric heating furnace.
JP3039982U 1982-03-05 1982-03-05 Vertical electric heating furnace Granted JPS58135700U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3039982U JPS58135700U (en) 1982-03-05 1982-03-05 Vertical electric heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3039982U JPS58135700U (en) 1982-03-05 1982-03-05 Vertical electric heating furnace

Publications (2)

Publication Number Publication Date
JPS58135700U JPS58135700U (en) 1983-09-12
JPS6144160Y2 true JPS6144160Y2 (en) 1986-12-12

Family

ID=30042131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3039982U Granted JPS58135700U (en) 1982-03-05 1982-03-05 Vertical electric heating furnace

Country Status (1)

Country Link
JP (1) JPS58135700U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6621603B2 (en) * 2015-06-15 2019-12-18 日本電極株式会社 Carbonaceous particle heat treatment apparatus and method
JP2021147259A (en) * 2020-03-17 2021-09-27 日本電極株式会社 Heat treatment apparatus of carbonaceous grain and its assembling method

Also Published As

Publication number Publication date
JPS58135700U (en) 1983-09-12

Similar Documents

Publication Publication Date Title
US4292276A (en) Apparatus for producing silicon carbide
US5009703A (en) Silicon smelting process in direct current furnace
CN101905882A (en) Device and method for continuously producing high-purity bulk artificial graphite by utilizing petroleum coke or anthracite
JP2024069933A (en) Three-phase Kryptor furnace
CN107655333B (en) Composite heating type heat treatment furnace
JPS6144160Y2 (en)
GB2185559A (en) Process and apparatus for continuously graphitizing carbon bodies
CN108046235B (en) Bulk carbon material ultra-high temperature purifying furnace
US2863738A (en) Apparatus for conducting chemical reactions
CN105018740B (en) Vacuum reduction furnace for electromagnetic induction heating melting reduction of magnesium metal
ES2297331T3 (en) DURABLE GRAPHIC BODIES AND PROCEDURE FOR PREPARATION.
US1442033A (en) Method of operating electric furnaces
US3194634A (en) Process for producing silica in the form of a dispersed powder
CA1070477A (en) Electrical resistance furnace for the production of silicon carbide
US5058126A (en) Silicon carbide beam as refractory in an open-arc furnace
CN207760048U (en) Bulk Carbon Materials superhigh temperature purification furnace
JPS5818325B2 (en) Beta Gatatankakeisono Lenzokuseizohouhou
RU2234037C2 (en) Electrocalcinator for calcination of anthracites
JPH0138042B2 (en)
CN220039113U (en) Furnace loosening piece, graphitizing furnace and battery production equipment
US3297810A (en) Apparatus for the production of abrasive carbides
RU2157795C1 (en) Method and apparatus for preparing melt silicate
US3788622A (en) Furnace
CN109081336B (en) Electric calcining high-temperature graphitization furnace
CN204848984U (en) Electromagnetic induction heating melting reducing metal magnesium vacuum reduction stove