JPS5818325B2 - Beta Gatatankakeisono Lenzokuseizohouhou - Google Patents

Beta Gatatankakeisono Lenzokuseizohouhou

Info

Publication number
JPS5818325B2
JPS5818325B2 JP50089885A JP8988575A JPS5818325B2 JP S5818325 B2 JPS5818325 B2 JP S5818325B2 JP 50089885 A JP50089885 A JP 50089885A JP 8988575 A JP8988575 A JP 8988575A JP S5818325 B2 JPS5818325 B2 JP S5818325B2
Authority
JP
Japan
Prior art keywords
furnace
raw material
reaction
carbon
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50089885A
Other languages
Japanese (ja)
Other versions
JPS5213500A (en
Inventor
榎本亮
横山隆夫
吉岡道博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP50089885A priority Critical patent/JPS5818325B2/en
Publication of JPS5213500A publication Critical patent/JPS5213500A/en
Publication of JPS5818325B2 publication Critical patent/JPS5818325B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、β型炭化珪素の連続製造方法に関し、詳しく
は、シリカ粉末と炭素粉末と炭素系の結合剤とを混合し
、粒状に成形せしめた原料を出発原料とするβ型炭化珪
素の連続製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuously producing β-type silicon carbide, and more specifically, a raw material obtained by mixing silica powder, carbon powder, and a carbon-based binder and molding the mixture into granules is used as a starting raw material. The present invention relates to a method for continuously producing β-type silicon carbide.

従来炭化珪素は、工業的には非連続式のアチェソン型電
気抵抗炉で製造されていた。
Conventionally, silicon carbide has been industrially produced in a discontinuous Acheson type electric resistance furnace.

この製造方法は炉の両端に固定された電極間を炭素の抵
抗芯で結び、その周囲をシリカと炭素とからなる混合物
で充填し、この抵抗芯に電力を供給して加熱反応させた
後に、炉の側壁を取りはずして、生成した堅いα型炭化
珪素の結晶塊を回収する方法であ□る。
This manufacturing method connects the electrodes fixed at both ends of the furnace with a carbon resistance core, fills the surrounding area with a mixture of silica and carbon, supplies electricity to this resistance core to cause a heating reaction, and then In this method, the side wall of the furnace is removed and the hard α-type silicon carbide crystal lumps produced are recovered.

したがって、回収後の粗砕および選別作業などに多くの
労力を要し、作業性は極めて悪かった。
Therefore, much labor was required for the crushing and sorting work after collection, and the workability was extremely poor.

また、粉塵および悪臭による労働衛生上ならびに公害上
の未解決の問題があり、さらにまた休炉期間が長くて炉
の稼動効率が極めて低く、さらに排出COガスを回収し
難い等の多くの欠点を有していた。
In addition, there are unresolved industrial hygiene and pollution problems due to dust and bad odors, and there are many other drawbacks, such as the long furnace downtime, extremely low furnace operating efficiency, and the difficulty of recovering exhaust CO gas. had.

一方、微細結晶のβ型炭化珪素はα型炭化珪素とは異な
る化学的および物理的な特性が認められ、炭化珪素系耐
火物の充填剤や結合剤として、また、冶金用の脱酸剤と
して、さらにα型炭化珪素では得ることの困難な微細な
粒径により磨き研磨剤および艶消剤等の多くの用途が近
年開発され、その需要は益々増加している。
On the other hand, microcrystalline β-type silicon carbide has different chemical and physical properties from α-type silicon carbide, and is used as a filler and binder for silicon carbide refractories and as a deoxidizing agent for metallurgy. Furthermore, due to the fine particle size that is difficult to obtain with α-type silicon carbide, many uses such as polishing abrasives and matting agents have been developed in recent years, and the demand for them is increasing.

β型炭化珪素を連続的に製造することは、従来よりいろ
いろと試みられており、例えば西ドイツ国特許第1,1
86,447号によれば、同心二重の管によって構成さ
れた反応筒と最も内側の管内にのみ設置された発熱体と
さらに前記反応筒の外側壁にCOガスを常時反応域外へ
排出させるための斜孔が複数個設けられている特殊な装
置を使用する製造方法が開示されている。
Various attempts have been made to continuously produce β-type silicon carbide, such as West German Patent Nos. 1 and 1.
According to No. 86,447, a reaction tube composed of concentric double tubes, a heating element installed only in the innermost tube, and an outer wall of the reaction tube are used to constantly discharge CO gas out of the reaction area. A manufacturing method using a special device in which a plurality of diagonal holes are provided is disclosed.

しかし、この方法は後に述べる如くの欠点を有している
ため、実施が困難である。
However, this method has drawbacks as described later, and is difficult to implement.

なぜならば、上記西ドイツ国特許記載の方法によれは、
出発原料は反応域で溶融したりシリカ粒が相互に融着し
て塊状化することを防止するためにシリカ粒の表面を粘
着性の液体で濡らして炭素粉でまぶしたものが使用され
ている。
This is because, according to the method described in the above West German patent,
In order to prevent the starting material from melting in the reaction zone or from silica grains fusing together and forming lumps, the surfaces of silica grains are wetted with a sticky liquid and sprinkled with carbon powder. .

したがって、原料の通気性が極めて悪く、析出物の影響
も受は易いし、また反応域においては輻射伝熱が甚しく
阻害されるため熱伝導率が著しく低し)。
Therefore, the air permeability of the raw material is extremely poor, it is easily affected by precipitates, and the thermal conductivity is extremely low because radiation heat transfer is severely inhibited in the reaction zone).

さらに前記装置は最も内部に発熱体を有しており、原料
はその外周部へ装入される形式である。
Further, the device has a heating element in the innermost part, and the raw material is charged into the outer periphery of the heating element.

したがって、反応域において水平方向に温度勾配が生ず
るため、原料を均一に加熱し、均一な生成物を得ること
が困難である。
Therefore, a horizontal temperature gradient occurs in the reaction zone, making it difficult to uniformly heat the raw materials and obtain a uniform product.

以上述べた如く、経済的にかつ工業的な規模でβ型炭化
珪素を連続製造するための方法は未だ知られていなかっ
た。
As mentioned above, a method for continuously producing β-type silicon carbide economically and on an industrial scale has not yet been known.

このような観点に立ち、本発明者等は先に特願昭49−
126425号により、シリカと炭素とを出発原料とす
るβ型炭化珪素の連続製造方法に係る発明を提案してい
る。
From this point of view, the inventors of the present invention previously filed a patent application filed in 1973-
No. 126425 proposes an invention relating to a method for continuous production of β-type silicon carbide using silica and carbon as starting materials.

前記発明によれば比較的反応性の低い炭素材を使用する
場合には炭素材を微粉砕することによって反応性を向上
させ、さらにシリカ粉末と炭素系の結合剤と混合し成形
することにより、シリカ粒子による原料の溶融塊状化と
、炭化珪素の生成反応時に発生する中間生成物であるS
iOガスからの析出物の粘着作用による原料の塊状化を
防止することを可能としている。
According to the invention, when using a carbon material with relatively low reactivity, the reactivity is improved by finely pulverizing the carbon material, and further, by mixing and molding silica powder and a carbon-based binder, S is an intermediate product generated during the melting and agglomeration of raw materials by silica particles and the production reaction of silicon carbide.
This makes it possible to prevent the raw material from clumping together due to the adhesion of precipitates from iO gas.

しかしながら、前記炭素系の結合剤は炭化温度に到達す
る前に一旦軟化溶融するため、SiC生成反応に必要と
される高温に加熱される以前に前記結合剤の粘着作用に
よって成形原料が相互に塊状化し、円滑な原料の自重降
下が阻害されたり、著しい場合には前記結合剤が軟化溶
融する際に前記成形原料の形状が損なわれ、ガスの通気
性が悪化してSiC生成反応が進み難くなり、長期間の
安定した連続操業が困難となる場合があった。
However, since the carbon-based binder softens and melts before reaching the carbonization temperature, the adhesive action of the binder causes the forming raw materials to form into lumps before being heated to the high temperature required for the SiC production reaction. The shape of the molding raw material may be damaged when the binder softens and melts, and the gas permeability deteriorates, making it difficult for the SiC production reaction to proceed. In some cases, long-term stable continuous operation was difficult.

本発明は、前記本発明者等が先に発明し特許出願した方
法の改良に係り、その目的とするところは、加熱炉内に
おける装入原料の自重降下を円滑にし、安定した炉況を
維持し、かつ低い電力原単位でβ型炭化珪素を連続して
製造する方法を提供することにある。
The present invention relates to an improvement of the method previously invented and patented by the present inventors, and its purpose is to smoothly lower the dead weight of the charged material in the heating furnace and maintain stable furnace conditions. It is an object of the present invention to provide a method for continuously producing β-type silicon carbide with low power consumption.

本発明によれば、シリカ粉末と炭素粉末と炭素系の結合
剤とを混合し、粒状に成形せしめた原料を竪型の電気抵
抗式間接加熱炉の上方から前記加熱炉内に装入し、前記
加熱炉中で間接加熱してSiC生成反応を生起させ、前
記加熱炉の下方よりSiC生成物を取り出すβ型炭化珪
素の連続製造方法において、 前記加熱炉にSiC生成反応時に副生ずる高温の反応生
成ガスを導入することのできる炭化炉を連接し、前記粒
状に成形せしめた原料を前記炭化炉内に装入し、SiC
生成反応時に副生ずる高温の反応生成ガスと接触させる
ことにより、原料中の炭素系の結合剤を炭化せしめた後
、前記炭化炉内より排出し、ついで前記加熱炉内に装入
し、1600〜2100°Cの温度範囲内に加熱してS
iC生成反応を生起せしめることを特徴とするβ型炭化
珪素の連続製造方法によって前記目的を達成することが
できる。
According to the present invention, a raw material obtained by mixing silica powder, carbon powder, and a carbon-based binder and forming it into granules is charged into the heating furnace from above a vertical electric resistance type indirect heating furnace, In the continuous production method of β-type silicon carbide, in which a SiC production reaction is caused by indirect heating in the heating furnace, and a SiC product is taken out from below the heating furnace, a high-temperature reaction that occurs as a by-product during the SiC production reaction in the heating furnace. A carbonization furnace into which generated gas can be introduced is connected, and the raw material formed into granules is charged into the carbonization furnace, and SiC
The carbon-based binder in the raw material is carbonized by contacting with the high-temperature reaction product gas produced as a by-product during the production reaction, and then discharged from the carbonization furnace, and then charged into the heating furnace. Heat to within the temperature range of 2100°C
The above object can be achieved by a method for continuously producing β-type silicon carbide, which is characterized by causing an iC production reaction.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明によれば、シリカ粉末と炭素粉末と炭素系の結合
剤とを混合し、粒状に成形せしめた原料を使用する。
According to the present invention, a raw material obtained by mixing silica powder, carbon powder, and a carbon-based binder and forming the mixture into granules is used.

前記成形せしめた原料は加熱炉内において常に初期の形
状を維持していることが重要であり、前記成形せしめた
原料を加熱炉内に装入する前に前記原料中に含有される
炭素系の結合剤を炭化せしめることが必要である。
It is important that the shaped raw material always maintains its initial shape in the heating furnace. It is necessary to carbonize the binder.

その理由は、本発明において使用される炭素系の結合剤
は成形せしめた原料の高温域におシる圧潰強度を向上さ
せることを目的として用いられるものであるが、前記炭
素系の結合剤は高温域で炭化することにより結合力を発
揮するものである。
The reason is that the carbon-based binder used in the present invention is used for the purpose of improving the crushing strength of the molded raw material in a high temperature range. It exhibits bonding strength by carbonizing in a high temperature range.

したがって、前記成形せしめた原料を炭素系の結合剤を
炭化せずに使用すると、加熱炉内で炭素系の結合剤が軟
化溶融するため、前記軟化溶融した結合剤の粘着作用に
よって、成形せしめた原料が相互に粘着し、塊状化する
ことにより原料の円滑な自重降下が阻害される。
Therefore, if the molded raw material is used without carbonizing the carbon-based binder, the carbon-based binder will soften and melt in the heating furnace, so that the molded raw material will be softened and melted in the heating furnace due to the adhesive action of the softened and melted binder. The raw materials stick to each other and form clumps, which prevents the raw materials from falling smoothly under their own weight.

また、前記軟化溶融が著しい場合には上部に積層された
原料の重量によって初期の形状が損なわれ、ガスの通気
性が著しく劣化し、炭化珪素の生成反応が進み難くなる
Further, if the softening and melting is significant, the initial shape is damaged by the weight of the raw materials stacked on top, gas permeability is significantly deteriorated, and the silicon carbide production reaction becomes difficult to proceed.

しかしながら、前記成形せしめた原料を加熱炉内に装入
する前に一旦少なくとも結合剤の炭化温度まで加熱し、
炭素系の結合剤を炭化せしめることにより、前記原料は
熱的および強度的に優れたカーボンボンディングされた
状態となり、加熱炉内において炭素系の結合剤の軟化溶
融に起因する原料の塊状化および変形を防止することが
できる。
However, before charging the shaped raw material into the heating furnace, it is necessary to first heat it to at least the carbonization temperature of the binder,
By carbonizing the carbon-based binder, the raw material becomes a carbon-bonded state with excellent thermal and strength properties, and the raw material becomes lumpy and deformed due to softening and melting of the carbon-based binder in the heating furnace. can be prevented.

なお、本発明によれは、前記成形せしめた原料に含有さ
れる炭素系の結合剤を炭化せしめる際の温度は400℃
以上とすることが好ましい。
According to the present invention, the temperature at which the carbon-based binder contained in the molded raw material is carbonized is 400°C.
It is preferable to set it as above.

本発明によれば、炭素系の結合剤として例えばコールタ
ール、石油タール、木タール、コールタールピッチ、石
油ピッチ、木クールピッチ、アスファルト、糖蜜、フェ
ノール樹脂、パルプ廃液およびこれらと同等の効果を有
するものを有利に使用することができる。
According to the present invention, carbon-based binders such as coal tar, petroleum tar, wood tar, coal tar pitch, petroleum pitch, wood cool pitch, asphalt, molasses, phenolic resin, pulp waste liquid, and those having effects equivalent to these can be used. You can use things to your advantage.

本発明によれば、シリカ粉末は珪石あるいは珪砂を粉砕
したものを有利に使用でき、また炭素粉末は石油コーク
ス、ピッチコークスあるいは無煙炭を粉砕したものを有
利に使用できる。
According to the present invention, as the silica powder, pulverized silica stone or silica sand can be advantageously used, and as the carbon powder, pulverized petroleum coke, pitch coke, or anthracite can be advantageously used.

本発明によれば、加熱炉にSiC生成反応時に副生ずる
高温の反応生成ガスを導入することのできる炭化炉を連
接し、粒状に成形せしめた原料を前記炭化炉内に装入し
、SiC生成反応時に副生ずる高温の反応生成ガスと接
触させることにより、原料中の炭素系の結合剤を炭化せ
しめることが必要である。
According to the present invention, a carbonization furnace capable of introducing high-temperature reaction product gas that is produced as a by-product during the SiC production reaction is connected to the heating furnace, and a raw material formed into granules is charged into the carbonization furnace to produce SiC. It is necessary to carbonize the carbon-based binder in the raw material by bringing it into contact with the high-temperature reaction product gas produced as a by-product during the reaction.

本発明において、粒状に成形せしめた原料をSiC生成
反応時に副生ずる高温の反応生成ガスと接触させること
により、原料中の炭素系の結合剤を炭化せしめる理由は
、前記SiC生成反応時に副生ずる反応生成ガスは90
0℃以上と極めて高温で、大量の顕熱を有しており、こ
の反応生成ガスの顕熱を有効に利用することにより、熱
効率を著しく向上させることができるからである。
In the present invention, the reason why the carbon-based binder in the raw material is carbonized by bringing the raw material shaped into particles into contact with the high-temperature reaction product gas that is produced as a by-product during the SiC production reaction is because of the reaction that occurs as a by-product during the SiC production reaction. The generated gas is 90
This is because it has an extremely high temperature of 0° C. or higher and a large amount of sensible heat, and by effectively utilizing this sensible heat of the reaction product gas, thermal efficiency can be significantly improved.

また、本発明において、加熱炉にSiC生成反応時に副
生ずる高温の反応生成ガスを導入することのできる炭化
炉を連接する理由は、SiC生成反応時に副生ずる反応
生成ガスは主としてCOガスとSiOガスであるが、こ
のうち、本発明において原料と接触せしめられる高温の
反応生成ガスはCOガスであり、加熱炉に炭化炉を連接
することによりCOガスを酸化させることなく効率的に
高温状態を維持したまま炭イ’b炉に導入することがで
きるからである。
In addition, in the present invention, the reason why the carbonization furnace is connected to the heating furnace, which can introduce the high temperature reaction product gas that is produced as a by-product during the SiC production reaction, is that the reaction product gas that is produced as a by-product during the SiC production reaction is mainly CO gas and SiO gas. However, in the present invention, the high-temperature reaction product gas that is brought into contact with the raw material is CO gas, and by connecting the carbonization furnace to the heating furnace, the high temperature state can be efficiently maintained without oxidizing the CO gas. This is because the coal can be introduced into the furnace as it is.

なお、前記炭化炉は加熱炉の上方に連接することが好ま
しい。
In addition, it is preferable that the carbonization furnace is connected above the heating furnace.

本発明によれば、前記炭化炉としては例えばロータリー
キルン等の回転炉を有利に使用することができる。
According to the present invention, a rotary furnace such as a rotary kiln can be advantageously used as the carbonization furnace.

前記炭化炉として回転炉が有利である理由は、原料とC
Oガスとの接触形態を向流接触とすることができ、熱交
換を充分に行なうことができること、炉を回転させるこ
とによって結合剤の軟化溶融による原料の凝結塊状化を
防止できること、および原料に殆ど荷重をかけないため
初期の形状を損なわせることなく炭化処理を行なうこと
のできることなどを挙げることができる。
The reason why a rotary furnace is advantageous as the carbonization furnace is that the raw material and C
The form of contact with the O gas can be countercurrent, allowing for sufficient heat exchange, and by rotating the furnace, it is possible to prevent the raw material from coagulating into lumps due to softening and melting of the binder. The carbonization process can be carried out without damaging the initial shape because almost no load is applied.

本発明によれば、炭化炉より排出された原料は加熱炉内
に装入され、1600−2100℃の温度範囲内に加熱
される。
According to the present invention, the raw material discharged from the carbonization furnace is charged into the heating furnace and heated to a temperature range of 1600-2100°C.

前記温度範囲を1600〜2100℃の範囲内とする理
由は、前記温度が2100℃より高いと生成したβ型炭
化珪素が結晶成長し、α型炭化珪素に転移して焼結塊と
なるので連続操業が難しく、一方1600℃より低いと
反応速度が極めて遅く、経済的でないからである。
The reason why the temperature range is 1,600 to 2,100°C is that if the temperature is higher than 2,100°C, the generated β-type silicon carbide will crystallize and transform into α-type silicon carbide to form a sintered mass. This is because operation is difficult, and on the other hand, if the temperature is lower than 1600°C, the reaction rate is extremely slow and uneconomical.

本発明によれば、電気抵抗式間接加熱炉を使用すること
により、原料ならびに反応生成物の水平方向の温度分布
をほぼ均一にし、反応の局部的かたよりを小さくして均
一な生成物を収率よく得ることができる。
According to the present invention, by using an electric resistance type indirect heating furnace, the horizontal temperature distribution of the raw materials and reaction products is made almost uniform, the local deviation of the reaction is reduced, and uniform products are obtained. You can get it easily.

次に本発明方法において使用される連続製造装置の一例
を図面を参照しながら説明する。
Next, an example of a continuous manufacturing apparatus used in the method of the present invention will be explained with reference to the drawings.

本発明方法において使用される製造装置は第1図に示し
た如く、電気抵抗間接加熱方式の竪型炉1とSiC生成
反応時に副生ずる高温の反応生成ガスを導入することの
できる炭化炉2とよりなる装置である。
As shown in FIG. 1, the manufacturing equipment used in the method of the present invention includes a vertical furnace 1 using electric resistance indirect heating, and a carbonization furnace 2 into which high-temperature reaction product gas produced as a by-product during the SiC production reaction can be introduced. It is a device consisting of

前記竪型炉1の中心部には筒状の反応筒3が設けられ、
前記反応筒3の中央加熱部は黒鉛質で、その下部は耐火
物4で構成されている。
A cylindrical reaction tube 3 is provided in the center of the vertical furnace 1,
The central heating part of the reaction tube 3 is made of graphite, and the lower part thereof is made of refractory material 4.

前記反応筒3の中央加熱部の外周には黒鉛製の発熱体5
および黒鉛製の発熱体保護外筒6が設けられている。
A heating element 5 made of graphite is provided on the outer periphery of the central heating part of the reaction tube 3.
A heating element protection outer cylinder 6 made of graphite is also provided.

前記発熱体5は前記発熱体保護外筒6と反応筒3に囲ま
れた空間内にあり、その空間内には非酸化性ガスが封入
されている。
The heating element 5 is located in a space surrounded by the heating element protection outer cylinder 6 and the reaction cylinder 3, and a non-oxidizing gas is sealed in the space.

前記発熱体保護外筒6の外周には非常に断熱性の優れた
アセチレンブラックあるいはカーボンブラック等の粉末
断熱材が充填された断熱層γが設けられている。
A heat insulating layer γ filled with a powder heat insulating material such as acetylene black or carbon black, which has excellent heat insulating properties, is provided on the outer periphery of the heating element protection outer cylinder 6.

前記竪型炉1における反応温度の制御は、前記竪型炉1
の側面に設けられた測温パイプ8および温度計9を用い
て、反応筒3の外壁温度あるいシまその付近の温度を測
定し、この測定値と電源の制御回路もしくは負荷電圧と
対応させることによって実施することができる。
The reaction temperature in the vertical furnace 1 is controlled by the vertical furnace 1.
Using a temperature measuring pipe 8 and a thermometer 9 provided on the side of the reactor tube 3, measure the temperature of the outer wall of the reaction tube 3 or the temperature near the center thereof, and correlate this measured value with the control circuit of the power supply or the load voltage. This can be done by

前記温度計9としては先高温度計、2色温度計、輻射温
度計等が有利に使用できる。
As the thermometer 9, a tip thermometer, a two-color thermometer, a radiation thermometer, etc. can be advantageously used.

前記竪型炉1の上方には炭化炉2が設けられ、竪型炉1
の原料装入口10と炭化炉2の装入物せ1出口11とが
対応するように連接されている。
A carbonization furnace 2 is provided above the vertical furnace 1.
The raw material charging inlet 10 of the carbonization furnace 2 is connected to the charging port 1 outlet 11 of the carbonization furnace 2 so as to correspond to each other.

在記炭化炉2と竪型炉1の連接部は竪型炉1から抄出さ
れる反応生成ガスが炭化炉2へ効率的に送込されるよう
に気密構造とされる。
The connecting portion between the carbonization furnace 2 and the vertical furnace 1 has an airtight structure so that the reaction product gas extracted from the vertical furnace 1 can be efficiently sent to the carbonization furnace 2.

また前記炭化炉2には操業開始直後等の反応生成ガスが
不充分/コ場合に炭化炉2内を加熱する補助加熱手段1
2を設けることができる。
In addition, an auxiliary heating means 1 for heating the inside of the carbonization furnace 2 when there is insufficient reaction product gas in the carbonization furnace 2 immediately after the start of operation, etc.
2 can be provided.

本製造装置によれば、粒状に成形された原料は前記炭化
炉2の上部に設けられた原料ホッパー13よりロータリ
ーバルブ等の原料切出手段14によって切出されシュー
ト15を経て炭化炉2餡へ供給され、炭化炉2内におい
て竪型炉1から斜出される高温のCOガスと向流接触し
ながら加謄され炭化炉2内の下方へと移動する。
According to this manufacturing apparatus, the raw material formed into granules is cut out from the raw material hopper 13 provided at the upper part of the carbonization furnace 2 by the raw material cutting means 14 such as a rotary valve, and is sent to the bean paste of the carbonization furnace 2 through the chute 15. The CO gas is supplied and added to the carbonization furnace 2 while being in countercurrent contact with the high-temperature CO gas obliquely discharged from the vertical furnace 1, and moves downward in the carbonization furnace 2.

次いで炭什炉2の排出口11より排出された原料は竪型
炉1に供給され、反応筒3内を下降しながらさらに力[
熱されてSiC生成反応し、水冷ジャケット16の設け
られた冷却層11で冷却され、生成物排川口18より排
出される。
Next, the raw material discharged from the discharge port 11 of the coal furnace 2 is supplied to the vertical furnace 1, and as it descends inside the reaction tube 3, it is further subjected to force [
The product is heated and undergoes a reaction to generate SiC, is cooled in a cooling layer 11 provided with a water cooling jacket 16, and is discharged from a product discharge port 18.

なお、炭化炉2内におG゛て成形原料の加熱に使用され
たCOガスは炭化炉2の上方に設けられたガス排出口1
9より回収して、燃料用、化学反応用等に有効に利用す
ることができる。
In addition, the CO gas used for heating the forming raw material in the carbonization furnace 2 is discharged from the gas discharge port 1 provided above the carbonization furnace 2.
9 and can be effectively used for fuel, chemical reactions, etc.

次に本発明を実施例、比較例について具体的に説明する
Next, the present invention will be specifically explained with reference to Examples and Comparative Examples.

実施例 粒度50〜80メツシユの珪石粉62重量部(以下、部
で表わす)、800メツシユ下の石油コークス粉(GL
コークス粉)38部および200メツシユ下の高ピッチ
粉10部とを均一に混合し、CMC1%水溶液を用いて
パン型造粒機にて平均粒径61rLmのペレット状に成
形した。
Examples 62 parts by weight of silica powder with a particle size of 50 to 80 mesh (hereinafter expressed in parts), petroleum coke powder with a particle size of 800 mesh or less (GL
38 parts of coke powder) and 10 parts of high pitch powder under 200 mesh were uniformly mixed and formed into pellets with an average particle size of 61 rLm using a pan-type granulator using a 1% CMC aqueous solution.

この成形原料を乾燥した後、第1図に示した如くの製造
装置に連続的に装入し、生成物を平均65kg/hrの
割合で回収した。
After drying this molding raw material, it was continuously charged into a manufacturing apparatus as shown in FIG. 1, and the product was recovered at an average rate of 65 kg/hr.

結果は第1表に示した。なお前記製造装置における炭化
炉は、全長2.0m、内径0.4mのロータリーキルン
を使用し、竪型炉は全長3.5m、反応筒内径o、sm
のタンマン型炉を使用した。
The results are shown in Table 1. The carbonization furnace in the production equipment used is a rotary kiln with a total length of 2.0 m and an inner diameter of 0.4 m, and a vertical furnace with a total length of 3.5 m and a reaction cylinder inner diameter of o, sm.
A Tanmann type furnace was used.

前記ロータリーキルンの下部における装入原料の加熱温
度は700°Cであり、竪型炉における反応温度は19
50℃に制御した。
The heating temperature of the charging material in the lower part of the rotary kiln is 700°C, and the reaction temperature in the vertical furnace is 19°C.
The temperature was controlled at 50°C.

本発明方法による実施例においては長期間にわたり原料
の滑らかな自然降下を呈し、極めて順調に連続操業を行
なうことができた。
In the examples using the method of the present invention, the raw material showed smooth natural descent over a long period of time, and it was possible to carry out extremely smooth continuous operation.

さらに第1表に示した結果よりわかるように、炉の熱効
率、生成SiCの収率も高く生産性も極めて良好であっ
た。
Further, as can be seen from the results shown in Table 1, the thermal efficiency of the furnace and the yield of produced SiC were high, and the productivity was also extremely good.

比較例 実施例で使用したと同様の成形原料を、第1図に示した
と同様の構造であるが、炭化炉を有しない製造装置を使
用し、竪型炉の頂部から直接に装入し、実施例と同様の
操作を行なった。
Comparative Example A molding raw material similar to that used in the example was charged directly from the top of a vertical furnace using a manufacturing apparatus having the same structure as shown in FIG. 1 but without a carbonization furnace. The same operation as in the example was performed.

結果は第1表に示した。The results are shown in Table 1.

上記の如く、成形原料を炭化させずに直接竪型炉に装入
した場合は操業中に原料の降下が時々悪化し、ポーキン
グ等を行ない強制的に原料を降下させる必要があり、原
料の降下が断続的となり、安定して連続操業を行なうこ
とは困難であった。
As mentioned above, if the forming raw material is directly charged into the vertical furnace without being carbonized, the falling of the raw material sometimes worsens during operation, and it is necessary to forcibly lower the raw material by poking, etc. The operation was intermittent, making it difficult to maintain stable continuous operation.

以上説明した如く、本発明方法によれば、β型炭化珪素
を製造するに際して、長期間にわたって極めて安定した
連続操業を行なえる効果を奏するものであり、工業上極
めて有用なものである。
As explained above, the method of the present invention has the effect of allowing extremely stable continuous operation over a long period of time when producing β-type silicon carbide, and is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例において使用した製造装置の
縦断面図である。 1・・・・・・竪型炉、2・・・・・・炭化炉、3・・
・・・・反応筒、4・・・・・・耐火物、5・・・・・
・発熱体、6・・・・・・発熱体保護外筒、γ・・・・
・・断熱層、8・・・・・・測温パイプ、9・・・・・
・温度計、10・・・・・・竪型炉の原料装入口、11
・・・・・・炭化炉の装入物排出口、12・・・・・・
補助加熱手段、13・・・・・・原料ホッパー、14・
・・・・・原料切出手段、15・・・・・・シュート、
16・・・・・・水冷ジャケット、1γ・・・・・・冷
却層、18・・・・・・生成物排出口、19・・・・・
・ガス排出口、20・・・・・・非酸化性ガス封入口。
FIG. 1 is a longitudinal sectional view of a manufacturing apparatus used in an example of the present invention. 1... Vertical furnace, 2... Carbonization furnace, 3...
...Reaction tube, 4...Refractory, 5...
・Heating element, 6... Heating element protection outer cylinder, γ...
...Heat insulation layer, 8...Temperature measuring pipe, 9...
・Thermometer, 10... Raw material charging port of vertical furnace, 11
...Charge discharge port of carbonization furnace, 12...
Auxiliary heating means, 13... Raw material hopper, 14.
... Raw material cutting means, 15 ... Chute,
16... Water cooling jacket, 1γ... Cooling layer, 18... Product outlet, 19...
- Gas discharge port, 20...Non-oxidizing gas filling port.

Claims (1)

【特許請求の範囲】[Claims] 1 シリカ粉末と炭素粉末と炭素系の結合剤とを混合し
、粒状に成形せしめた原料を竪型の電気抵抗式間接加熱
炉の上方から前記加熱炉内に装入し、前記加熱炉中で間
接加熱してSiC生成反応を生起させ、前記加熱炉の下
方よりSiC生成物を取り出すβ型炭化珪素の連続製造
方法において、前記加熱炉にSiC生成反応時に副生ず
る高温の反応生成ガスを導入することのできる回転炉よ
りなる炭化炉を連接し、前記粒状に成形せしめた原料を
前記炭化炉内に装入し、SiC生成反応時に副生ずる高
温の反応生成ガスと接触させることにより、原料中の炭
素系の結合剤を炭化せしめた後、前記炭化炉内より排出
し、ついで前記加熱炉内に装入し、1600〜2100
℃の温度範囲内に加熱してSiC生成反応を生起せしめ
ることを特徴とするβ型炭化珪素の連続製造方法。
1. A raw material obtained by mixing silica powder, carbon powder, and a carbon-based binder and forming it into granules is charged into the heating furnace from above a vertical electric resistance type indirect heating furnace, and is heated in the heating furnace. In a method for continuous production of β-type silicon carbide in which a SiC production reaction is caused by indirect heating and a SiC product is taken out from below the heating furnace, a high-temperature reaction product gas that is produced as a by-product during the SiC production reaction is introduced into the heating furnace. A carbonization furnace consisting of a rotary furnace that can be used is connected, and the raw material formed into granules is charged into the carbonization furnace and brought into contact with the high-temperature reaction product gas that is produced as a by-product during the SiC production reaction. After the carbon-based binder is carbonized, it is discharged from the carbonization furnace, and then charged into the heating furnace, and heated to 1600 to 2100
1. A method for continuously producing β-type silicon carbide, which comprises heating within a temperature range of 0.degree. C. to cause a SiC production reaction.
JP50089885A 1975-07-23 1975-07-23 Beta Gatatankakeisono Lenzokuseizohouhou Expired JPS5818325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50089885A JPS5818325B2 (en) 1975-07-23 1975-07-23 Beta Gatatankakeisono Lenzokuseizohouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50089885A JPS5818325B2 (en) 1975-07-23 1975-07-23 Beta Gatatankakeisono Lenzokuseizohouhou

Publications (2)

Publication Number Publication Date
JPS5213500A JPS5213500A (en) 1977-02-01
JPS5818325B2 true JPS5818325B2 (en) 1983-04-12

Family

ID=13983206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50089885A Expired JPS5818325B2 (en) 1975-07-23 1975-07-23 Beta Gatatankakeisono Lenzokuseizohouhou

Country Status (1)

Country Link
JP (1) JPS5818325B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522906A (en) * 1983-04-11 1985-06-11 Fuji Photo Film Co., Ltd. Electrophotographic plate-making material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106565U (en) * 1979-01-19 1980-07-25
CH650425A5 (en) * 1981-05-21 1985-07-31 Alusuisse CHOCOLATE WITH HEAT-INSULATING PROTECTIVE LAYER.
US4529575A (en) * 1982-08-27 1985-07-16 Ibiden Kabushiki Kaisha Process for producing ultrafine silicon carbide powder
US4851203A (en) * 1986-04-03 1989-07-25 Atochem Metal carbide and nitride powders
ATE115087T1 (en) * 1988-03-11 1994-12-15 Deere & Co PRODUCTION OF MANGANESE CARBIDE AND IRON(II) ALLOYS.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502400A (en) * 1973-05-12 1975-01-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502400A (en) * 1973-05-12 1975-01-10

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522906A (en) * 1983-04-11 1985-06-11 Fuji Photo Film Co., Ltd. Electrophotographic plate-making material

Also Published As

Publication number Publication date
JPS5213500A (en) 1977-02-01

Similar Documents

Publication Publication Date Title
US4292276A (en) Apparatus for producing silicon carbide
CN102381700B (en) Manufacturing method of graphite material
WO2015093570A1 (en) Device and method for manufacturing graphite powder
CN103290430A (en) Preparation method of anode steel claw protective ring for electrolytic aluminum
CN105645397B (en) It is a kind of for hyperfine structure graphite of EDM and preparation method thereof
US2178773A (en) Silicon carbide and manufacture thereof
CN112266248B (en) Method for preparing graphite crucible by using low-quality graphite raw material
CN103601173A (en) Method for producing carbon product by ball pressing technology
JPS5818325B2 (en) Beta Gatatankakeisono Lenzokuseizohouhou
CN103708461A (en) Method for preparing calcium carbide
US3254143A (en) Method for molding carbonized bodies
CN108892136A (en) A kind of manufacturing process of high-heat resistance shock resistant graphite electrode
CN102924103A (en) Carbon brick, and production method and application of carbon brick
CN108807942A (en) A method of preparing ion cathode material lithium using graphene oxide
KR102176380B1 (en) Catalytically active additives for coke derived from petroleum or coal
US3567808A (en) Production of low density-high strength carbon
CN210795784U (en) System for production carbide
CN111960420A (en) Method for rapidly producing nano silicon carbide by microwave irradiation of electronic waste
CN206266523U (en) Prepare the dedicated system that calcium carbide semicoke is molded ball
JPH0138042B2 (en)
CN109935792A (en) Inexpensive lithium ion battery negative material method for modifying composite surface
CN108863423A (en) A kind of production technology of vinylite dipping electrode graphite
CN218321167U (en) Device for preparing macrocrystalline fused magnesia
JPS5836915A (en) Continuous manufacture of sic type substance
JPS6224370B2 (en)