JPS6144105A - Production of sinter-forged member - Google Patents

Production of sinter-forged member

Info

Publication number
JPS6144105A
JPS6144105A JP16722384A JP16722384A JPS6144105A JP S6144105 A JPS6144105 A JP S6144105A JP 16722384 A JP16722384 A JP 16722384A JP 16722384 A JP16722384 A JP 16722384A JP S6144105 A JPS6144105 A JP S6144105A
Authority
JP
Japan
Prior art keywords
powder
sintered
compact
sintering
forged member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16722384A
Other languages
Japanese (ja)
Inventor
Kunihiko Imahashi
今橋 邦彦
Mamoru Okamoto
守 岡本
Keiji Ogino
荻野 恵司
Kazuhiko Takahashi
和彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP16722384A priority Critical patent/JPS6144105A/en
Publication of JPS6144105A publication Critical patent/JPS6144105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a sinter-forged member having excellent tensile strength and fatigue strength in the stage of producing the sinter-forged member by coating a mixture composed of raw material metallic powder and graphite powder to the surface ot the part where the required strength in a molding of a powder raw material is high to penetrate said mixture into such part then supplying the raw material powder. CONSTITUTION:The powder mixture mixed with 1-4% copper powder, 0.2- 1.0% graphite powder and 0.5-1.0wt% zinc stearate powder as a lubricating agent and consisting of the balance iron powder is molded. Such molding is subjected to a dewaxing treatment to dissipate the zinc stearate and thereafter the mixture composed of the Fe powder and graphite powder similar to the above-mentioned Fe powder is coated to the part where the required strength is high. The molding is then heated and sintered, by which the surface in the part of the large required strength is subjected to a carburization treatment and the sinter-forged member having mechanical properties such as tensile strength and fatigue strength is inexpensively produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、焼結鍛造部材の製造方法に関し、詳しくは、
焼結鍛造部材の製造において、焼結鍛造部材の要求強度
の高い部位となる圧粉成形体の表面部に、その焼結鍛造
部材の粉末冶金用金泥粉末原料と同系材質からなる微粉
末に黒鉛粉末を混合した混合粉末を被覆・浸透させ、そ
の後に加熱焼結工程を実施することによって、引張強度
、疲労強度等の機械的性質を著しく改善することができ
るとともに、表面浸炭処理を安価に実施することのでき
る焼結鍛造部材の製造方法にかかる。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a sintered forged member, and in detail,
In the production of sintered forged parts, graphite is added to the surface part of the compacted compact, which is the area where the required strength of the sintered forged part is high, in a fine powder made of a material similar to the gold mud powder raw material for powder metallurgy of the sintered forged part. By coating and infiltrating the mixed powder and then performing a heating sintering process, mechanical properties such as tensile strength and fatigue strength can be significantly improved, and surface carburization can be performed at low cost. The present invention relates to a method for producing a sintered forged member.

〔従来の技術〕[Conventional technology]

最近、省資源・省エネルギ的な金泥部材の製造方法とし
て、全屈粉末を焼結処理後に熱間鍛造することにより、
焼結体の表面部に内在する空孔を圧潰して焼結部材の強
度を向上し、展伸された素材を熱間鍛造により製造され
た鋼部材に匹敵する強度をU(e保することのできる、
焼結鍛造法が広く通用されている。
Recently, as a resource-saving and energy-saving manufacturing method for gold mud parts, hot forging of fully bent powder after sintering has been developed.
The strength of the sintered member is improved by crushing the pores inherent in the surface of the sintered body, and the elongated material is maintained at a strength comparable to that of a steel member manufactured by hot forging. can be done,
The sinter forging method is widely used.

とりわけ、近年においては自動車部品、事務機械部品、
農業機械部品等の金属部材が焼結鍛造法により製造され
ている。
In particular, in recent years, automobile parts, office machine parts,
Metal members such as agricultural machinery parts are manufactured by sintering and forging.

さて、従来の焼結鍛造法においては、粉末冶金用金属粉
末原料を圧粉成形して圧粉成形体を形成する工程と、圧
粉成形体を加熱焼結する工程と、加熱焼結された焼結体
を高温にて熱間鍛造する工程とによって焼結鍛造部材が
製造されている。
Now, in the conventional sinter-forging method, there are two steps: forming a powder compact by compacting the metal powder raw material for powder metallurgy, heating and sintering the powder compact, and heating and sintering the powder compact. A sintered forged member is manufactured by hot forging a sintered body at a high temperature.

このような従来の焼結鍛造部材の製造方法においては、
圧粉成形によって形成される圧粉成形体の密度は5.5
〜1.5g/cra’となり、がなりポーラスな状態と
なっていた。
In such a conventional method for manufacturing sintered forged parts,
The density of the powder compact formed by compaction is 5.5
It was ~1.5 g/cra', and was in a porous state.

このため、非酸化性雰囲気の加熱焼結炉において焼結さ
れた焼結体を、加熱焼結炉から大気中に取り出すと、焼
結体の空孔を通じて焼結体の表面からかなり内部にまで
空気がHaし、その結果として焼結体の表面部が酸化さ
れたり、脱炭されたりすることが少なくなかった。
For this reason, when a sintered body sintered in a heated sintering furnace in a non-oxidizing atmosphere is taken out of the heated sintering furnace into the atmosphere, the sintered body will penetrate from the surface of the sintered body considerably into the inside through the pores of the sintered body. The air is halogenated, and as a result, the surface of the sintered body is often oxidized or decarburized.

また、焼結体の表面部は熱間鍛造時において鍛造型に直
接接触するために、加熱焼結によって高温に加熱されて
いる焼結体の表面部が堰造型によって冷却されることと
なる。
Further, since the surface portion of the sintered body is in direct contact with the forging die during hot forging, the surface portion of the sintered body, which has been heated to a high temperature by heat sintering, is cooled by the weir-forming die.

この冷却された焼結体の表面部は、冷却されない焼結体
の内部に比較して、その後工程である熱間鍛造による圧
密化効果が弱く、このため、表面部に残留空孔を残存し
やすい。
The surface of the cooled sintered body is less compacted by the subsequent hot forging process than the inside of the uncooled sintered body, and therefore residual pores remain on the surface. Cheap.

このような理由から、従来の焼結鍛造部材の製造方法に
おいては、焼結された焼結体の表面部に酸化層や脱炭層
が介在したり、空孔が多くなったりする等の欠陥を発生
しやすかった。
For these reasons, in the conventional manufacturing method of sintered forged parts, defects such as an oxidized layer, a decarburized layer, or an increase in pores are created on the surface of the sintered body. It was easy to occur.

このため従来の焼結鍛造法により製造された焼結鍛造部
材は、疲労強度、引張強度等の機械的性質を充分にU(
i保することができず、要求強度の高い金泥部材には焼
結鍛造部材の通用が困難とされているのが現状であった
For this reason, sintered forged parts manufactured by the conventional sintered forging method have sufficient mechanical properties such as fatigue strength and tensile strength.
At present, it is difficult to use sintered forged parts for gold-plated parts that require high strength.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のような従来の技術の現状に鑑み、本発明が解決し
ようとする問題点は、焼結鍛造部材の製造方法において
、従来の焼結鍛造部材の製造方法においては、圧粉成形
によって形成される圧粉成形体がかなりポーラスな状態
であるため、非酸化性雰囲気の加熱焼結炉において焼結
された焼結体を、加熱焼結炉から大気中に取り出すと、
焼結体の空孔を通じて焼結体の表面からかなり内部にま
で空気が浸透し、その結果として焼結体の表面部が酸化
されたり、脱炭されたりして引張強度、疲労強度等の機
械的性質が低下するとともに、上述のように圧粉成形体
の密度が低いことから、浸炭性雰囲気内では短時間で内
部まで浸炭してしまって加熱焼結炉内での表面浸炭をす
ることができず、焼結鍛造部材を表面浸炭する場合には
、焼結鍛造した後に改めて浸炭工程を追加する必要があ
り、表面浸炭された焼結鍛造部材の製造コストを大幅に
高騰させることにある。
In view of the current state of the conventional technology as described above, the problem to be solved by the present invention is that in the conventional method for manufacturing a sintered forged member, the problem is that it is formed by powder forming. Since the compacted compact is in a fairly porous state, when the sintered compact is sintered in a heated sintering furnace in a non-oxidizing atmosphere and taken out from the heated sintering furnace into the atmosphere,
Air penetrates considerably from the surface of the sintered body to the interior through the pores of the sintered body, and as a result, the surface of the sintered body is oxidized and decarburized, resulting in mechanical problems such as tensile strength and fatigue strength. In addition, as mentioned above, the compacted powder has a low density, so in a carburizing atmosphere, it will carburize to the inside in a short time, making it difficult to carburize the surface in the heating sintering furnace. If this is not possible and the sintered forged member is surface carburized, it is necessary to add another carburizing step after sintering and forging, which significantly increases the manufacturing cost of the surface carburized sintered forged member.

従って、本発明の技術的課題とするところは、焼結鍛造
部材の製造方法において、焼結鍛造部材の要求強度の高
い部位となる圧粉成形体の表面部に、その焼結鍛造部材
の粉末冶金用金属粉末原料と同系材質からなる微粉末に
黒鉛粉末を混合した混合粉末を被覆・浸透させ、その後
、加熱焼結する工程を実施することによって、引張強度
、疲労強度等の機械的性質を著しく優れたものとすると
ともに、焼結鍛造部材の要求強度の高い部位に対して、
加熱焼結炉内にて表面浸炭を可能とし、表面浸炭された
焼結鍛造部材の製造コストを著しく低減することにある
Therefore, the technical problem of the present invention is that in a method for manufacturing a sintered forged member, the powder of the sintered forged member is Mechanical properties such as tensile strength and fatigue strength are improved by coating and infiltrating a mixed powder made by mixing graphite powder with a fine powder made of a similar material to metallurgical metal powder raw materials, and then performing a process of heating and sintering. In addition to being extremely superior, for the parts of sintered forged parts that require high strength,
The object of the present invention is to enable surface carburization in a heating sintering furnace, and to significantly reduce the manufacturing cost of surface-carburized sintered forged members.

〔問題点を解決するための手段〕[Means for solving problems]

このような従来の技術における問題点に鑑みて、本発明
において、従来の技術の問題点を解決するための手段は
、粉末冶金用金属粉末原料を圧粉成形して圧粉成形体を
形成する工程と、 前記圧粉成形体を加熱して脱ろう処理する工程と、 脱ろう処理された前記圧粉成形体を、焼結反応が充分に
進行する温度範囲にて加熱焼結する工程と、 加熱焼結された焼結体を高温にて熱間鍛造することによ
り焼結鍛造部材とする工程とからなる焼結鍛造部材の製
造方法であって、 焼結鍛造部材の要求強度の高い部位となる圧粉成形体の
表面部に、圧粉成形工程後もしくは脱ろう処理工程後に
、当該焼結鍛造部材を製造する粉末冶金用金属粉末原料
と同系材質からなる微粉末に黒鉛粉末を混合した混合粉
末を被覆・浸透させ、その後に上記加熱焼結する工程を
実施することを特徴とする焼結鍛造部材の製造方法から
なっている。
In view of such problems in the conventional technology, in the present invention, a means for solving the problems in the conventional technology is to form a compact by compacting a metal powder raw material for powder metallurgy. a step of heating the powder compact to perform a dewaxing treatment; a step of heating and sintering the dewaxed powder compact at a temperature range in which the sintering reaction sufficiently proceeds; A method for manufacturing a sintered forged member, comprising a step of hot forging a heated and sintered sintered body at a high temperature to form a sintered forged member, the method comprising: After the compacting process or after the dewaxing process, a mixture of graphite powder and fine powder made of a similar material to the metal powder raw material for powder metallurgy used to manufacture the sintered forged part is added to the surface of the compacted compact. The method of manufacturing a sintered forged member is characterized by coating and infiltrating the powder and then performing the heating and sintering steps described above.

〔作用〕[Effect]

以下・本発明の作用について説明する。 The effects of the present invention will be explained below.

本発明において、粉末冶金用金泥粉末原料としては特に
限定されるものでな(、通常の焼結鍛造部材を製造する
ために使用される従来の粉末冶金用金属粉末原料を通用
することができる。
In the present invention, the gold mud powder raw material for powder metallurgy is not particularly limited (although conventional metal powder raw materials for powder metallurgy used for manufacturing ordinary sintered forged parts can be used).

特に、鉄系の粉末冶金用金属粉末原料が本発明の焼結鍛
造部材の製造方法には通している。
In particular, iron-based metal powder raw materials for powder metallurgy are used in the method for producing a sintered forged member of the present invention.

さらに、具体的には、鉄粉、銅粉、黒鉛粉末からなる混
合粉末が、粉末冶金用金属粉末原料とし1      
て多く使用されている。
Furthermore, specifically, a mixed powder consisting of iron powder, copper powder, and graphite powder is used as a metal powder raw material for powder metallurgy.
It is used a lot.

そして、銅粉の配合割合は重量%(以下、重量%を単に
%という。)で1゜0〜4.0%、黒鉛粉末の配合量は
0.2〜1.0%、残部実質的に鉄粉とするのが一般的
である。
The blending ratio of copper powder is 1°0 to 4.0% by weight (hereinafter, weight% is simply referred to as %), the blending ratio of graphite powder is 0.2 to 1.0%, and the balance is substantially It is common to use iron powder.

この混合粉末に、潤滑剤であるステアリン酸亜鉛粉末を
0.5〜1.0%添加して混粉する。
To this mixed powder, 0.5 to 1.0% of zinc stearate powder, which is a lubricant, is added and mixed.

なお、銅粉、黒鉛粉末は加熱焼結工程において鉄粉中に
固溶し、形成された焼結鍛造部材の剛性。
Copper powder and graphite powder are dissolved in iron powder during the heating and sintering process, and the rigidity of the sintered and forged parts that are formed.

強度等を向上させる効果ををしている。It has the effect of improving strength etc.

また、本発明において、圧粉成形体の加熱焼結工程の前
に圧粉成形体を脱ろう処理を実施するのは、その後の加
熱焼結工程における潤滑剤(ステアリン酸亜鉛粉末)の
急激な放散による焼結炉内雰囲気の不安定化を防止する
ためである。
In addition, in the present invention, dewaxing the powder compact before the heat sintering process of the powder compact causes rapid loss of lubricant (zinc stearate powder) in the subsequent heat sintering process. This is to prevent the atmosphere in the sintering furnace from becoming unstable due to dissipation.

また、加熱焼結する工程は、その表面部に圧粉成形体と
同系材質の微粉末に黒鉛粉末を混合した混合粉末を被覆
・浸透させた圧粉成形体を、非酸化性雰囲気中にて加熱
し、粉末冶金用金泥粉末原料同士の焼結反応を進行させ
て一体化する工程である。
In addition, in the process of heating and sintering, the powder compact whose surface is coated and infiltrated with a mixed powder made of fine powder of the same type of material as the compact and graphite powder is placed in a non-oxidizing atmosphere. This is a process of heating and promoting a sintering reaction between gold mud powder raw materials for powder metallurgy to integrate them.

また、本発明において、焼結鍛造部材の要求強度の高い
部位となる圧粉成形体の表面部に、圧粉成形工程後もし
くは脱ろう処理工程後に、その焼結鍛造部材の粉末冶金
用金属粉末原料と同系材質からなる微粉末に、黒鉛粉末
を混合した混合粉末を被覆・浸透させることとしている
のは、■、同系材質の微粉末を圧粉成形体の表面部に被
覆・浸透させることにより、圧粉成形工程、脱ろう処理
工程において発生する表面凹部及び粉末粒界における、
加熱焼結炉から焼結体を取り出した後の酸化・脱炭を防
止する。
In addition, in the present invention, metal powder for powder metallurgy of the sintered forged member is added to the surface portion of the compacted body, which is a region with high required strength of the sintered forged member, after the compacting process or after the dewaxing process. The reason why a mixed powder of graphite powder is coated and infiltrated into a fine powder made of a material similar to the raw material is as follows. , in the surface depressions and powder grain boundaries that occur during the powder compaction process and the dewaxing process,
Prevents oxidation and decarburization after taking out the sintered body from the heating sintering furnace.

■、微粉末を用いることにより表面層の焼結反応を促進
して、熱間鍛造工程における残留空孔を低減する。
(2) By using fine powder, the sintering reaction of the surface layer is promoted to reduce residual pores in the hot forging process.

■、混合した黒鉛粉末により、焼結炉内において表面層
のみを浸炭させて焼結鍛造後における所定の浸炭層を形
成させる。
(2) Using the mixed graphite powder, only the surface layer is carburized in a sintering furnace to form a predetermined carburized layer after sintering and forging.

等の作用があるからである。This is because it has the following effects.

なお、微粉末の被覆・浸透工程において、被覆・?fi
3させる微粉末及び黒鉛粉末の平均粒径は、主粉末冶金
用金屈粉末原料の平均粒径の1/10以下とするのが望
ましい。
In addition, in the coating/penetration process of fine powder, coating/? fi
It is desirable that the average particle size of the fine powder and graphite powder is 1/10 or less of the average particle size of the main powder metallurgy raw material.

これは、微粉末の平均粒径が主粉末冶金用金屈粉末原料
のl/10を越える粗い平均粒径となると、圧粉成形体
の表面凹部に微粉末を浸透させることが困難となるから
である。
This is because if the average particle size of the fine powder exceeds 1/10 of the coarse powder raw material for main powder metallurgy, it becomes difficult to infiltrate the fine powder into the surface recesses of the compacted compact. It is.

また、圧粉成形体の表面部に被覆・浸透させる微粉末及
び黒鉛粉末の混合粉末を、圧粉成形体の表面部に被覆・
浸透し易くするために泥状とする溶媒は特に限定される
ものでないが、速乾性の有機溶剤等が望ましい。
In addition, a mixed powder of fine powder and graphite powder is coated and infiltrated into the surface of the compact.
The solvent that is made into a slurry to facilitate penetration is not particularly limited, but a quick-drying organic solvent or the like is preferable.

また、圧粉成形体の表面部への微粉末及び黒鉛粉末の混
合粉末の被覆・浸透方法も特に限定されるものでなく、
スプレー等の機械的方法を応用することもできる。
Furthermore, the method of coating and infiltrating the surface of the compacted body with the mixed powder of fine powder and graphite powder is not particularly limited.
Mechanical methods such as spraying can also be applied.

さらに、圧粉成形体の表面部への微粉末及び黒鉛粉末の
混合粉末の被5を量(被FR厚さ)は0.51以下が望
ましく、これは、0.5flを越えると被覆後に被5t
Jtitが脱落し易くなるからである。
Furthermore, it is desirable that the amount of the mixed powder of fine powder and graphite powder applied to the surface of the compacted body (receiving FR thickness) is 0.51 or less. 5t
This is because Jtit is likely to fall off.

また、圧粉成形体の表面部に被覆・浸透させる微粉末へ
の黒鉛粉末の添加量は、焼結2I2造後必要とされる浸
炭深さによって任窓に設定することができる。
Further, the amount of graphite powder added to the fine powder to be coated and infiltrated into the surface of the compacted compact can be set as desired depending on the carburizing depth required after sintering 2I2.

また、微粉末と黒鉛粉末の混合粉末の被覆・浸透工程は
、圧、扮成形後もしくは脱ろう処理工程後のいずれでも
よいが、脱ろう処理後の方が被覆・浸透操作が容易とな
ることから望ましい。
Additionally, the process of coating and infiltrating the mixed powder of fine powder and graphite powder may be carried out after pressure, molding, or after the dewaxing process, but it is easier to perform the process of coating and infiltrating after the dewaxing process. desirable.

さらに、焼結温度、焼結雰囲気等の焼結条件は、使用さ
れる粉末冶金用金属粉末原料の種類によって、任意に選
択することができる。
Furthermore, sintering conditions such as sintering temperature and sintering atmosphere can be arbitrarily selected depending on the type of metal powder raw material for powder metallurgy used.

また、粉末冶金用金属粉末原料が鉄粉原料である場合に
は、加熱焼結炉内の雰囲気ガスとしては、いわゆる、R
Xガスとして知られている吸熱型ガスが望ましい。
In addition, when the metal powder raw material for powder metallurgy is an iron powder raw material, the atmospheric gas in the heating sintering furnace is so-called R
An endothermic gas known as X-gas is preferred.

また、焼結温度は1150°C程度、焼結時間は20分
程度がよい。
Further, the sintering temperature is preferably about 1150°C and the sintering time is preferably about 20 minutes.

なお、粉末冶金用金属粉末原料が鉄、銅2gA鉛粉末か
らなる場合に、この加熱焼結工程により鉄粉同士が焼結
され、銅及び黒鉛が焼結された鉄金冗中に拡散して固溶
化する。
In addition, when the metal powder raw material for powder metallurgy consists of iron, copper 2gA lead powder, the iron powder is sintered together by this heating sintering process, and the copper and graphite are diffused into the sintered iron and metal. Convert to solid solution.

次に、高温にて熱間鍛造して焼結鍛造部材を製造する工
程は、加熱焼結工程で形成された高温状態の焼結体を鍛
造型に挿入し、鍛造型により熱間鍛造を実施する工程で
ある。
Next, the process of manufacturing a sintered forged member by hot forging at a high temperature involves inserting the high-temperature sintered body formed in the heating sintering process into a forging die, and performing hot forging with the forging die. This is the process of

この工程も、基本的には従来の焼結泪造工(νと同一の
もので、粉末冶金用金属粉末原料として鉄系のものを使
用した場合には、鍛造型としては合金工具鋼製の鍛造型
とし、熱間鍛造時の加圧力としてば、8 ton / 
c m ’程度の加圧力とするのが通常である。
This process is basically the same as the conventional sintering process (ν), and when iron-based metal powder raw materials are used for powder metallurgy, the forging die is made of alloy tool steel. Assuming a forging die and a pressure force during hot forging, it is 8 tons/
The pressing force is usually about cm'.

その場合、粉末冶金用金属粉末原料として鉄系金属を用
いた場合には、密度7.80g/cm’程度の焼結鍛造
部材を製造することができる。
In that case, if an iron-based metal is used as the metal powder raw material for powder metallurgy, a sintered forged member with a density of about 7.80 g/cm' can be manufactured.

なお、焼結鍛造工程の後に焼結鍛造部材を必要に応じて
熱処理や機械加工を実施することができることはいうま
でもない。
It goes without saying that after the sintering and forging process, the sintering and forging member can be subjected to heat treatment and machining as necessary.

〔実施例〕〔Example〕

以下、本発明の1実施例を説明する。 One embodiment of the present invention will be described below.

重量比率で、粒径的80μの純鉄粉96,8%に対して
、粒径20μの銅粉を2%1粒径約10μの黒鉛粉末を
0.6%、さらに、a?Pt剤としてのステアリン酸亜
鉛粉末を0.6%配合し、■型混合機で20分間混合し
た。
In terms of weight ratio, 96.8% pure iron powder with a particle size of 80μ, 2% copper powder with a particle size of 20μ, 0.6% graphite powder with a particle size of about 10μ, and a? 0.6% of zinc stearate powder as a Pt agent was added and mixed for 20 minutes using a ■ type mixer.

この混合粉末を用いて、板厚が5龍、平行部の長さが2
0mmの板曲げ試験片用の圧粉成形体を製作した。
Using this mixed powder, the plate thickness was 5 yen and the length of the parallel part was 2 yen.
A powder compact for a 0 mm plate bending test piece was manufactured.

その時の圧粉成形圧力は4 ton / cm ”であ
り、また、形成された圧粉成形体の密度は約6.8g/
Cm’であった。
The compacting pressure at that time was 4 ton/cm, and the density of the formed compact was about 6.8 g/cm.
It was Cm'.

ついで、圧粉成形体を500°C×30分間窒素ガス中
にて加熱して脱ろう処理を実施した。
Then, the compact was heated in nitrogen gas at 500°C for 30 minutes to perform a dewaxing treatment.

次に、粒1蚤5μの純鉄粉97%に粒径1μの黒鉛粉末
を混合しアルコールにて泥状とした被覆剤を、試験片の
平行部表面部に刷毛にて約Q、 l mmの厚さに塗布
した。
Next, a coating material made by mixing 97% pure iron powder with a grain size of 5μ and graphite powder with a grain size of 1μ and slurry with alcohol was applied to the surface of the parallel part of the test piece with a brush to a thickness of approximately Q, l mm. It was applied to a thickness of .

なお、塗布・乾燥後に断面観察したところ、微粉末が圧
粉成形体の表面を被覆するとともに、表面凹部に/!:
透していることを確認している。
In addition, when the cross section was observed after coating and drying, it was found that the fine powder covered the surface of the powder compact and also formed into the concavities on the surface. :
I have confirmed that it is transparent.

その後、純鉄粉の微粉末と黒鉛粉末を焼結鍛造部材の要
求強度の高い部位となる圧粉成形体の表面に、その焼結
鍛造部材の粉末冶金用金属粉末原料と同系材質からなる
微粉末に黒鉛粉末を混合した混合粉末を、被覆・浸透さ
せた圧粉成形体をカーボンポテンシャル(CP−0,6
%)の吸熱型ガス雰囲気中にて1150℃X20分間加
熱焼結し、その後、加熱焼結炉から取り出して大気中に
配置された鍛造型に移し、直に、8ton/am’の加
圧力により熱間鍛造した後、強制空冷により冷却した。
After that, fine powder of pure iron powder and graphite powder are applied to the surface of the green compact, which is a part of the sintered forged part that requires high strength. A powder compact made by coating and infiltrating a powder mixture with graphite powder is heated to carbon potential (CP-0,6
%) in an endothermic gas atmosphere for 20 minutes at 1150°C, then taken out from the heating sintering furnace, transferred to a forging mold placed in the atmosphere, and immediately subjected to a pressing force of 8 ton/am'. After hot forging, it was cooled by forced air cooling.

なお、加熱焼結炉から焼結体を取り出し鍛造型で鍛造加
圧するまでの時間は約8秒であった。
It should be noted that it took about 8 seconds to take out the sintered body from the heating sintering furnace and forge and pressurize it with a forge die.

上述により形成された焼結鍛造部材の特性を調査するた
め鍛造部材を切断し、「最大酸化相隔の深さ」、「最表
面層空孔率」、「説炭深さ」を測定した。
In order to investigate the characteristics of the sintered forged member formed as described above, the forged member was cut and the ``maximum oxidation phase distance depth'', ``topmost surface layer porosity'', and ``charcoal depth'' were measured.

なお、本発明法(a)及び従来法fblにより焼結鍛造
した焼結鍛造部材の断面全屈組織の顕微鏡写真を第1図
に示す。
Incidentally, FIG. 1 shows microscopic photographs of the cross-sectional fully bent structures of sintered forged members sintered and forged by the method (a) of the present invention and the conventional method fbl.

この図から明らかなように、従来法により製造した焼結
鍛造部材(第1図(5))においては、脱炭層の形成が
認められるのに対して、本発明法により製造した焼結鍛
造部材(第1図(b))においては、脱炭層は認められ
ず、むしろ、やや表面が浸炭状態となっていることが理
解される。
As is clear from this figure, the formation of a decarburized layer is observed in the sintered forged member manufactured by the conventional method (Fig. 1 (5)), whereas the sintered forged member manufactured by the method of the present invention is found to have a decarburized layer. In FIG. 1(b), no decarburized layer is observed; rather, it is understood that the surface is slightly carburized.

さらに、鍛造部材の状態における「引張強度」 ゛及び
「107回疲労強度」を測定した。
Furthermore, the "tensile strength" and "107 times fatigue strength" of the forged members were measured.

それらの諸特性の測定結果を下表に示す。The measurement results of those characteristics are shown in the table below.

表 なお、比較のために、上記した実施例の製造方法で、焼
結9[2造部材の粉末冶金用全屈粉末原料と同系材質か
らなる微粉末に、黒鉛粉末を混合した混合粉末を被覆・
浸透させる工程を除き、その他の工程は実施例の工程と
全く同一として従来法の焼結鍛造部材を製造した。
For comparison, a mixed powder made by mixing graphite powder with a fine powder made of a material similar to the total bending powder raw material for powder metallurgy of sintered 9[2-manufactured members] was coated for comparison.・
A sintered forged member was manufactured using the conventional method, except for the infiltration step, with the other steps being completely the same as those of the example.

このようにして従来法により製造された焼結鍛造部材諸
特性を、本発明法の実施例の場合と同様に測定し、それ
らの測定結果も上表に併せて示している。
The various properties of the sintered forged parts manufactured by the conventional method were measured in the same manner as in the examples of the method of the present invention, and the measurement results are also shown in the above table.

上表から明らかなように、「最大酸化物層の深さ」は、
従来法において95μであるのに対して、本発明法では
15μと減少している。
As is clear from the table above, the "maximum oxide layer depth" is
While it is 95μ in the conventional method, it is reduced to 15μ in the method of the present invention.

また、「最表面層空孔率」は、従来法において3.2%
に対して、本発明法では0.9%と最表面層の欠陥が少
な(、「脱炭深さ」も従来法において0.23龍に対し
て、本発明法では0龍となっている。
In addition, the "top layer porosity" is 3.2% in the conventional method.
In contrast, the method of the present invention has fewer defects in the outermost surface layer at 0.9% (the "decarburization depth" is also 0.23% in the conventional method, compared to 0.23% in the conventional method). .

また、「引張強度」は、従来法において74.6に(H
/mm’に対して、本発明法では75.7 Kg/ m
m ’であった。
In addition, the "tensile strength" was 74.6 (H
/mm', whereas in the method of the present invention, 75.7 Kg/m
It was m'.

さらに、「107回疲労強度」は、従来法において23
.2 Kg7 mm ”に対して、本発明法では31゜
1 Kg/ mm ”であった。
Furthermore, "107 times fatigue strength" is 23 times in the conventional method.
.. 2 Kg/mm", the method of the present invention yielded 31°1 Kg/mm".

また、第2図は、本発明法により製造した焼結鍛造部材
と、従来法により製造した焼結鍛造部材の表面部におけ
る断面硬さ分布を示している。
Moreover, FIG. 2 shows the cross-sectional hardness distribution in the surface portion of the sintered forged member manufactured by the method of the present invention and the sintered forged member manufactured by the conventional method.

この図から明らかなように、本発明法により製造した焼
結鍛造部材においては、表面浸炭に伴い表面近傍におけ
る硬さの上昇が認められるのに対して、従来法により製
造した焼結鍛造部材においては、表面脱炭層の影響を受
けて表面近傍における硬さの低下が認められる。
As is clear from this figure, in the sintered forged member manufactured by the method of the present invention, an increase in hardness near the surface is observed due to surface carburization, whereas in the sintered forged member manufactured by the conventional method, an increase in hardness is observed in the vicinity of the surface due to surface carburization. A decrease in hardness near the surface is observed due to the influence of the surface decarburized layer.

上述のように、本発明法によれば、「最大酸化物層の深
さ」、「最表面層空孔率」、「脱炭深さ」、「引張強度
J、rlo7回疲労強度」はいずれにおいても、従来法
に比較して優れた特性を示していることが理解される。
As mentioned above, according to the method of the present invention, the "maximum oxide layer depth", "topmost surface layer porosity", "decarburization depth", "tensile strength J, rlo 7 times fatigue strength" are all It is understood that this method also shows superior characteristics compared to the conventional method.

〔発明の効果〕〔Effect of the invention〕

以上により明らかなように、本発明にかかる焼結鍛造部
材の製造方法によれば、焼結鍛造部材の製造方法におい
て、焼結鍛造部材の要求強度の高い部位となる圧粉成形
体の表面部に、その製品焼結鍛造部材の粉末冶金用全屈
粉末原料と同系材質からなる微粉末に黒鉛粉末を混合し
た混合粉末を被覆・浸透させ、その後、加熱焼結する工
程を実施することによって、引張強度、疲労強度等の機
械的性質を著しく優れたものとするとともに、焼結鍛造
部材の要求強度の高い部位に対して、加熱焼結炉内にて
表面浸炭を可能とし、表面浸炭された焼結鍛造部材の製
造コストを著しく低減することができる利点がある。
As is clear from the above, according to the method for manufacturing a sintered forged member according to the present invention, in the method for manufacturing a sintered forged member, the surface portion of the powder compact, which is a portion with a high required strength of the sintered forged member, Then, by coating and infiltrating a mixed powder made by mixing graphite powder with a fine powder made of a material similar to the total bending powder raw material for powder metallurgy of the product sintered forged part, and then carrying out a process of heating and sintering, In addition to significantly superior mechanical properties such as tensile strength and fatigue strength, it also enables surface carburization in a heated sintering furnace for parts of sintered forged parts that require high strength. There is an advantage that the manufacturing cost of the sintered forged member can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明法(al及び従来法(blにより焼結
鍛造した焼結&E2造部材部材属組織の断面BQ微視鏡
写真示す図。 第2図は、本発明法及び従来法により焼結;[2造した
焼結鍛造部材の裏面部断面硬さ分布を示す図である。 出f1人 :コタ自■
Fig. 1 is a cross-sectional BQ microscopic photograph of a sintered & E2 manufactured member metal structure sintered and forged by the present invention method (al) and the conventional method (bl). Sintering: [2] This is a diagram showing the cross-sectional hardness distribution of the back surface of the manufactured sintered forged member.

Claims (1)

【特許請求の範囲】 1、粉末冶金用金属粉末原料を圧粉成形して圧粉成形体
を形成する工程と、 前記圧粉成形体を加熱して脱ろう処理する工程と、 脱ろう処理された前記圧粉成形体を、焼結反応が充分に
進行する温度範囲にて加熱焼結する工程と、 加熱焼結された焼結体を高温にて熱間鍛造することによ
り焼結鍛造部材とする工程とからなる焼結鍛造部材の製
造方法であって、 焼結鍛造部材の要求強度の高い部位となる圧粉成形体の
表面部に、圧粉成形工程後もしくは脱ろう処理工程後に
、当該焼結鍛造部材を製造する粉末冶金用金属粉末原料
と同系材質からなる微粉末に、黒鉛粉末を混合した混合
粉末を被覆・浸透させ、その後に上記加熱焼結する工程
を実施することを特徴とする焼結鍛造部材の製造方法。
[Claims] 1. A step of compacting a metal powder raw material for powder metallurgy to form a compact; a step of heating the compact to dewax; and a step of dewaxing the powder compact; A step of heating and sintering the compacted compact at a temperature range where the sintering reaction sufficiently proceeds, and hot forging the heated and sintered sintered compact at a high temperature to form a sintered forged member. A method for producing a sintered forged member, the method comprising: applying the relevant material to the surface of the powder compact, which is a region with high required strength of the sintered forging member, after the powder compaction step or after the dewaxing treatment step. A fine powder made of a material similar to the metal powder raw material for powder metallurgy used to manufacture sintered forged parts is coated and infiltrated with a mixed powder containing graphite powder, and then the above-mentioned heating and sintering process is carried out. A method for producing a sintered forged member.
JP16722384A 1984-08-09 1984-08-09 Production of sinter-forged member Pending JPS6144105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16722384A JPS6144105A (en) 1984-08-09 1984-08-09 Production of sinter-forged member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16722384A JPS6144105A (en) 1984-08-09 1984-08-09 Production of sinter-forged member

Publications (1)

Publication Number Publication Date
JPS6144105A true JPS6144105A (en) 1986-03-03

Family

ID=15845723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16722384A Pending JPS6144105A (en) 1984-08-09 1984-08-09 Production of sinter-forged member

Country Status (1)

Country Link
JP (1) JPS6144105A (en)

Similar Documents

Publication Publication Date Title
US5613180A (en) High density ferrous power metal alloy
CA2922018C (en) Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
JPH07505679A (en) Bearing manufacturing method
JPH04231404A (en) Method for powder metallurgy by means of optimized two-times press-two-times sintering
US4006016A (en) Production of high density powdered metal parts
KR20040070318A (en) Method for producing sintered components from a sinterable material
JP2003253372A (en) Method for manufacturing high density iron-based forged parts
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
WO2000062960A1 (en) Metallic powder molding material and its re-compression molded body and sintered body obtained from the re-compression molded body and production methods thereof
JP2002504188A (en) Manufacturing method for high density high carbon sintered metal powder steel parts
US2342799A (en) Process of manufacturing shaped bodies from iron powders
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
US5561832A (en) Method for manufacturing vanadium carbide powder added tool steel powder by milling process, and method for manufacturing parts therewith
US2284638A (en) Metallurgy of ferrous metals
WO2006126351A1 (en) Process for production of aluminum composite material
JPS6144105A (en) Production of sinter-forged member
GB1590953A (en) Making articles from metallic powder
JPS6345306A (en) Production of sintered member
KR20070112875A (en) Fe-based sintered alloy
US3203781A (en) Method of producing dispersion-hardened metal alloys
JP4615191B2 (en) Method for producing iron-based sintered body
JP2003531961A (en) Method of sintering carbon steel parts using hydrocolloid binder as carbon source
JP2857751B2 (en) Manufacturing method of cast iron based high density powder sintered compact
JPS61264105A (en) Production of high-strength sintered member
JP2003171741A (en) Iron based powder for warm compacting, and warm compacting method