JPS6143641B2 - - Google Patents
Info
- Publication number
- JPS6143641B2 JPS6143641B2 JP8791877A JP8791877A JPS6143641B2 JP S6143641 B2 JPS6143641 B2 JP S6143641B2 JP 8791877 A JP8791877 A JP 8791877A JP 8791877 A JP8791877 A JP 8791877A JP S6143641 B2 JPS6143641 B2 JP S6143641B2
- Authority
- JP
- Japan
- Prior art keywords
- output
- photoelectric
- elements
- photoelectric element
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000003287 optical effect Effects 0.000 claims description 35
- 239000000284 extract Substances 0.000 claims description 5
- 230000001419 dependent effect Effects 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000003111 delayed effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
Landscapes
- Automatic Focus Adjustment (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Description
本発明は、光学像の空間周波数成分中から光電
的に、特定の成分情報を抽出する装置に関する。
特定の空間周波数成分を抽出する方法として、光
電素子の前に設けた明暗格子を機械的に振動させ
る方法、又はCdS受光面に表面弾性波を伝播さ
せ、CdSの導電性を場所場所で時間的に変動せし
め、空間周波数成分の大きさに応じた交流信号を
得る方法が既に知られている。しかしながら、前
者の方法では、機械的可動部の存在の為、装置が
大きくなり更に消費電力も大きくなる欠点を有
し、また後者では、表面弾性波によつて生ずる
CdSの導電性の変化の度合が小さいので、SN比
が悪いという欠点がある。
更に、光像中の特定空間周波数成分を求めるこ
とはフーリエ成分を求めることに相当し、このフ
ーリエ変換演算手続自体はよく知られている。し
かしながら、フーリエ変換演算は複素数の演算で
ありコンピユータ等を使用しなければならず、か
つまたそれでも処理に時間を要すると言つた問題
がある。
そこで、本発明は機械的可動部を用いることな
く比較的簡単な構成により、光学像の空間周波数
成分中から特定の周波数成分を高精度にかつリア
ルタイムで抽出する装置を提供することを目的と
する。
この目的を達成するために、本願の第1の発明
は光学像の空間周波数成分中から特定の周波数成
分情報を抽出する装置において、一列に並んだ複
数個の光電素子からなる光電素子アレイを光学系
の焦点位置又はその近傍に設け各素子出力をそこ
に入射する光の強度に依存させるとともに、それ
らの光電素子を、複数個の素子からなる複数の素
子群に分割し、その各素子群の空間的長さを互に
等しくし、各素子群の光電素子の出力と、該光電
素子と位置的に対応した位置にあるその次の群の
光電素子の出力との間に一周期の位相差が生じる
様に、各素子群の光電素子の出力を、光電素子の
位置に応じた位相差とその光電素子出力に応じた
振幅と互に等しい角周波数とを持つ正弦波状の交
流信号に変調する変調手段を設け、そして該交流
信号を加算する加算手段を設けることを特徴とす
るものであり、第2の発明は光学像の空間周波数
成分中から特定の周波数成分情報を抽出する装置
において、等間隔に一列に並んだ複数個の光電素
子からなる光電素子アレイを光学系の焦点位置又
はその近傍に設け、各素子出力をそこに入射する
光の強度に依存させるとともに、それらの光電素
子を、複数個の素子からなる複数の素子群に分割
し、その各素子群の空間的長さを互に等しくし、
かつ各素子群内の光電素子の数Nを等しくし、各
群の最初に位置する光電素子の出力を加算し、そ
の次に位置する光電素子の出力を加算し以下同様
に各群内の対応位置の光電素子の出力を加算し、
これらの加算出力を、互に等しい角周波数を有す
ると共に、その光電素子の配列順に順次位相が
1/N周期ずれ、かつ振幅が上記加算出力の大き
さに対応した交流信号に変調する変調手段を設
け、そして該交流信号を加算する加算手段を設け
ることを特徴とするものであり、第3の発明は光
学像の空間周波数成分中から特定の周波数成分情
報を抽出する装置において、一列に並んだ複数個
の光電素子からなる光電素子アレイを光学系の焦
点位置又はその近傍に設け各素子出力をそこに入
射する光の強度に依存させるとともに、それらの
光電素子を、複数個の素子からなる複数の素子群
に分割し、その各素子群の空間的長さを互に等し
くし、各素子群の光電素子の出力と、該光電素子
と位置的に対応した位置にあるその次の群の光電
素子の出力との間に一周期の位相差が生じる様
に、各素子群の光電素子の出力を、光電素子の位
置に応じた位相差とその光電素子出力に応じた振
幅と互に等しい角周波数とを持つ交流信号に変調
する変調手段を設け、そして該交流信号加算する
加算手段を設け、更に上記加算手段の出力の位相
を比較位相情報と比べる位相比較手段を設けるこ
とを特徴とするものである。上記加算手段の出力
は、上記角周波数の交流出力であり、その振幅が
特定空間周波数成分の大きさに関連し、その位相
が特定空間周波数成分と光電素子アレイとの相対
位置に関連している。このように、本発明のいず
れも光電素子の出力を所定の交流信号で変調しこ
れらを加算することによつて特定空間周波数成分
を抽出するので、この抽出がリアルタイムで行う
ことができ構成も比較的簡単なものとなる。特に
光像が光電素子アレイ上で運動しているか静止し
ているかに拘らず、光像と光電素子アレイとの相
対位置関係は、交流出力の位相情報から得られる
ので、その取扱いが非常に容易となる。
次に本発明を第1図を用いて、原理的に説明す
る。
一列に互に等間隔に並んだ光電素子1a〜1
d,2a〜2d,3a〜3dからなる光電素子ア
レイ10は、図示なき光学系の焦点面又はその近
傍に配置されている。またその素子アレイは、
夫々等しい個数の素子1a〜1d,2d〜2d及
び3a〜3dからなる素子群,,に分割さ
れている。各素子群の最初に配列された素子1
a,2a,3a同士、その次の素子1b,2b,
3b同士、更に次の素子1c,2c,3c同士、
そして最後の素子1d,2d,3d同士は夫々接
続点11a,11b,11c,11dにおいて互
に接続され変調手段12に接続されている。この
素子アレイ10上には、前記光学系により種々の
空間周波数成分を含む光学像が結像され、各光電
素子は自身に入射した光の強度に関連した直流成
分を有する出力を発生する。変調手段12は接続
点11a,11b,11c,11dでの素子の出
力信号を、夫々順次1/4周期ずつ進んだ又は遅れ
た位相とその出力信号の大きさに関連した振幅と
を有する交流信号に変調する。従つて、各素子群
,,の配列順に対応した位置にある光電素
子例えば、1a,2a,3aの出力は互に同位相
の交流信号に変調され、かつ各群の素子の変調交
流信号は素子の配例順に順次1/4周期ずつ位相が
ずれることになる。尚この1/4周期の位相のずれ
は、各素子群が4固の素子から構成されている為
で、一般的にN個の素子から構成されている時
は、1/N周期の位相のずれとなる。こうして、
変調後の光電素子の交流出力は、光強度に関連し
た振幅と、他素子に対して、上述の特定の位相差
とを有する。この各素子の変調出力を加算手段1
4により、加算すると、この加算手段の出力は各
素子群の空間的長さdmmの逆数即ち1/d本/mm
の空間周波数成分情報を極めて多く含むことにな
る。
次に、多数の空間周波数成分からなる光学像か
ら特定の即ち1/d本/mmの空間周波数成分を抽
出する上述の本発明の原理を、正弦波状の変調を
行う場合について、数式を用いて詳述する。尚以
上の例では、簡単の為に、群の数を3、群内の素
子数を4としたが以下の説明では、一般化の為に
群の数をM、そして各群内の素子数をNとする。
このM×N個の素子上に或る輝度分布をもつた光
像が投影されたとき、その輝度に比例した各素子
の出力をm o(n=1,2…N,m=1,2…
M)とする。尚このm oは、例えばn=1,m=
1の時の出力1 1が第1図の素子1aの出力を表
わし同様にn=2,m=3の時の出力3 2が素子
3bの出力を表わすことを意味している。各群の
n番目の素子の出力m oを変調手段によつて、
The present invention relates to a device that photoelectrically extracts specific component information from spatial frequency components of an optical image.
As a method for extracting a specific spatial frequency component, there is a method of mechanically vibrating a light-dark grating installed in front of a photoelectric element, or a method of propagating surface acoustic waves on a CdS light receiving surface, which changes the conductivity of CdS from place to place over time. A method is already known in which an alternating current signal is obtained in accordance with the magnitude of the spatial frequency component. However, the former method has the disadvantage that the device becomes large due to the presence of mechanically moving parts, and power consumption also increases.
Since the degree of change in conductivity of CdS is small, it has the disadvantage of a poor signal-to-noise ratio. Furthermore, determining a specific spatial frequency component in an optical image corresponds to determining a Fourier component, and this Fourier transform calculation procedure itself is well known. However, since the Fourier transform operation is a complex number operation, a computer or the like must be used, and even then, there is a problem in that the processing takes time. Therefore, an object of the present invention is to provide a device that extracts a specific frequency component from among the spatial frequency components of an optical image with high precision and in real time using a relatively simple configuration without using mechanically movable parts. . In order to achieve this object, the first invention of the present application is an apparatus for extracting specific frequency component information from the spatial frequency components of an optical image. The output of each element is made to depend on the intensity of light incident thereon at or near the focal point of the system, and the photoelectric elements are divided into a plurality of element groups each consisting of a plurality of elements. The spatial lengths are made equal to each other, and there is a phase difference of one period between the output of the photoelectric element of each element group and the output of the photoelectric element of the next group located at a position corresponding to the photoelectric element. The output of the photoelectric element of each element group is modulated into a sinusoidal AC signal having a phase difference depending on the position of the photoelectric element, an amplitude corresponding to the output of the photoelectric element, and an equal angular frequency so that The invention is characterized by providing a modulation means and an addition means for adding the alternating current signals, and the second invention is an apparatus for extracting specific frequency component information from spatial frequency components of an optical image, etc. A photoelectric element array consisting of a plurality of photoelectric elements arranged in a row at intervals is provided at or near the focal point of the optical system, the output of each element is made dependent on the intensity of light incident thereon, and the photoelectric elements are Divide into a plurality of element groups consisting of a plurality of elements, and make the spatial length of each element group equal to each other,
Then, the number N of photoelectric elements in each element group is made equal, the output of the photoelectric element located at the beginning of each group is added, the output of the photoelectric element located next is added, and so on. Add the output of the photoelectric element at the position,
Modulating means modulates these summed outputs into alternating current signals having equal angular frequencies, whose phases are sequentially shifted by 1/N period in the order in which the photoelectric elements are arranged, and whose amplitudes correspond to the magnitudes of the summed outputs. and adding means for adding the alternating current signals, and the third invention is an apparatus for extracting specific frequency component information from spatial frequency components of an optical image, A photoelectric element array consisting of a plurality of photoelectric elements is provided at or near the focal point of the optical system, and the output of each element is made dependent on the intensity of light incident thereon. The spatial length of each element group is made equal to each other, and the output of the photoelectric element in each element group and the photoelectric element in the next group located at a position corresponding to the photoelectric element in each element group are divided into The output of the photoelectric element of each element group is set at an angle that is equal to the phase difference depending on the position of the photoelectric element and the amplitude depending on the output of the photoelectric element so that a phase difference of one period is generated between the output of the photoelectric element and the output of the photoelectric element. The apparatus is characterized by comprising a modulating means for modulating an alternating current signal having a frequency, an adding means for adding the alternating current signal, and a phase comparing means for comparing the phase of the output of the adding means with comparative phase information. It is. The output of the adding means is an alternating current output at the angular frequency, the amplitude of which is related to the magnitude of the specific spatial frequency component, and the phase of which is related to the relative position of the specific spatial frequency component and the photoelectric element array. . In this way, both of the present invention extract specific spatial frequency components by modulating the output of the photoelectric element with a predetermined alternating current signal and adding these signals, so this extraction can be performed in real time, and the configurations are also comparable. It will be simple. In particular, regardless of whether the optical image is moving or stationary on the photoelectric element array, the relative positional relationship between the optical image and the photoelectric element array can be obtained from the phase information of the AC output, so it is very easy to handle. becomes. Next, the present invention will be explained in principle using FIG. Photoelectric elements 1a to 1 arranged in a row at equal intervals
The photoelectric element array 10 consisting of d, 2a to 2d, and 3a to 3d is arranged at or near the focal plane of an optical system (not shown). In addition, the element array is
It is divided into element groups consisting of equal numbers of elements 1a to 1d, 2d to 2d, and 3a to 3d. Element 1 arranged first in each element group
a, 2a, 3a, the next elements 1b, 2b,
3b, and the next elements 1c, 2c, 3c,
The last elements 1d, 2d, and 3d are connected to each other at connection points 11a, 11b, 11c, and 11d, respectively, and connected to the modulation means 12. On this element array 10, an optical image containing various spatial frequency components is formed by the optical system, and each photoelectric element generates an output having a DC component related to the intensity of the light incident thereon. The modulation means 12 converts the output signals of the elements at the connection points 11a, 11b, 11c, and 11d into alternating current signals having a phase advanced or delayed by 1/4 period, respectively, and an amplitude related to the magnitude of the output signal. modulates to. Therefore, the outputs of photoelectric elements such as 1a, 2a, and 3a, located at positions corresponding to the arrangement order of each element group, are modulated into alternating current signals having the same phase, and the modulated alternating current signals of the elements of each group are modulated by the elements. The phase will be shifted by 1/4 period in the order of arrangement. This 1/4 period phase shift is because each element group is composed of 4 elements, and generally when it is composed of N elements, the 1/4 period phase shift is due to the fact that each element group is composed of 4 elements. This will result in a misalignment. thus,
The alternating current output of the photoelectric element after modulation has an amplitude related to the light intensity and a specific phase difference as described above with respect to other elements. Adding means 1 adds the modulated output of each element.
4, when added, the output of this adding means is the reciprocal of the spatial length dmm of each element group, that is, 1/d pieces/mm.
This includes an extremely large amount of spatial frequency component information. Next, the principle of the present invention described above for extracting a specific spatial frequency component of 1/d lines/mm from an optical image consisting of a large number of spatial frequency components will be explained using a mathematical formula for the case of sinusoidal modulation. Explain in detail. In the above example, for simplicity, the number of groups is 3 and the number of elements in each group is 4, but in the following explanation, for generalization, the number of groups is M, and the number of elements in each group is Let be N.
When an optical image with a certain luminance distribution is projected onto these M×N elements, the output of each element proportional to the luminance is m o (n=1, 2...N, m=1, 2 …
M). Note that this m o is, for example, n=1, m=
This means that the output 1 1 when n=2 and m=3 represents the output of the element 1a in FIG. 1, and the output 3 2 when n=2 and m=3 represents the output of the element 3b. The output m o of the nth element of each group is modulated by the modulation means,
【式】なる交流信号で変調すると、その 変調後の出力は[Formula] When modulated with an AC signal, the The output after modulation is
【式】となる。ここ
でiは虚数単位、wは角周波数である。従つて変
調後の全素子の出力を加算した加算手段の出力I
は[Formula] becomes. Here, i is an imaginary unit and w is an angular frequency. Therefore, the output I of the adding means is the sum of the outputs of all the elements after modulation.
teeth
【式】となる。この[Formula] becomes. this
【式】は1/d本/mmの空間周波数
成分そのものである。従つて加算手段14の交流
出力Iの振幅は1/d本/mmの空間周波数成分の
大きさに比例していることが分る。
この様に本発明によると、素子アレイ10の素
子群,,の空間的長さdを定めることによ
り、光学像中の所望の空間周波数成分を光電的に
抽出することができる。
このように抽出した空間周波数成分の大きさの
情報を用いて、既に知られている様に例えば結像
光学系の合焦状態を検出することができる。即ち
一般の光学系にあつては、合焦時にはその光学像
中の高次の空間周波数成分は大きいが、光学系が
合焦状態からずれるに従つて、その高次の成分は
急激に小さくなることを利用して高次の空間周波
数成分の大きさ情報を抽出して、それの最大を検
出することによつて光学系の合焦状態を検知でき
る。
尚、上述の説明では、加算手段14の出力の交
流成分の振幅情報が、所望の空間周波数成分の大
きさに関連している旨を述べてきたがこの加算手
段14の出力の交流成分の位相を利用すると、光
像の変位即ち光像の動きを検知できる。これを詳
述するとアレイ上の光学像が例えば第1図で左方
向に光電素子1個分だけ変位した時には、加算手
段14の出力I′は
となる。ここで{ }内の第1項は像の変位前の
出力Iに等しく、第2項は像の変位によつて素子
アレイ内に入つて来た像の部分とはみ出た部分に
よる影響を表わしている。しかし、この第2項は
一般的な光学像にあつては、第1項に対して無視
し得るので、IとI′との相違はe−2π/Niの存在
による。即ち、このことは像が丁度1素子の幅だ
け横ずれした場合、加算手段の出力の位相が2π/N
だけ変化することを示している。更に、加算手段
の出力の直流成分は光像の平均的明るさを表わし
ている。
尚、第1図では、各素子群の対応位置にある素
子即ちその出力が互に同位相の交流信号に変調さ
れる素子1a,2a,3a、1b,2b,3b…
同士を互に接続し、その接続点を変調手段12に
接続しているので、素子アレイからのリード線は
素子群の数によらず群内の素子数によつて決定さ
れる。もちろん本発明はこの様な構成に限るもの
でなく、各光電素子を個々に変調手段12に接続
してもよい。
また、上例では各素子群,,を構成する
素子数をすべて等しくしたが、このことも本発明
に必須のことでなく、素子群の構成素子の数をN
としたとき、その素子出力を順次1/N周期の位
相差を有する交流信号に変調すると言う条件さえ
満たせば、各素子群の構成素子の数を異にしても
よい。
次に本発明の第1実施例を第2図により説明す
る。第1実施例は印加電圧と光強度とに比例した
出力電流を生ずるCdSの如き光導電素子を光電素
子として用い、その印加電圧として交流電圧を使
用することにより光強度に関連した光電素子の出
力電流を変調する例である。第2図において、正
弦状交流電圧供給回路16はその4個の出力端子
16a,16b,16c,16dに第3図a,
b,c,dに夫々示す如く、等しい角周波数W0
を有するが、位相が順次2π/4ずつ遅れた正弦波電
圧を発生する。出力端子16aは第1図と同一配
列の素子アレイ10の各群の最初に位置する光導
電素子1a,2a,3aの1方の端子と接続さ
れ、また他の出力端子16b,16c,16dも
同様に各群の配列順的に対応する光導電素子1
b,2b,3b、1c,2c,3c、1d,2
d,3dに夫々接続されている。これにより、各
光導電素子の出力電流はそこに入射した光強度
と、印加交流電圧に比例したものとなる。即ち、
光強度に比例した各素子の出力電流が印加交流電
圧で変調されたことになる。前記出力端子16a
〜16dと接続されていない方の各光導電素子の
端子は、導線17によつてすべて、互に一緒に接
続され、演算増幅器からなる電流電圧変換回路1
8に接続されている。従つて、各光導電素子の出
力電流はすべて加算され変換回路18に入力され
る。この加算された加算出力電流は第4図aに示
す如く、W0の角周波数を持ち光像の1/d本/
mmの空間周波数成分の情報を有する。この加算出
力電流は変換回路18により電圧に変換され、角
周波数W0のバンドパスフイルタ20により第4
図bに示す交流成分を抽出する。この交流の振幅
が、所望の1/d本/mmの空間周波数成分の大き
さに比例している。このフイルタ20の出力を回
路22により整流し、増幅すれば、所望の空間周
波数成分の大きさに比例した直流出力を得られ
る。また、バンドパスフイルタ20の出力と、正
弦波電圧供給回路16の4個の出力端子のいずれ
か1つの端子(第2図では16dとした)からの
出力との位相差を位相差測定回路24により求め
ると、所望の空間周波数成分についての位相情報
が得られ、これにより光像の変位を検出できる。
更に、変換回路18の出力をローパスフイルタ2
6に通すことにより第4図cに示す光像の平均的
光量に関する情報を得ることができる。
尚、この第1実施例の構成要素と第1図のそれ
とを較べると、正弦波電圧供給回路16が変調手
段12に相当し、また、各光導電素子の他端子同
士を接続している導線17が加算手段14に相当
している。
次にこの様な光導電素子アレイの具体的な構造
例を第5図に示す。第5図aにおいて、受光面と
して働く透明基板30と、その上のIn2O3やSnO2
等の透明共通電極32と、その上のCdS34と、
その上に一例に並んだ複数個Inの電極片36とそ
して、共通電極及び各電極片に夫々接続のリード
線とから素子アレイが構成される。尚、第5図b
は平面図である。この様な構造により互に絶縁さ
れた電極片36の相互間隔を極めて狭く出来、従
つて、素子群を構成する光電素子の数を増すこと
ができるので好ましい。
次に、本発明の第2実施例を第6図により説明
する。本実施例に使用する素子アレイの光電素子
としては、光強度をそれにほぼ比例する電気信号
に変換する素子であれば、いかなる種類のもので
もよい。従つて、CdSの如き光導電素子、シリコ
ン光電池の如き光起素子やフオトダイオード等を
用いることができる。第6図において素子アレイ
10の各光電素子には、一定電圧+Vが印加され
るので各光電素子は光強度にのみほぼ比例した直
流電流を出力する。各群の対応する素子1a,2
a,3aの出力端子はともにアレイ10の出力端
子10aに接続されており従つて、それらの3つ
の素子の出力は加算される。同様に、対応素子1
b,2b,3b,1c,2c,3c及び1d,2
d,3dも夫々出力端子10b,10c,10d
に接続され、各出力はそこで加算される。こうし
て、3出力を夫々加算した4つの加算出力電流は
夫々電流電圧変換回路40a,40b,40c,
40dで直流電圧に変換される。この直流電圧を
第7図a,b,c,dに示す。即ち、第7図a,
b,c,dの直流電圧は夫々光電素子1a,2
a,3aの光強度の合計、1b,2b,3bの光
強度の合計、1c,2c,3cの光強度の合計そ
して1d,2d,3dの光強度の合計に比例した
値を持つ。変調回路42は第7図a,b,c,d
の直流電圧を、第8図a,b,c,dの交流電圧
に夫々変調する。これらの交流電圧はともに等し
い角周波数W0を有するが、それらの振幅は夫々
第7図の直流電圧に比例し、かつそれらの位相は
90゜ずつ遅れている。加算回路44は変調回路4
2の4つの出力を加算し、第9図に示す角周波数
W0の交流出力を発する。この交流出力の振幅は
1/d本/mmの空間周波数成分の大きさに比例し
ており、第1実施例の第4図aの出力に対応す
る。その後この加算回路44の出力を、第1実施
例と同様にバンドパスフイルタ20整流器22や
位相差測定器24及びローパスフイルタ26を通
すことにより夫々所望の情報を得られる。
第10図に変調回路42の具体的一例を示す。
正弦波電圧供給回路42Sは第2図の電圧供給回
路16と同一のもので、その4つの出力端子には
夫々第3図a,b,c,dの如く2π/4ずつ位相の
遅れた角周波数W0の交流電圧を発生する。掛算
器42a,42b,42c,42dは、夫々電流
電圧変換回路40a,40b,40c,40dの
出力電圧と、電圧源42Sの順次2π/4ずつ遅れた
出力電圧を掛け算する。
本発明は素子群を有限数であるN個の素子から
構成している即ち素子群の長さdをN個の素子に
量子化しているので、像の1/d本/mmの空間周
波数成分の大きさは低下する。この低下の程度は
(sinπ/N)/π/Nである。本実施例では図面の複
雑化
を避ける為にN=4としたが、例えばN=8とす
ると(sinπ/8)/π/8=0.974となり、Nが無限大
の
時の値である1に非常に近くなつて、上述の低下
はほとんど無視できるものとなる。この様に所望
の空間周期の幅dを即ち素子群の幅dを比較的小
さな数例えば8個の光電素子で分割することによ
り、十分精度よく像の空間周波数成分の大きさ即
ち振幅情報を抽出できる。尚上では振幅情報につ
いて検討したが、位相情報についても少数の光電
素子N個でdを分割するだけで十分精度よく即ち
2π/Nの数倍の精度で抽出できる。
尚、以上の説明にあつては、特定の1/d本/
mmの空間周波数成分のみを抽出する為に、光電素
子出力を正弦波信号で変調したが、しかしなが
ら、定位相差即ち1/N周期の位相差を有する任
意の波形の周期信号例えば短形波信号で変調を行
つてもよい。この場合、1/d本/mmの空間周波
数成分を比較的多く含んだ信号を抽出できる。も
ちろん上記任意周期信号の基本周波数成分のみを
通過させるバンドパスフイルタを加算手段14の
出力に接続すれば、1/d本/mmの空間周波数成
分を極めて多く含んだ信号を抽出できる。しかし
ながら変調信号が矩形波の場合には加算手段で合
成された交流信号は段階状となり、位相を高精度
に検出する為には上記バンドパスフイルタとして
極めて狭帯域のものを用いなければならない。一
般に狭帯域バンドパスフイルタはピーク位置が温
度により変化し易くまたこれにより入力と出力と
に位相変化が生じ易いという問題がある。これに
対して変調信号を正弦波状とした場合には狭帯域
フイルタを特に必要とせず、簡単なD.C成分除去
フイルタ等のみで充分であると言う利点がある。
以上から明らかな如く、本発明によると、光電
素子群の空間的長さを選定することによつて、光
像の空間周波数成分中から、その長さによつて決
定される特定の成分を抽出でき、更に、素子出力
を変調するのに、電気交流信号を用いているの
で、SN比を向上できる。[Formula] is the spatial frequency component itself of 1/d lines/mm. Therefore, it can be seen that the amplitude of the AC output I of the adding means 14 is proportional to the magnitude of the spatial frequency component of 1/d lines/mm. As described above, according to the present invention, by determining the spatial length d of the element groups , , of the element array 10, a desired spatial frequency component in the optical image can be photoelectrically extracted. As is already known, for example, the focusing state of the imaging optical system can be detected using the information on the magnitude of the spatial frequency component extracted in this way. In other words, in a general optical system, the high-order spatial frequency components in the optical image are large when in focus, but as the optical system deviates from the focused state, the high-order components rapidly decrease. The in-focus state of the optical system can be detected by extracting the magnitude information of high-order spatial frequency components and detecting the maximum value. In the above description, it has been stated that the amplitude information of the AC component output from the adding means 14 is related to the magnitude of the desired spatial frequency component. By using this, it is possible to detect the displacement of the optical image, that is, the movement of the optical image. To explain this in detail, when the optical image on the array is displaced by one photoelectric element to the left in FIG. 1, the output I' of the adding means 14 is becomes. Here, the first term in { } is equal to the output I before the image displacement, and the second term represents the influence of the part of the image that entered the element array and the part that protruded from the element array due to the displacement of the image. There is. However, since this second term can be ignored compared to the first term in a general optical image, the difference between I and I' is due to the existence of e-2π/Ni. That is, this shows that when the image is laterally shifted by exactly the width of one element, the phase of the output of the adding means changes by 2π/N. Furthermore, the DC component of the output of the adding means represents the average brightness of the optical image. In FIG. 1, elements at corresponding positions in each element group, that is, elements 1a, 2a, 3a, 1b, 2b, 3b, whose outputs are modulated into alternating current signals having the same phase, are shown.
Since they are connected to each other and the connection point is connected to the modulation means 12, the lead wire from the element array is determined by the number of elements in the group, not by the number of element groups. Of course, the present invention is not limited to such a configuration, and each photoelectric element may be individually connected to the modulation means 12. Furthermore, in the above example, the number of elements constituting each element group, , is all equal, but this is not essential to the present invention, and the number of elements constituting the element group is set to N.
In this case, the number of constituent elements in each element group may be different as long as the condition that the element output is sequentially modulated into an alternating current signal having a phase difference of 1/N period is satisfied. Next, a first embodiment of the present invention will be explained with reference to FIG. In the first embodiment, a photoconductive element such as CdS that produces an output current proportional to the applied voltage and the light intensity is used as a photoelectric element, and by using an alternating current voltage as the applied voltage, the output of the photoelectric element is related to the light intensity. This is an example of modulating current. In FIG. 2, the sinusoidal AC voltage supply circuit 16 has four output terminals 16a, 16b, 16c, and 16d as shown in FIG.
Equal angular frequency W 0 as shown in b, c, d, respectively
, but generates a sine wave voltage whose phase is sequentially delayed by 2π/4. The output terminal 16a is connected to one terminal of the first photoconductive element 1a, 2a, 3a of each group of the element array 10 arranged in the same manner as in FIG. 1, and the other output terminals 16b, 16c, 16d are also connected. Similarly, photoconductive elements 1 corresponding to each group in the order of arrangement
b, 2b, 3b, 1c, 2c, 3c, 1d, 2
d and 3d, respectively. As a result, the output current of each photoconductive element becomes proportional to the intensity of light incident thereon and the applied alternating current voltage. That is,
This means that the output current of each element, which is proportional to the light intensity, is modulated by the applied AC voltage. The output terminal 16a
The terminals of the photoconductive elements not connected to ~16d are all connected together by conductive wires 17, and the current-voltage conversion circuit 1 consisting of an operational amplifier
8 is connected. Therefore, the output currents of each photoconductive element are all added together and input to the conversion circuit 18. As shown in Fig. 4a, this added output current has an angular frequency of W 0 and 1/d line/of the optical image.
Contains information on spatial frequency components of mm. This added output current is converted into a voltage by the conversion circuit 18, and the fourth
Extract the AC component shown in Figure b. The amplitude of this alternating current is proportional to the magnitude of the desired spatial frequency component of 1/d line/mm. If the output of the filter 20 is rectified and amplified by the circuit 22, a DC output proportional to the magnitude of the desired spatial frequency component can be obtained. Further, the phase difference between the output of the bandpass filter 20 and the output from any one of the four output terminals (16d in FIG. 2) of the sine wave voltage supply circuit 16 is measured by the phase difference measurement circuit 24. When obtained, phase information about the desired spatial frequency component is obtained, and the displacement of the optical image can be detected from this.
Furthermore, the output of the conversion circuit 18 is passed through a low pass filter 2.
6, information regarding the average light amount of the light image shown in FIG. 4c can be obtained. Comparing the components of this first embodiment with those shown in FIG. 17 corresponds to the addition means 14. Next, a specific structural example of such a photoconductive element array is shown in FIG. In FIG. 5a, there is a transparent substrate 30 that serves as a light-receiving surface, and In 2 O 3 or SnO 2 on it.
A transparent common electrode 32 such as, and a CdS 34 thereon,
An element array is constituted by a plurality of In electrode pieces 36 lined up thereon, and lead wires connected to the common electrode and each electrode piece, respectively. Furthermore, Figure 5b
is a plan view. This structure is preferable because the distance between the mutually insulated electrode pieces 36 can be made extremely narrow, and therefore the number of photoelectric elements constituting the element group can be increased. Next, a second embodiment of the present invention will be described with reference to FIG. The photoelectric elements of the element array used in this embodiment may be of any type as long as they convert light intensity into electrical signals approximately proportional to it. Therefore, a photoconductive element such as CdS, a photovoltaic element such as a silicon photovoltaic cell, a photodiode, etc. can be used. In FIG. 6, a constant voltage +V is applied to each photoelectric element of the element array 10, so that each photoelectric element outputs a direct current approximately proportional to only the light intensity. Corresponding elements 1a, 2 of each group
The output terminals of a and 3a are both connected to the output terminal 10a of the array 10, so the outputs of these three elements are summed. Similarly, corresponding element 1
b, 2b, 3b, 1c, 2c, 3c and 1d, 2
d and 3d are also output terminals 10b, 10c, and 10d, respectively.
and each output is summed there. In this way, the four summed output currents obtained by adding the three outputs, respectively, are generated by the current-voltage conversion circuits 40a, 40b, 40c,
It is converted into a DC voltage at 40d. This DC voltage is shown in FIGS. 7a, b, c, and d. That is, FIG. 7a,
DC voltages b, c, and d are applied to photoelectric elements 1a and 2, respectively.
It has a value proportional to the sum of the light intensities of a and 3a, the sum of the light intensities of 1b, 2b, and 3b, the sum of the light intensities of 1c, 2c, and 3c, and the sum of the light intensities of 1d, 2d, and 3d. The modulation circuit 42 is shown in FIG. 7 a, b, c, d.
The DC voltage is modulated into the AC voltages shown in FIGS. 8a, b, c, and d, respectively. These alternating current voltages both have the same angular frequency W 0 , but their amplitudes are each proportional to the direct current voltage in Figure 7, and their phases are
It is delayed by 90 degrees. Addition circuit 44 is modulation circuit 4
Adding the four outputs of 2, the angular frequency shown in Figure 9 is obtained.
Generates an AC output of W 0 . The amplitude of this AC output is proportional to the magnitude of the spatial frequency component of 1/d lines/mm, and corresponds to the output of the first embodiment shown in FIG. 4a. Thereafter, the output of this adder circuit 44 is passed through a band pass filter 20, a rectifier 22, a phase difference measuring device 24, and a low pass filter 26, as in the first embodiment, thereby obtaining desired information. FIG. 10 shows a specific example of the modulation circuit 42.
The sine wave voltage supply circuit 42S is the same as the voltage supply circuit 16 shown in FIG. 2, and its four output terminals each have an angle whose phase is delayed by 2π/4 as shown in FIG. 3 a, b, c, and d. Generates an alternating voltage with frequency W 0 . Multipliers 42a, 42b, 42c, and 42d multiply the output voltages of current-voltage conversion circuits 40a, 40b, 40c, and 40d, respectively, by the sequentially delayed output voltages of 2π/4 from voltage source 42S. In the present invention, the element group is composed of a finite number of N elements, that is, the length d of the element group is quantized into N elements, so the spatial frequency component of the image is 1/d elements/mm. decreases in magnitude. The degree of this decrease is (sinπ/N)/π/N. In this example, N = 4 to avoid complicating the drawing, but if N = 8, then (sinπ/8)/π/8 = 0.974, which is 1, which is the value when N is infinite. So close that the above-mentioned reduction becomes almost negligible. In this way, by dividing the width d of the desired spatial period, that is, the width d of the element group, by a relatively small number, for example, eight photoelectric elements, the magnitude of the spatial frequency component of the image, that is, the amplitude information, is extracted with sufficient precision. can. Although amplitude information has been discussed above, phase information can also be extracted with sufficient accuracy, ie, with an accuracy several times 2π/N, simply by dividing d by a small number of N photoelectric elements. In addition, in the above explanation, a specific 1/d book/
In order to extract only the spatial frequency component of mm, the photoelectric element output was modulated with a sine wave signal. However, it is possible to modulate the output of the photoelectric element with a sine wave signal. Modulation may also be performed. In this case, a signal containing relatively many spatial frequency components of 1/d lines/mm can be extracted. Of course, if a bandpass filter that passes only the fundamental frequency component of the arbitrary periodic signal is connected to the output of the adding means 14, a signal containing an extremely large number of spatial frequency components of 1/d lines/mm can be extracted. However, when the modulation signal is a rectangular wave, the alternating current signal synthesized by the addition means has a stepwise shape, and in order to detect the phase with high precision, it is necessary to use an extremely narrow band bandpass filter. In general, narrowband bandpass filters have a problem in that the peak position tends to change depending on temperature, and this tends to cause a phase change between the input and output. On the other hand, when the modulation signal is sinusoidal, there is no particular need for a narrow band filter, and there is an advantage that a simple DC component removal filter or the like is sufficient. As is clear from the above, according to the present invention, by selecting the spatial length of the photoelectric element group, a specific component determined by the length is extracted from among the spatial frequency components of the optical image. Furthermore, since an electrical alternating current signal is used to modulate the element output, the signal-to-noise ratio can be improved.
第1図は本発明を原理的に示すブロツク図、第
2図は本発明の第1実施例を示すブロツク図、第
3図は正弦波状交流電圧供給回路の各出力電圧を
示すグラフ、第4図a,b,cは、夫々抽出した
空間周波数成分を含む信号、該信号から分離した
交流成分及び該信号の直流成分を表わすグラフ、
第5図a,bは本実施例に用いた素子アレイの具
体的構造例を示す断面図と平面図、第6図は本発
明の第2実施例を示すブロツク図、第7図は第2
実施例の光電素子の出力を示すグラフ、第8図は
変調後の光電素子出力のグラフ、第9図は第4図
aと同様の図、そして第10図は第2実施例の変
調回路の具体的構成例を示すブロツク図である。
図において、1a〜1d,2a〜2d,3a〜
3d;光電素子、,,;素子群、10;素
子アレイ、12;変調手段、14;加算手段。
FIG. 1 is a block diagram showing the principle of the present invention, FIG. 2 is a block diagram showing a first embodiment of the invention, FIG. 3 is a graph showing each output voltage of a sinusoidal AC voltage supply circuit, and FIG. Figures a, b, and c are graphs representing a signal containing extracted spatial frequency components, an AC component separated from the signal, and a DC component of the signal, respectively;
5a and 5b are cross-sectional views and plan views showing specific structural examples of the element array used in this embodiment, FIG. 6 is a block diagram showing a second embodiment of the present invention, and FIG.
FIG. 8 is a graph showing the output of the photoelectric device of the example, FIG. 8 is a graph of the photoelectric device output after modulation, FIG. 9 is a diagram similar to FIG. 4a, and FIG. 10 is a graph of the modulation circuit of the second example. FIG. 2 is a block diagram showing a specific configuration example. In the figure, 1a to 1d, 2a to 2d, 3a to
3d; photoelectric element; ,; element group; 10; element array; 12; modulation means; 14; addition means.
Claims (1)
成分情報を抽出する装置において、一列に並んだ
複数個の光電素子からなる光電素子アレイを光学
系の焦点位置又はその近傍に設け各素子出力をそ
こに入射する光の強度に依存させるとともに、そ
れらの光電素子を、複数個の素子からなる複数の
素子群に分割し、その各素子群の空間的長さを互
に等しくし、各素子群の光電素子の出力と、該光
電素子と位置的に対応した位置にあるその次の群
の光電素子の出力との間に一周期の位相差が生じ
る様に、各素子群の光電素子の出力を、光電素子
の位置に応じた位相差とその光電素子出力に応じ
た振幅と互に等しい角周波数とを持つ正弦波状の
交流信号に変調する変調手段を設け、そして該交
流信号を加算する加算手段を設けることを特徴と
する空間周波数成分抽出装置。 2 光学像の空間周波数成分中から特定の周波数
成分情報を抽出する装置において、等間隔に一列
に並んだ複数個の光電素子からなる光電素子アレ
イを光学系の焦点位置又はその近傍に設け、各素
子出力をそこに入射する光の強度に依存させると
ともに、それらの光電素子を、複数個の素子から
なる複数の素子群に分割し、その各素子群の空間
的長さを互に等しくし、かつ各素子群内の光電素
子の数Nを等しくし、各群の最初に位置する光電
素子の出力を加算し、その次に位置する光電素子
の出力を加算し以下同様に各群内の対応位置の光
電素子の出力を加算し、これらの加算出力を、互
に等しい角周波数を有すると共に、その光電素子
の配列順に順次位相が1/N周期ずれ、かつ振幅
が上記加算出力の大きさに対応した交流信号に変
調する変調手段を設け、そして該交流信号を加算
する加算手段を設けることを特徴とする空間周波
数成分抽出装置。 3 光学像の空間周波数成分中から特定の周波数
成分情報を抽出する装置において、一列に並んだ
複数個の光電素子からなる光電素子アレイを光学
系の焦点位置又はその近傍に設け各素子出力をそ
こに入射する光の強度に依存させるとともに、そ
れらの光電素子を、複数個の素子からなる複数の
素子群に分割し、その各素子群の空間的長さを互
に等しくし、各素子群の光電素子の出力と、該光
電素子と位置的に対応した位置にあるその次の群
の光電素子の出力との間に一周期の位相差が生じ
る様に、各素子群の光電素子の出力を、光電素子
の位置に応じた位相差とその光電素子出力に応じ
た振幅と互に等しい角周波数とを持つ交流信号に
変調する変調手段を設け、そして該交流信号を加
算する加算手段を設け、更に上記加算手段の出力
の位相を比較位相情報と比べる位相比較手段を設
けることを特徴とする空間周波数成分抽出装置。[Claims] 1. In an apparatus for extracting specific frequency component information from spatial frequency components of an optical image, a photoelectric element array consisting of a plurality of photoelectric elements arranged in a line is placed at or near the focal position of an optical system. In addition to making the output of each element dependent on the intensity of light incident thereon, the photoelectric elements are divided into multiple element groups each consisting of a plurality of elements, and the spatial length of each element group is made equal to each other. Each element group is arranged so that a phase difference of one period occurs between the output of the photoelectric element of each element group and the output of the photoelectric element of the next group located at a position corresponding to the photoelectric element. A modulation means is provided for modulating the output of the photoelectric element into a sinusoidal alternating current signal having a phase difference depending on the position of the photoelectric element, an amplitude corresponding to the output of the photoelectric element, and an angular frequency that is mutually equal. A spatial frequency component extraction device characterized by comprising an addition means for adding signals. 2. In a device for extracting specific frequency component information from the spatial frequency components of an optical image, a photoelectric element array consisting of a plurality of photoelectric elements arranged in a line at equal intervals is provided at or near the focal position of the optical system, and each Making the element output dependent on the intensity of light incident thereon, dividing the photoelectric elements into a plurality of element groups each consisting of a plurality of elements, and making the spatial lengths of each element group equal to each other, Then, the number N of photoelectric elements in each element group is made equal, the output of the photoelectric element located at the beginning of each group is added, the output of the photoelectric element located next is added, and so on. The outputs of the photoelectric elements at the positions are added, and these summed outputs have the same angular frequency, the phases are sequentially shifted by 1/N period in the order in which the photoelectric elements are arranged, and the amplitude is equal to the magnitude of the added output. 1. A spatial frequency component extracting device comprising: modulation means for modulating a corresponding alternating current signal; and addition means for adding the alternating current signals. 3. In a device that extracts specific frequency component information from the spatial frequency components of an optical image, a photoelectric element array consisting of a plurality of photoelectric elements arranged in a line is provided at or near the focal point of the optical system, and each element's output is directed there. At the same time, the photoelectric elements are divided into a plurality of element groups each consisting of a plurality of elements, and the spatial length of each element group is made equal to each other. The output of the photoelectric element of each element group is adjusted so that a phase difference of one period is generated between the output of the photoelectric element and the output of the photoelectric element of the next group located at a position corresponding to the photoelectric element. , providing modulation means for modulating into an alternating current signal having a phase difference corresponding to the position of the photoelectric element, an amplitude corresponding to the output of the photoelectric element, and an angular frequency that are mutually equal, and adding means for adding the alternating current signals, A spatial frequency component extracting device further comprising phase comparison means for comparing the phase of the output of the addition means with comparison phase information.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8791877A JPS5422848A (en) | 1977-07-22 | 1977-07-22 | Space frequency component extraction device for optical images |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8791877A JPS5422848A (en) | 1977-07-22 | 1977-07-22 | Space frequency component extraction device for optical images |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5422848A JPS5422848A (en) | 1979-02-21 |
JPS6143641B2 true JPS6143641B2 (en) | 1986-09-29 |
Family
ID=13928292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8791877A Granted JPS5422848A (en) | 1977-07-22 | 1977-07-22 | Space frequency component extraction device for optical images |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5422848A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3771625A1 (en) | 2019-07-30 | 2021-02-03 | Kawasaki Jukogyo Kabushiki Kaisha | Traveling vehicle |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS567002A (en) * | 1979-06-30 | 1981-01-24 | Ricoh Co Ltd | Distance detecting system |
JPS59137505U (en) * | 1983-03-04 | 1984-09-13 | 横河電機株式会社 | pattern detection device |
JPS61193021A (en) * | 1985-02-21 | 1986-08-27 | Yokogawa Electric Corp | Signal reader for spatial filter |
JPH07117379B2 (en) * | 1986-03-25 | 1995-12-18 | アンリツ株式会社 | Variable space filter |
JPH07117380B2 (en) * | 1986-07-18 | 1995-12-18 | アンリツ株式会社 | Light receiving conversion device |
KR100877005B1 (en) * | 2004-05-21 | 2009-01-09 | 실리콘 라이트 머신즈 코포레이션 | Speckle sizing and sensor dimensions in optical positioning device |
-
1977
- 1977-07-22 JP JP8791877A patent/JPS5422848A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3771625A1 (en) | 2019-07-30 | 2021-02-03 | Kawasaki Jukogyo Kabushiki Kaisha | Traveling vehicle |
US11400998B2 (en) | 2019-07-30 | 2022-08-02 | Kawasaki Motors, Ltd. | Traveling vehicle |
Also Published As
Publication number | Publication date |
---|---|
JPS5422848A (en) | 1979-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4091281A (en) | Light modulation system | |
US6297488B1 (en) | Position sensitive light spot detector | |
US4264810A (en) | Focus detecting apparatus | |
US5457530A (en) | Spectrometer provided with an optical shutter | |
JPS6143641B2 (en) | ||
EP0309631B1 (en) | Method and apparatus for detecting position/variance of input light | |
GB2216718A (en) | Light detector for interferometers | |
JPH0328691B2 (en) | ||
JPS6236206B2 (en) | ||
JPH0328689B2 (en) | ||
US6061135A (en) | Efficient spatial image separator | |
US5047845A (en) | Charge-transfer-device planar array for detecting coherent-light phase | |
US4306143A (en) | Device for extracting a plurality of space frequency components | |
JPS5910485B2 (en) | 2 channel photometry device | |
JPS6146805B2 (en) | ||
SU684367A1 (en) | Apparatus for measuring optical transfer function | |
JPH0664121B2 (en) | Light receiving element characteristics measuring device | |
SU922816A1 (en) | Image processing device | |
JPS63140934A (en) | Analyzing method for shearing interference fringes | |
SU642730A1 (en) | Electric signal multiplying arrangement | |
SU1750020A1 (en) | Position determination device for an armature of inductor step motor with resistor-capacitor modules as grid plates on the armature and inductor | |
GB2144848A (en) | Electrical signal spectrum analyser | |
JPH0663868B2 (en) | Envelope detector | |
JPS6236207B2 (en) | ||
JPS61193021A (en) | Signal reader for spatial filter |